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Abstract

In the PAC-learning model, the Vapnik—Chervonenkis (VC) dimension plays the key role to
estimate the polynomial-sample learnability of a class of {0, 1}-valued functions. For a class of
{0,...,N}-valued functions, the notion has been generalized in various ways. This paper
investigates the complexity of computing VC-dimension and generalized dimensions: VC*-
dimension, ¥_-dimension, and ¥ ;-dimension. For each dimension, we consider a decision
problem that is, for a given matrix representing a class # of functions and an integer K, to
determine whether the dimension of & is greater than K or not. We prove that (1) both the
VC*-dimension and ¥ ;-dimension problems are polynomial-time reducible to the satisfiability
problem of length J with O(log?J) variables, which include the original VC-dimension
problem as a special case, (2) for every constant C, the satisfiability problem in conjunctive
normal form with m clauses and ClogZm variables is polynomial-time reducible to the
VC-dimension problem, while (3) ¥ _-dimension problem is NP-complete.

1. Introduction

The PAC learnability due to Valiant [12] is to estimate the feasibility of learning
a concept ({0, 1}-valued function) probably approximately correctly, from a reason-
able amount of examples (polynomial-sample), within a reasonable amount of time
(polynomial-time). It is well known that the Vapnik—Chervonenkis dimension (VC-
dimension) which is a combinatorial parameter of a concept class plays the key role to
determine whether the concept class is polynomial-sample learnable or not [3,5, 8].

This paper settles complexity issues on VC-dimension and some generalized dimen-
sions of a class over a finite learning domain. We remark that the complexity of
computing each dimension is of independent interest from the polynomial-time
learnability, since it is not directly related to the running time of learning algorithms.
However, there are some works on this topic. Linial et al. [5] showed that the
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VC-dimension of a concept class over a finite learning domain can be computed in
n®U°em time, where n is the size of a given matrix which represents the concept class.
Nienhuys-Cheng and Polman [9] gave another n®(°¢ "_time algorithm, although they
have not analyzed its running time. On the other hand, Megiddo and Vishkin [6]
defined two classes SAT,,,: , and SATE[:ZF , Which are between P and NP. SAT,,:,
(SAT,?:,F ,) is the class of sets which are polynomial-time reducible to the satisfiability
problem of a boolean formula of length J with O(log?J) variables (in conjunctive
normal form, respectively). They showed that the problem of finding a minimum
dominating set in a tournament is in SAT,,,:, and SATS;ZF ,~hard. That means the
problem is a kind of “complete” problem for the class of n°°8 ™ time computable sets.
Linial et al. [5] pointed out that the decision problem of computing VC-dimension
may have some connection with that problem.

Along this line, we will give polynomial-time reductions between some generalized
VC-dimension problems and the satisfiability problems of boolean formulae with
restricted number of variables.

We consider two kinds of generalizations of the VC-dimension for the class of
{0, ..., N}-valued functions. Recall that the VC-dimension of a class of {0, 1}-valued
functions is defined as the maximum cardinality of a set which is shattered by the class
[3]. For a class of {0,...,N}-valued functions, we first define V'C*-dimension by
naturally generalizing the notion of shattering. We show that the VC*-dimension
problem is in SAT,:,, and SATj; ,-hard. This result includes the original VC-
dimension problem as a special case.

The second generalization is ¥-dimensions due to the Ben-David et al. [2]. They
unified various dimensions such as pseudo-dimension [4], graph dimension [7] and
Natarajan dimension [7] into a general scheme by introducing a family ¥ of
mappings which translate {0,...,N}-valued functions into {0,1}-valued functions.
They defined ¥-dimension as the maximum VC-dimension under mappings in ¥. Let
¥, be the set of all mappings from {0, ...,N} to {0,1}, and let ¥;-dimension denote
the graph dimension [7]. We show that ¥ ,-dimension problem is NP-complete, while
the ¥s-dimension problem is in SAT),,: ,. These results suggest that the VC-dimen-
sion gives some interesting insights not only to algorithmic learning theory, but also
to computational complexity theory.

2. Preliminaries

In this paper, log denotes the logarithm to the base 2 without extra notice. For
amatrix M, let M,; denote the element on row i and column j of M, and the size of M is
the number of elements in M. The length of a boolean formula «, denoted by |a|, is the
total number of variable occurrences in «. For a formula « and a truth assignment ¢ to
the variables of «, let g(«) denote the truth value of « evaluated under 6. We denote
truth values by 0 and 1. For a boolean formula « and a proposition ¢, we denote
[o;c]=a if ¢ is true, and [o; c] ="1a otherwise.
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For any integers N,t>1 and 1<i<N", let digit(i, N, t) denote the tth digit of the
number (i—1) in base N, that is, i—l=zr,'=°%”"7 digit (i, N,t)N'~1. For example,
digit(7,2,1)=0, digit (7,2,2)=1, and digit (7, 2, 3) =1, since the number 6 is denoted by
“110” in base 2.

Let U be a finite set called a learning domain. We call a subset f of U a concept.
A concept f can be regarded as a function f: U — {0, 1}, where f(x)=1 if x is in the
concept and f(x)=0 otherwise. A concept class is a nonempty set F c2Y. We
represent a concept class # over a finite learning domain U by a |U| x |.#| matrix
M with Mi=fj(xi). Each column represents a concept in &. For a {0,1}-valued
matrix M, let #u denote the concept class which M represents.

Definition 1. We say that & shatters a set S < U if for every subset T = S there exists
a concept fe# which cuts T out of S, ie, T=Sn f. The Vapnik—Chervonenkis
dimension of #, denoted by VC-dim (&), is the maximum cardinality of a set which is
shattered by #.

Lemma 1 (Natarajan [8]). For any concept class #, VC-dim(F)<log|Z|.

By this lemma, Linial et al. [5] immediately claimed that a simple algorithm which
enumerates all possible sets to be shattered shall terminate in n°("*#™ time, where n is
the size of a given matrix.

Definition 2 (Linial et al. [5]). The discrete VC-dimension problem is, given a {0,1}-
valued matrix M and integer K > 1, to determine whether VC-dim (#u) > K or not.

Definition 3 (Megiddo and Vishkin [6]). The classes SATig2s and SATj:, are

defined as follows:

(1) A set L is in SATiogz2 s if there exists a Turing machine .#, a polynomial p(n), and
a constant C, such that for every string I of length n, .# converts I within p(n) time
into a boolean formula @, (whose length is necessarily less than p(n)) with at most
Clog?n variables, so that IeL if and only if @ is satisfiable.

(2) The definition of SATf,’:f . is essentially the same as that of SATiog2 » €xcept that the
formula @; is in conjunctive normal form.

From the definitions, it is easy to see that

P = SATy i, < SAT o2 n < NP.

3. Complexity of the discrete VC-dimension problem

In this section, we show that the discrete VC-dimension problem is in the class
SATiee2 s, and hard for the class SAT%::F -
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Theorem 1. The discrete VC-dimension problem is in SAT1og? .

Proof. The problem is a special case of the VC*-dimension problem, which will be
shown to be in SAT1og2s in Theorem 3. O

Theorem 2. Every LeSATff:zF » is polynomial-time reducible to-the discrete VC-dimen-
sion problem.

We use the following lemma in the proof of Theorem 2.

Lemma 2. Let & be a concept class over a learning domain U, and S be a subset of
U with |S|=d>2. If S is shattered by &, then for any two distinct x and y in S, the
number of concepts which contain exactly one of either x or y is at least 2°71, i.e.,

HfeZ|f)#Af (N} =211

Proof. Let #zy={feF|f(x)=0,f(y)=1},and Fxy={feF |f(x)=1,f(y)=0}. Then
{feF | f(X)£f(¥)}=FzyuFrj, and FiynFxy=0. It is easy to see that if S is
shattered by # then the set S— {x, y} is shattered by both %%y and #x3. By Lemma 1,
|S—{x, y)| <log| F=y| and | S — {x, y} | <log| F5|. Thus | Fzy|>2% "2 and | Fx5|22° "2,
which yield |{ £ | f()£f ()} | =| Fey| +|Fog| 2072420222071, [

Proof of Theorem 2. Let LeSATiog:». Then there is a constant Cr and a polynomial
pL(n) such that every string I of length n can be reduced in pr(n) time to a boolean
formula in conjunctive normal form with at most Crlog? n variables, whose satisfia-
bility coincides with the membership I€ L. Therefore, we have only to show that, for
any C, there is a polyomial-time reduction from the satisfiability problem in conjunc-
tive normal form with at most Clog?n variables to the discrete VC-dimension
problem. Let #=E1 A --- A Em (m=>=2) be a boolean formula where each E; is a dis-
junction and the total number of distinct variables occurring in @ is not greater than
Clog? m. Without loss of generality, we can assume that m is a power of 2. We can also
assume that the number of variables is exactly Clog?m, and let us rename them, for
convenience, with double indices vy (1 <s<logm, 1 <t<Clogm). We first construct
a matrix M which has (m®+ 1) logm rows and m? +m(logm—1) columns, and then
prove that VC-dim (#u,)>2logm if and only if @ is satisfiable.

The learning domain U corresponding to @ is defined as U= X u Y with X n Y =0,
where X={xa|l<s<logm, 1<I<m®} and Y={y|l<u<logm}. Let X;=
{xseX|1<I<mC} for each se{l,...,logm}, and let X™ =) qugun@29=1} Xs fOr
each ke{l,...,m}. The ith subset Y1 of Y is defined by Y"={y,e Y|digit(i,2,u)=1}
for each ie{1,...,m}.

The concept class # < 2V is defined as the union of distinct subclasses F4, ..., Fy,
and G. Here, the structure of G depends only on the number m:

G={gull<i<m, 1<k<m—1}, where gg=YFUXH
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We emphasize that k ranges only to m— 1, but not m. On the other hand, each concept
in F, reflects the structure of the clause E; in @:
Fi={f;|1<j<logm}, where f;j=Y10u(X —-X;)uXJ(E;)
with
X} Ey)=
E; contains a positive literal v; with digit(l,2,t)=1 or
x;€X; | E; contains a negative literal —v; with digit(l,2,t)=0
for some te{l,...,Clogm}
Fig. 1 illustrates the structure of the matrix M.

Clearly the cardinality of learning domain, i.e., the row size of the matrix M repres-
enting & is

|U|=|X|+|Y|=mE-logm+logm=(m+1)logm
and the cardinality of the concept class %, i.., the column size of M is
|F|=|G|+|F|+ - +|Fp|=m(m—1)+m-logm.

Moreover, it is easy to see that M 4 can be constructed in polynomial time with respect
to the length of a given formula &.
We now prove that if the formula @ is satisfiable then VC-dim (%) >2logm. For an
assignment ¢ which satisfies &, we consider the set S,=YuU X with
Clogm

Xo={X; (s,y€X |1 <s<logm}, where (g,5)= 3} 2'""-0(va)+1.
t=1

E, : E, : E, -
£11 812813 814 815 816 817 1821822823824 823 826 821/ o fzs;-!n 832813834835 8; 75 816 877

Fig. 1. Structure of the matrix M reduced from a boolean formula #=E; A E; A--- A Eg with C=1. In
this case, K =2log8=6. The only elements marked * depend on the structure of each clause E; in &.
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It is clear that |S,|=|Y|+|X,|=2logm. We will show that S, is shattered by %, i.e.,
for every T < S,, there exists an fe# with S, f=T. Let ir=Yy,e7ny2* '+ 1. It is
easy to see that ire{l,...,m} and Tn Y= YUl According to Tn X,=X, or not, we
have the following two cases.

(1) In case of TNXo X, let kr=Y,, ernx,2" 14 1. Then we can see that
kre{l,...,m—1} and T X,=X"*11~ X,. Therefore, the concept gi,.x,€G S & cuts
T out of S, as follows:

Gir kN Se=(YUIU X E N A (YU Xo)=(Y A V) U(X*I N X,)
=(TnY)u(TnXs)=T.

(2) In case of TnX,=X,, since o satisfies @, the disjunction E;, in @ is also
satisfied by ¢. That means E: contains either positive literal vs with o(vs:)=1, or
negative literal —vs: with o(vs:)=0, for some s and t. Let us take such an s (not
necessarily unique), and let jr=s. Then by the definition of <{o,jr), we see
digit({o,jr),2,t)=0(vj,:) for each t. Thus, xj, ¢ > is included in X},.(E:i,), and
moreover, X/ (Ei;)nXo={xj,<sjr>}. Therefore, the concept fi,,j,€Fi,<F cuts
T out of S, as follows:

JirirOSe =Y U(X — X ;) UX [ (Eip)) N (Y U Xo)
=Y Y)O((X = X)) N Xo) V(X (Eir) 0 X o)
=T Y)U(Xo={Xjr,<0.ip> }) U Xjr.<oj,> }
=T Y)UXe=(TNnY)U(TNXs)=T.

In each case, T is shown to be cut out of S, by some concept in #. Therefore, S, is
shattered by #

‘We now show the converse. Suppose that VC-dim (% )>2log m. Then there is a set
S < U of cardinality 2logm which is shattered by £.

Claim 1. S contains exactly one element from each X, (1<s<logm) and all elements
from Y.

Proof. Case m=2: The learning domain is U={y; }u X, and the concept class is
F ={f11-911>f21, 921} Since | F|=4 and g,,(x)=g,,(x)=0 for any xeX, no two
elements from X, can be included in § which is to be shattered by #. Moreover, since
| ¥Y|=|{y1}|=1, the claim holds.

Casem>3: Letse{l,...,logm} be fixed arbitrarily, and x,, x, be distinct elements
in X,. Suppose that S contains both x; and x,. Then by Lemma 2,

[{heZF |h(x1)#h(x,y)}| =2*em 1 =L pm2,
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On the other hand, let us consider a concept he# with h(x,)#h(x,). Since
gu(x1)=gu(x2)=digit (k, 2, s) for any g, €G, the concept h is not in G. Moreover, since
fij(x1)=fij(x2)=1for any f;;eF, u---UF, with j #s, thus & must be one of the concepts
from { fis,f25s ---sfms }- Therefore,

H{he F 1 h(x1) #h(x2)}|<I{ fis: fa50 - fms } | =,

which yields a contradiction since 3 m? >m for any m > 3. Thus, S can contain at most
one element from X, for each se{1,...,logm}. Since |S|=2logm and | Y|=logm, the
set § must contain exactly one element from each X and all elements from Y. O

Proof of Theorem 2 (conclusion). Therefore, for each se{1, ...,logm}, there is a unique
I=I(s)e{1,...,m} such that x,;,€S, and we can assume that S=YuU X;,, where
Xuy={Xs19| 1 <s<logm}. Let o5 be an assignments corresponding to S with

as(vs) =digit(I(s), 2,t) (1<s<logm, 1<t<Clogm).

We now show that oy satisfies all disjunctions E; in &. Let ie{l,...,m} be fixed
arbitrarily. Since S is shattered by %, for the subset T;=Y" U X of S there is
a concept ;e F with Snh;=T;. Since S N h;=(Y nh;) U (X g N h;), the concept h; must
satisfy the following two conditions:

Yoh=YW 1)
X(,)ﬁhi=X(1). (2)

Note that no concept in G satisfies condition (2), and no concept in F; with i’ #i
satisfies condition (1). Therefore, such an 4,€ £ is in F;, and thus we can assume h;=f;;
for some je{l,...,logm}. The above condition (2) requires that f;; contains all
elements from X ;). Especially, remark that x; ;;,€ X is included in f;; for the above j.
By the definition of f;;, the element x; ; is in X *(E;). Thus the clause E; satisfies
either (a) or (b):

(a) E; contains a positive literal v, with digit(I(j),2,)=1,

(b) E, contains a negative literal —w;, with digit(I(j), 2,1)=0.

By the definition of g5, we see g5(v;,)=1 in case of (a), and o5(v;,) =0 in case of (b). In
each case, g5(E;)=1. Therefore, o satisfies every disjunction E; in @. Thus & is
satisfiable. [

4. Complexity of the VC*-dimension problem

In this section, we introduce a natural generalization of tﬁe VC-dimension, which is
defined for a class of {0, ..., N}-valued functions. Then we show that the generalized
VC-dimension problem is still in SAT ., and SATCN; -hard, as well as the original

log2 n
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VC-dimensional problem. Therefore we may interpret that the generalized VC-dimen-
sion problem is also “complete” for the class of n°(°#" time computable sets.

Let N be the set of natural numbers. For a class & of functions from U to N, we
define range(F)= . & { f(x)|xeU}. We represent & by a |U| x | # | matrix M with
M;;=f;(x;). For an integer matrix M, let %, denote the class of functions which
M represents.

The following definition seems to be one of the most natural extensions of the
VC-dimension for a class of {0, ..., N }-valued functions.

Definition 4. Let # be a class of functions over U. We say that & shartersaset S U
if for every function g from S to range(F), there exists a function f€# such that
f(x)=g(x) for all xeS. The VC*-dimension of %, denoted by VC*-dim (&), is the
maximum cardinality of a set which is shattered by %.

We can easily see that VC*-dim (%) coincides with VC-dim(& ) for any class & of
functions with range(# )= {0, 1}. It is not hard to verify the following inequality, that
is a generalization of Lemma 1.

Lemma 3. For any class & of functions,

. log|#|
VC*dim(F )€ ——————.
im(F) log |range(F )|

Definition 5. The V'C*-dimension problem is, given an integer matrix M and integer
K >1, to determine whether VC*-dim(%#,,) =K or not.

We now show that the VC*-dimension problem is polynomial-time reducible to the
satisfiability problem of a boolean formula of length J with O(log?J) variables. The
next theorem includes Theorem 1 as a special case.

Theorem 3. The VC*-dimension problem is in SAT yg2 .

Proof. Let M be an m x r matrix and K be an integer, and let N =|range(F)|. We
denote the elements in range (%) by y1, 2, ..., ¥n- By Lemma 3, we can assume that
K <logr/log N without loss of generality. Moreover, we can also assume that m=2'
for some integer I; if m<2! for I=[logm7, then we enlarge M by duplicating the last
row of M until the row size reaches 2. It is easy to see that the size of the enlarged
matrix M’ is less than twice as large as that of the original matrix M, and VC*-
dim (£ )= VC*-dim(F ).

We now construct a boolean formula &, which contains K-/ variables v,
(1<k<K, 1<tx]) as follows:

r

Dy = /\ \/ st,

s=1j=1
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K

X .
Bii= N\ tjaignnarr (ISSSNK 1<),
k=1
%= V o (I<k<K, 1<j<r, 1<q<N),
ie | My=y,)

]
xi=/\ [ digit(i,2,0)=1] (1<k<K, 1<i<m).
1

i=
Note that the length of @, is
|Pp|<l-m-K-r- N
<logm-m-logr-r-r (since N¥<r)
<n? log?n,

where n=m-r is the size of the given matrix M. Also note that @, can be constructed
in polynomial time with respect to n.

Let U={x,X,,...,Xn | be the learning domain and #y={f1,/2,..../,} be the class
of functions which M represents. We will show that the formula @, is satisfiable if and
only if &y shatters a set S < U of cardinality K.

For each assignment o, we define a set S, = U as follows:

!
Se={X¢ry|1<k<K}, where (o,k)=Y 2'"'-g(vy,)+1.
t=1

It should be noted that the cardinality of S, is not always equal to K, since there may
be two distinct ky and k, with {o,k,> =<0, k; > in general.

We now show through a sequence of equivalences that an assignment ¢ satisfies
&, if and only if |S,|=K and §, is shattered by #,,.

First, for any ke{l,...,K} and any ie{l,...,m},

o(i)=1 < o([vi;digit(i,2,r)=1])=1 for each te{l,...,1}

1 if digit(i,2,0)=1

h re{l,...
0 if digit(i,2,1)=0 for each te{1,....1}

had G(Ukt)={
<« digit(i,2,t)=0(v,) for each te{l,....1}

! I
< Yy 27N digit(i,2, 0=, 2" ' o(ve)
t=1 =1

:
< i={0,k).
Next, for any ke{l,...,K}, any je{l,...,r}, and any ge{l,...,N},
o(tjg)=1 <> o()=1 and M;;=y, for some ie{l,...,m}
< i={0,k) and f;(x;)=y,

< [ilx¢ )=V,
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For every integer se{1, ..., NX}, let g, be the function from S, to range(%,) such that
9s(X¢o.k5) = Vaigirs, N,1p+1 for each ke{l,...,K}. Then, for any se{l,...,N¥} and any

je{l,...,r},
6(Bsj)=1 <= (% aigius.np+1)=1 for each ke{l,.. K}

< fi(X¢o.k5)=Vaigit s, N, 1p+1 for each ke{l,...,K}, and
digit(s, N, ky)#digit (s, N, k,) implies {a,k;)#<0,k;)
for any kq,k,e{l,...,K}.

< filxo 1) =09s(x 1) forall ke{l,...,K}, and
digit(s, N, k) #digit(s, N, k,) implies {o,k;>#<a,k,>
for any kq,k,e{l,..,K}.

< fi(x)=g(x) for all xe§,, and
digit (s, N, k) #digit (s, N, k,) implies {a,k; ) # {0,k;)
for any ky,k,e{1,....,K}.

Finally, we get the following equivalence:

o(Py)=1 = o-( \/ ﬂs,>—1 for any se{l,..., NX}

< for each se{l, ..., N¥},
there exists f;e. %y with gy(x)=f; (x) for all xeS§, and
digit(s, N, ky)#digit(s, N, k,) implies {a,k,)> #<0a,k;)
<> ky#k, implies {o,k{>#<0,k,>, and
for every function g from S, to range(¥), there exists f;e Fy
such that f;(x)=g(x) for all xe§,
<> |S,|=K and §, is shattered by %,

Thus the formula @,, is satisfiable if and only if VC-dim (Fy)=>K. O
The next theorem shows that the VC*-dimension problem is SATS:{ ,hard.

Theorem 4. Every LeSATCN
problem.

logz is polynomial-time reducible to the VC*-dimension
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Proof. The generalized VC-dimension problem includes the original VC-dimension
problem in which an instance is restricted to {0, 1}-valued matrix. Therefore, Theorem
2 immediately derives this theorem. [

5. Complexity of the ¥-dimension problems

The VC*-dimension introduced in the previous section seems to be one of the most
natural extension of the VC-dimension to the class of {0, ..., N}-valued functions.
However, it has not been used actually in the literatures. The reason is that the
cardinality of the largest class # of functions over U of a given dimension grows
exponentially in |U| for all |range(#)|>2 [1,2], whereas polynomial growth is
desirable for the PAC-learning model. As alternative definitions, a variety of notions
of dimension to classes of {0, ..., N}-valued functions had been proposed [4,7], and
Ben-David et al. [2] gave a general scheme which unified them. They introduced
¥-dimension, where ¥ is a family of mappings which translate {0, ..., N}-valued
functions into {0, 1}-valued ones. In this section, we investigate the complexity of
computing ¥-dimension for two special families ¥, and ¥;. We show that the
¥ ,-dimension problem is NP-complete, while the ¥ ;-dimension is still in SAT 52 .

Definition 6. Let ¥ be a family of the mappings ¥ from N to {0, 1, }, where = will be
thought of as a null element. Let & be a class of functions over U. We say that
& YW-shatters a set S < U if there exists a mapping e ¥ which satisfies the following
condition: for every subset T < S, there exists a function fe & with ¥ (f(x))=1 for any
xeT and Y (f(x))=0 for any xeS — T. That is, ¥-shattering requires that under some
mapping Yye¥, F contains all functions from U to {0,1}. The P-dimension of &,
denoted by ¥-dim (&), is the maximum cardinality of a set which is ¥-shattered by %.

Remark 1. In [2], they introduced more general notions of ¥-shatter and ¥-dimen-
sion. Our definition of the ¥-dimension corresponds to the uniform ¥-dimension they
call.

Definition 7. For a family ¥ of mappings from N to {0,1,*}, we definec the ¥-
dimension problem as the decision problem to determine whether ¥-dim (%)= K or

not for given integer matrix M and an integer K > 1.

Let ¥, be the family of all mappings from N to {0,1#}. Therefore, the ¥,-
dimension problem is the most general one in the family of ¥-dimension problems.

Theorem S. The ¥, -dimension problem is NP-complete.

Proof. It is easy to see that the ¥, -dimension problem is in NP: guess a set S < U of
size K and a mapping ¥ € ¥, nondetereministically, and verify that %, ¥ ,-shatters
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S by consecutively guessing appropriate f’s in &,,. This procedure terminates in
polynomial time.

We now give a polynomial-time reduction from 3SAT to the problem. Let
®=E,---E,, be a formula in 3-CNF with n variables. Without loss of generality, we
can assume that m is a power of 2, and variables are indexed as v;,03, ..., Up, Up+1. W€
first construct a matrix M, which has log m+ 2 rows and 6m columns, and then prove
that ¥ -dim(Fye)=logm+2 if and only if @ is satisfiable.

The learning domain U corresponding to @ is defined as U=
{X0.X1,Y1,¥24 -+ Viog,. |- The class Fu, of functions from U to {0,1,....,n+1} is

m
'g;Mq,: U {fil,ﬁz,ﬁs,gu,giz,gia},
i=1

where each function in 37% is defined as follows. For each ie{l,...,m} and
ue{l,...,logm},

Ju (V)= gu(ya)=digit(i,2,u) for all ke{l,2,3},

that is, the value of f; and gy on y, corresponds with the uth binary digit of the
number i—1. For each ie{l,...,m},

gi1(x0)=0, giz(xo)=1, giz(xg)=1,
gi1(x1)=0, giz(x1)=0, gis(xq1)=1,

which are independent of the structure of @. On the other hand, the values of f;1, fi»
and f;; on x, and x, reflect the structure of the clause E;=(l;; v [;; v l;3) in . For
each ke{l1,2,3}, if the literal /; is a negative literal —v,, then we define

ﬁk(XO)=Qa fik(X1)=1.

Otherwise (I is a positive literal v,),

Ji(x0)=0, Jalx1)=4q.

It should be noted that g ranges from 2 to n+ 1. Fig. 2 illustrates the structure of the
matrix M.

It is easy to see that M can be constructed in polynomial time with respect to the
length of given formula @.

We now prove that if the formula @ is satisfiable then ¥ ,-dim(#)=logm+2. For
an assignment ¢ which satisfies @, we consider a mapping Y€ ¥, with

¥4(0)=0, Ya(l)=1,
V.(g)=0(v,) for each ge{2,....n+1}.

Letie{l,...,m} be fixed arbitrarily. Since the clause E; is satisfied by the assignment g,
E; contains either positive literal v, with ¢(v;) =1 or negative literal —v, with g(v,)=0.
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L E, E. | E,
821 822 823, fa f2 fzsggsx 832 833

Fig. 2. Structure of the matrix My reduced from a boolean formula @=FE; A E; A--- A Eg. The only
shadowed elements depend on the structure of each clause E; in @.

In each case, we have fe %y » Such that

Volfiux0))=0,  ¥o(fulx1))=1,

for some ke{l,2,3}. Thus we can see that, under the mapping ¥,, the class
Fu,, contains all functions from U to {0, 1}. Therefore, U is ¥,-shattered by Fy,.

We now show the converse. Suppose that ¥, -dim(%), o) =logm+2. Then there
is a subset of U with cardinality logm+2 which is ¥,-shattered by Fy,. Since
|U|=logm+2,U itselfis ¥ ,-shattered by #), . That is, there exists a mapping y € ¥,
under which %, contains all functions from U to {0, 1}. We can assume that /(0)=0
and ¥(1)=1 without loss of generality. For such a , we define the assignment ¢, with
o,(v))=y(q) for each ge{2,...,n+1}. Then we can verify that g, satisfies every
disjunction E; in @. Thus @ is satisfiable. O

Natarajan [7] introduced the graph dimension in order to characterize the learnabil-
ity of a class of {0, ..., N}-valued functions.

Definition 8. The graph dimension is the ¥ ;-dimension, where ¥ = {y¢ .|teN}, and
Ve.. is defined by

1 if a=1,

'»&G,t(a) ={

0 otherwise.

From the definition, ¥ is a subset of ¥,. The following theorem gives an
interesting contrast with the Theorem 5.

Theorem 6. The ¥ -dimension problem is in SAT g p.

Proof. The outline and notations follow the proof of Theorem 3. Let M be an m xr
matrix and K be an integer. We should remark that in this time, the inequality
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K <logr/log N does not necessarily hold. Instead, we can only assume that K <logr.
We construct a boolean formula @;, as

N
o=\ ¥,
q=1

2% r
&= A\ V By (1<g<N),

s=1 j=1
K
Beia= /\ [owjqs digit(s,2,k)=1] (1<s<25 1<j<r, I<g<N),
k=1

where o, is the same as that in the proof of Theorem 3. Then the length of @}, is
|y <l-m-K-r-2X- N<ndlog?n,

since 2X <r. We now show that an assignment ¢ satisfies @}, if and only if | S,|=K and
S, is P s-shattered by Fy,.

For every integer se{l,...,2%}, let g, be the function from S, to {0,1} such that
9s(X¢o k3)=digit(s,2,k) for each ke{l,..,K}. Then for any se{l,...,2%}, any
je{l,...,r}, and any ge{1,...,N},

6(Bog)=1 = ([, digit(s,2,k)=1])=1 for each ke{l,...,K}

fj(X(a k))=yq if digit(s,2,k)=1
<> ’ . . for each ke{l,...,K
{fj(x@,k))#yq if digit(s,2,k)=0 { }

<> Yg,y, (f(x¢o k5))=digit(s,2,k) for each ke{l,...,K}, and
digit (s, 2, ki) #digit(s, 2, k,) implies {a, k) #<{0,ksy)
for any ky,k,e{1,...,K}.

< Ve,y, (fi(xe ) =gs(xo k) for all ke{l,...,K}, and
digit (s, 2, k1) # digit(s, 2, k;) implies <o,k,> #{0a, k2>
for any ky, k,e{1,...,K}.

< Yq,y, (fi(x))=g5(x) for all xe§,, and
digit (s, 2, k) # digit (s, 2, k,) implies <o,k ) #<{a,ky)
for any k,,k,e{l,...,K}.

For each ge{1,...,N}, '
o(P)=1 <« digit(s,2, k,) #digit (s, 2, k,) implies {a,k> #{0,k;), and

for every function g from S, to {0,1}, there exists f;eFy
such that y¢ ,, (fj(x))=g(x) for all xeS§,

<« [S,|=K and S, is shattered by &y under the mapping ¥, ,,.
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Thus ¥}, is satisfiable if and only if Ys-dim(F)=>K. O

According to the hardness result, the following corollary is immediately derived
from the Theorem 2.

Corollary 1. Every LeSATS:,Fn is polynomial-time reducible to the ' g-dimension
problem.

6. Conclusion

We showed that the VC-dimension problem, VC*-dimension problem and ¥-
dimension problem are all in SAT ., and SAT.7,-hard, while the ¥ ,-dimension
problem is NP-complete. It remains open that these problems are in SATS:ZF » O
SAT og2 ,-hard.

As a dual to the VC-dimension, Romanik [11] defined the testing dimension of
a concept class % as the minimum cardinality of a set S = U which is not shattered by
Z. We can see that the testing dimension problem is also in SAT),y.2,, by a similar
reduction in the proof of Theorem 1. It is also open whether the problem is SATfEf "
hard or not.

As another crucial characterization of the complexity of computing VC-dimension,
recently Papadimitriou and Yannakakis [10] defined a new complexity class
LOGNP, for which the (original) VC-dimension problem becomes complete. Their
results imply the polynomial-time reducibility from the satisfiability problem with
O(log? n) variables in conjunctive normal form to the VC-dimenson problem, which
we gave explicitly in the proof of Theorem 2.
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