

Theoretical Computer Science 137 (1995) 129-144

Complexity of computing Vapnik-Chervonenkis dimension and some generalized dimensions

Ayumi Shinohara*

Research Institute of Fundamental Information Science, Kyushu University 33, Hakozaki, Higashi-ku, Fukuoka 812, Japan

Abstract

In the PAC-learning model, the Vapnik-Chervonenkis (VC) dimension plays the key role to estimate the polynomial-sample learnability of a class of $\{0,1\}$ -valued functions. For a class of $\{0,...,N\}$ -valued functions, the notion has been generalized in various ways. This paper investigates the complexity of computing VC-dimension and generalized dimensions: VC*-dimension, Ψ_* -dimension, and Ψ_G -dimension. For each dimension, we consider a decision problem that is, for a given matrix representing a class $\mathcal F$ of functions and an integer K, to determine whether the dimension of $\mathcal F$ is greater than K or not. We prove that (1) both the VC*-dimension and Ψ_G -dimension problems are polynomial-time reducible to the satisfiability problem of length J with $O(\log^2 J)$ variables, which include the original VC-dimension problem as a special case, (2) for every constant C, the satisfiability problem in conjunctive normal form with m clauses and $C\log^2 m$ variables is polynomial-time reducible to the VC-dimension problem, while (3) Ψ_* -dimension problem is NP-complete.

1. Introduction

The PAC learnability due to Valiant [12] is to estimate the feasibility of learning a concept ({0,1}-valued function) probably approximately correctly, from a reasonable amount of examples (polynomial-sample), within a reasonable amount of time (polynomial-time). It is well known that the Vapnik-Chervonenkis dimension (VC-dimension) which is a combinatorial parameter of a concept class plays the key role to determine whether the concept class is polynomial-sample learnable or not [3,5,8].

This paper settles complexity issues on VC-dimension and some generalized dimensions of a class over a finite learning domain. We remark that the complexity of computing each dimension is of independent interest from the polynomial-time learnability, since it is not directly related to the running time of learning algorithms. However, there are some works on this topic. Linial et al. [5] showed that the

^{*}Corresponding author. E-mail: ayumi@rifis.kyushu-u.a.c.jp.

VC-dimension of a concept class over a finite learning domain can be computed in $n^{O(\log n)}$ time, where n is the size of a given matrix which represents the concept class. Nienhuys-Cheng and Polman [9] gave another $n^{O(\log n)}$ -time algorithm, although they have not analyzed its running time. On the other hand, Megiddo and Vishkin [6] defined two classes $SAT_{\log^2 n}$ and $SAT_{\log^2 n}^{CNF}$ which are between P and NP. $SAT_{\log^2 n}$ ($SAT_{\log^2 n}^{CNF}$) is the class of sets which are polynomial-time reducible to the satisfiability problem of a boolean formula of length J with $O(\log^2 J)$ variables (in conjunctive normal form, respectively). They showed that the problem of finding a minimum dominating set in a tournament is in $SAT_{\log^2 n}$ and $SAT_{\log^2 n}^{CNF}$ -hard. That means the problem is a kind of "complete" problem for the class of $n^{O(\log n)}$ time computable sets. Linial et al. [5] pointed out that the decision problem of computing VC-dimension may have some connection with that problem.

Along this line, we will give polynomial-time reductions between some generalized VC-dimension problems and the satisfiability problems of boolean formulae with restricted number of variables.

We consider two kinds of generalizations of the VC-dimension for the class of $\{0, ..., N\}$ -valued functions. Recall that the VC-dimension of a class of $\{0, 1\}$ -valued functions is defined as the maximum cardinality of a set which is *shattered* by the class [3]. For a class of $\{0, ..., N\}$ -valued functions, we first define VC^* -dimension by naturally generalizing the notion of shattering. We show that the VC*-dimension problem is in $SAT_{\log^2 n}$, and $SAT_{\log^2 n}^{CNF}$ -hard. This result includes the original VC-dimension problem as a special case.

The second generalization is Ψ -dimensions due to the Ben-David et al. [2]. They unified various dimensions such as pseudo-dimension [4], graph dimension [7] and Natarajan dimension [7] into a general scheme by introducing a family Ψ of mappings which translate $\{0, ..., N\}$ -valued functions into $\{0, 1\}$ -valued functions. They defined Ψ -dimension as the maximum VC-dimension under mappings in Ψ . Let Ψ_* be the set of all mappings from $\{0, ..., N\}$ to $\{0, 1\}$, and let Ψ_G -dimension denote the graph dimension [7]. We show that Ψ_* -dimension problem is NP-complete, while the Ψ_G -dimension problem is in SAT $_{\log^2 n}$. These results suggest that the VC-dimension gives some interesting insights not only to algorithmic learning theory, but also to computational complexity theory.

2. Preliminaries

In this paper, log denotes the logarithm to the base 2 without extra notice. For a matrix M, let M_{ij} denote the element on row i and column j of M, and the size of M is the number of elements in M. The length of a boolean formula α , denoted by $|\alpha|$, is the total number of variable occurrences in α . For a formula α and a truth assignment σ to the variables of α , let $\sigma(\alpha)$ denote the truth value of α evaluated under σ . We denote truth values by 0 and 1. For a boolean formula α and a proposition c, we denote $[\alpha; c] = \alpha$ if c is true, and $[\alpha; c] = \neg \alpha$ otherwise.

For any integers $N, t \ge 1$ and $1 \le i \le N^t$, let digit(i, N, t) denote the tth digit of the number (i-1) in base N, that is, $i-1=\sum_{t=1}^{\lceil \log_N i \rceil} digit(i, N, t)N^{t-1}$. For example, digit(7, 2, 1) = 0, digit(7, 2, 2) = 1, and digit(7, 2, 3) = 1, since the number 6 is denoted by "110" in base 2.

Let U be a finite set called a *learning domain*. We call a subset f of U a concept. A concept f can be regarded as a function $f: U \to \{0, 1\}$, where f(x) = 1 if x is in the concept and f(x) = 0 otherwise. A concept class is a nonempty set $\mathscr{F} \subseteq 2^U$. We represent a concept class \mathscr{F} over a finite learning domain U by a $|U| \times |\mathscr{F}|$ matrix M with $M_{ij} = f_j(x_i)$. Each column represents a concept in \mathscr{F} . For a $\{0, 1\}$ -valued matrix M, let \mathscr{F}_M denote the concept class which M represents.

Definition 1. We say that \mathscr{F} shatters a set $S \subseteq U$ if for every subset $T \subseteq S$ there exists a concept $f \in \mathscr{F}$ which cuts T out of S, i.e., $T = S \cap f$. The Vapnik-Chervonenkis dimension of \mathscr{F} , denoted by VC-dim(\mathscr{F}), is the maximum cardinality of a set which is shattered by \mathscr{F} .

Lemma 1 (Natarajan [8]). For any concept class \mathscr{F} , VC-dim(\mathscr{F}) $\leq \log |\mathscr{F}|$.

By this lemma, Linial et al. [5] immediately claimed that a simple algorithm which enumerates all possible sets to be shattered shall terminate in $n^{O(\log n)}$ time, where n is the size of a given matrix.

Definition 2 (Linial et al. [5]). The discrete VC-dimension problem is, given a $\{0, 1\}$ -valued matrix M and integer $K \ge 1$, to determine whether VC-dim $(\mathscr{F}_M) \ge K$ or not.

Definition 3 (Megiddo and Vishkin [6]). The classes SAT_{log^2n} and $SAT_{log^2n}^{CNF}$ are defined as follows:

- (1) A set L is in SAT_{log² n} if there exists a Turing machine \mathcal{M} , a polynomial p(n), and a constant C, such that for every string I of length n, \mathcal{M} converts I within p(n) time into a boolean formula Φ_I (whose length is necessarily less than p(n)) with at most $C \log^2 n$ variables, so that $I \in L$ if and only if Φ_I is satisfiable.
- (2) The definition of $SAT_{\log^2 n}^{CNF}$ is essentially the same as that of $SAT_{\log^2 n}$ except that the formula Φ_I is in conjunctive normal form.

From the definitions, it is easy to see that

$$P \subseteq SAT_{\log^2 n}^{CNF} \subseteq SAT_{\log^2 n} \subseteq NP.$$

3. Complexity of the discrete VC-dimension problem

In this section, we show that the discrete VC-dimension problem is in the class SAT_{log^2n} , and hard for the class $SAT_{log^2n}^{CNF}$.

Theorem 1. The discrete VC-dimension problem is in SAT_{log²n}.

Proof. The problem is a special case of the VC*-dimension problem, which will be shown to be in SAT_{log^2n} in Theorem 3. \Box

Theorem 2. Every $L \in SAT_{\log^2 n}^{CNF}$ is polynomial-time reducible to the discrete VC-dimension problem.

We use the following lemma in the proof of Theorem 2.

Lemma 2. Let \mathscr{F} be a concept class over a learning domain U, and S be a subset of U with $|S| = d \ge 2$. If S is shattered by \mathscr{F} , then for any two distinct x and y in S, the number of concepts which contain exactly one of either x or y is at least 2^{d-1} , i.e.,

$$|\{f \in \mathcal{F} | f(x) \neq f(y)\}| \ge 2^{d-1}$$
.

Proof. Let $\mathscr{F}_{\bar{x}y} = \{ f \in \mathscr{F} \mid f(x) = 0, f(y) = 1 \}$, and $\mathscr{F}_{x\bar{y}} = \{ f \in \mathscr{F} \mid f(x) = 1, f(y) = 0 \}$. Then $\{ f \in \mathscr{F} \mid f(x) \neq f(y) \} = \mathscr{F}_{\bar{x}y} \cup \mathscr{F}_{x\bar{y}}$, and $\mathscr{F}_{\bar{x}y} \cap \mathscr{F}_{x\bar{y}} = \emptyset$. It is easy to see that if S is shattered by \mathscr{F} then the set $S - \{x, y\}$ is shattered by both $\mathscr{F}_{\bar{x}y}$ and $\mathscr{F}_{x\bar{y}}$. By Lemma 1, $|S - \{x, y\}| \leq \log |\mathscr{F}_{\bar{x}y}|$ and $|S - \{x, y\}| \leq \log |\mathscr{F}_{x\bar{y}}|$. Thus $|\mathscr{F}_{\bar{x}y}| \geq 2^{d-2}$ and $|\mathscr{F}_{x\bar{y}}| \geq 2^{d-2}$, which yield $|\{f \in \mathscr{F} \mid f(x) \neq f(y)\}| = |\mathscr{F}_{\bar{x}y}| + |\mathscr{F}_{x\bar{y}}| \geq 2^{d-2} + 2^{d-2} = 2^{d-1}$. \square

Proof of Theorem 2. Let $L \in SAT_{\log^2 n}^{CNF}$. Then there is a constant C_L and a polynomial $p_L(n)$ such that every string I of length n can be reduced in $p_L(n)$ time to a boolean formula in conjunctive normal form with at most $C_L \log^2 n$ variables, whose satisfiability coincides with the membership $I \in L$. Therefore, we have only to show that, for any C, there is a polynomial-time reduction from the satisfiability problem in conjunctive normal form with at most $C \log^2 n$ variables to the discrete VC-dimension problem. Let $\Phi = E_1 \wedge \cdots \wedge E_m$ $(m \ge 2)$ be a boolean formula where each E_i is a disjunction and the total number of distinct variables occurring in Φ is not greater than $C \log^2 m$. Without loss of generality, we can assume that m is a power of 2. We can also assume that the number of variables is exactly $C \log^2 m$, and let us rename them, for convenience, with double indices v_{st} $(1 \le s \le \log m, 1 \le t \le C \log m)$. We first construct a matrix M_{Φ} which has $(m^C + 1) \log m$ rows and $m^2 + m(\log m - 1)$ columns, and then prove that VC-dim $(\mathcal{F}_{M_{\Phi}}) \ge 2 \log m$ if and only if Φ is satisfiable.

The learning domain U corresponding to Φ is defined as $U = X \cup Y$ with $X \cap Y = \emptyset$, where $X = \{x_{sl} | 1 \le s \le \log m, 1 \le l \le m^C\}$ and $Y = \{y_u | 1 \le u \le \log m\}$. Let $X_s = \{x_{sl} \in X | 1 \le l \le m^C\}$ for each $s \in \{1, ..., \log m\}$, and let $X^{[k]} = \bigcup_{s \in \{s | digit(k, 2, s) = 1\}} X_s$ for each $k \in \{1, ..., m\}$. The ith subset $Y^{[i]}$ of Y is defined by $Y^{[i]} = \{y_u \in Y | digit(i, 2, u) = 1\}$ for each $i \in \{1, ..., m\}$.

The concept class $\mathscr{F} \subseteq 2^U$ is defined as the union of distinct subclasses $F_1, ..., F_m$, and G. Here, the structure of G depends only on the number m:

$$G = \{g_{ik} | 1 \le i \le m, 1 \le k \le m-1\}, \text{ where } g_{ik} = Y^{[i]} \cup X^{[k]}.$$

We emphasize that k ranges only to m-1, but not m. On the other hand, each concept in F_i reflects the structure of the clause E_i in Φ :

$$F_i = \{f_{ij} | 1 \le j \le \log m\}, \quad \text{where } f_{ij} = Y^{[i]} \cup (X - X_j) \cup X_j^*(E_i)$$
 with

$$\begin{cases} X_j^*(E_j) = \\ \begin{cases} x_{jl} \in X_j & \text{if } E_i \text{ contains a positive literal } v_{jt} \text{ with } digit(l,2,t) = 1 \text{ or } \\ E_i \text{ contains a negative literal } \neg v_{jt} \text{ with } digit(l,2,t) = 0 \end{cases}$$
 for some $t \in \{1, ..., C \log m\}$

Fig. 1 illustrates the structure of the matrix M_{Φ} .

Clearly the cardinality of learning domain, i.e., the row size of the matrix M representing \mathcal{F} is

$$|U| = |X| + |Y| = m^{C} \cdot \log m + \log m = (m^{C} + 1) \log m$$

and the cardinality of the concept class \mathcal{F} , i.e., the column size of M is

$$|\mathcal{F}| = |G| + |F_1| + \cdots + |F_m| = m(m-1) + m \cdot \log m$$
.

Moreover, it is easy to see that M_{Φ} can be constructed in polynomial time with respect to the length of a given formula Φ .

We now prove that if the formula Φ is satisfiable then VC-dim $(\mathcal{F}) \geqslant 2 \log m$. For an assignment σ which satisfies Φ , we consider the set $S_{\sigma} = Y \cup X_{\sigma}$ with

$$X_{\sigma} = \{x_{s,\langle\sigma,s\rangle} \in X \mid 1 \leqslant s \leqslant \log m\}, \quad \text{where } \langle\sigma,s\rangle = \sum_{t=1}^{C \log m} 2^{t-1} \cdot \sigma(v_{st}) + 1.$$

Fig. 1. Structure of the matrix M_{Φ} reduced from a boolean formula $\Phi = E_1 \wedge E_2 \wedge \cdots \wedge E_8$ with C = 1. In this case, $K = 2 \log 8 = 6$. The only elements marked * depend on the structure of each clause E_i in Φ .

It is clear that $|S_{\sigma}| = |Y| + |X_{\sigma}| = 2 \log m$. We will show that S_{σ} is shattered by \mathscr{F} , i.e., for every $T \subseteq S_{\sigma}$, there exists an $f \in \mathscr{F}$ with $S_{\sigma} \cap f = T$. Let $i_T = \sum_{y_{\sigma} \in T \cap Y} 2^{u-1} + 1$. It is easy to see that $i_T \in \{1, ..., m\}$ and $T \cap Y = Y^{[i_T]}$. According to $T \cap X_{\sigma} = X_{\sigma}$ or not, we have the following two cases.

(1) In case of $T \cap X_{\sigma} \subsetneq X_{\sigma}$, let $k_T = \sum_{x_{\sigma,(\sigma,s)} \in T \cap X_{\sigma}} 2^{s-1} + 1$. Then we can see that $k_T \in \{1, ..., m-1\}$ and $T \cap X_{\sigma} = X^{[k_T]} \cap X_{\sigma}$. Therefore, the concept $g_{i_T, k_T} \in G \subseteq \mathscr{F}$ cuts T out of S_{σ} as follows:

$$g_{i_T,k_T} \cap S_{\sigma} = (Y^{[i_T]} \cup X^{[k_T]}) \cap (Y \cup X_{\sigma}) = (Y^{[i_T]} \cap Y) \cup (X^{[k_T]} \cap X_{\sigma})$$
$$= (T \cap Y) \cup (T \cap X_{\sigma}) = T.$$

(2) In case of $T \cap X_{\sigma} = X_{\sigma}$, since σ satisfies Φ , the disjunction E_{i_T} in Φ is also satisfied by σ . That means E_{i_T} contains either positive literal v_{st} with $\sigma(v_{st}) = 1$, or negative literal $\neg v_{st}$ with $\sigma(v_{st}) = 0$, for some s and t. Let us take such an s (not necessarily unique), and let $j_T = s$. Then by the definition of $\langle \sigma, j_T \rangle$, we see $digit(\langle \sigma, j_T \rangle, 2, t) = \sigma(v_{j_T, t})$ for each t. Thus, $x_{j_T, \langle \sigma, j_T \rangle}$ is included in $X_{j_T}^*(E_{i_T})$, and moreover, $X_{j_T}^*(E_{i_T}) \cap X_{\sigma} = \{x_{j_T, \langle \sigma, j_T \rangle}\}$. Therefore, the concept $f_{i_T, j_T} \in F_{i_T} \subseteq \mathscr{F}$ cuts T out of S_{σ} as follows:

$$f_{i_{\tau},j_{\tau}} \cap S_{\sigma} = (Y^{[i_{\tau}]} \cup (X - X_{j_{\tau}}) \cup X^{*}_{j_{\tau}}(E_{i_{\tau}})) \cap (Y \cup X_{\sigma})$$

$$= (Y^{[i_{\tau}]} \cap Y) \cup ((X - X_{j_{\tau}}) \cap X_{\sigma}) \cup (X^{*}_{j_{\tau}}(E_{i_{\tau}}) \cap X_{\sigma})$$

$$= (T \cap Y) \cup (X_{\sigma} - \{x_{j_{\tau}}, \langle \sigma, j_{\tau} \rangle\}) \cup (x_{j_{\tau}}, \langle \sigma, j_{\tau} \rangle\}$$

$$= (T \cap Y) \cup X_{\sigma} = (T \cap Y) \cup (T \cap X_{\sigma}) = T.$$

In each case, T is shown to be cut out of S_{σ} by some concept in \mathcal{F} . Therefore, S_{σ} is shattered by \mathcal{F} .

We now show the converse. Suppose that $VC\text{-}\dim(\mathcal{F}) \geqslant 2\log m$. Then there is a set $S \subseteq U$ of cardinality $2\log m$ which is shattered by \mathcal{F} .

Claim 1. S contains exactly one element from each X_s ($1 \le s \le \log m$) and all elements from Y.

Proof. Case m=2: The learning domain is $U=\{y_1\}\cup X_1$ and the concept class is $\mathscr{F}=\{f_{11},g_{11},f_{21},g_{21}\}$. Since $|\mathscr{F}|=4$ and $g_{11}(x)=g_{21}(x)=0$ for any $x\in X_1$, no two elements from X_1 can be included in S which is to be shattered by \mathscr{F} . Moreover, since $|Y|=|\{y_1\}|=1$, the claim holds.

Case $m \ge 3$: Let $s \in \{1, ..., \log m\}$ be fixed arbitrarily, and x_1, x_2 be distinct elements in X_s . Suppose that S contains both x_1 and x_2 . Then by Lemma 2,

$$|\{h \in \mathcal{F} | h(x_1) \neq h(x_2)\}| \ge 2^{2 \log m - 1} = \frac{1}{2} m^2.$$

On the other hand, let us consider a concept $h \in \mathcal{F}$ with $h(x_1) \neq h(x_2)$. Since $g_{ik}(x_1) = g_{ik}(x_2) = digit(k, 2, s)$ for any $g_{ik} \in G$, the concept h is not in G. Moreover, since $f_{ij}(x_1) = f_{ij}(x_2) = 1$ for any $f_{ij} \in F_1 \cup \cdots \cup F_m$ with $j \neq s$, thus h must be one of the concepts from $\{f_{1s}, f_{2s}, \ldots, f_{ms}\}$. Therefore,

$$|\{h \in \mathcal{F} \mid h(x_1) \neq h(x_2)\}| \leq |\{f_{1s}, f_{2s}, ..., f_{ms}\}| = m,$$

which yields a contradiction since $\frac{1}{2}m^2 > m$ for any $m \ge 3$. Thus, S can contain at most one element from X_s for each $s \in \{1, ..., \log m\}$. Since $|S| = 2 \log m$ and $|Y| = \log m$, the set S must contain exactly one element from each X_s and all elements from Y. \square

Proof of Theorem 2 (conclusion). Therefore, for each $s \in \{1, ..., \log m\}$, there is a unique $l = l(s) \in \{1, ..., m^C\}$ such that $x_{s, l(s)} \in S$, and we can assume that $S = Y \cup X_{(l)}$, where $X_{(l)} = \{x_{s, l(s)} | 1 \le s \le \log m\}$. Let σ_S be an assignments corresponding to S with

$$\sigma_S(v_{st}) = digit(l(s), 2, t) \quad (1 \le s \le \log m, 1 \le t \le C \log m).$$

We now show that σ_S satisfies all disjunctions E_i in Φ . Let $i \in \{1, ..., m\}$ be fixed arbitrarily. Since S is shattered by \mathscr{F} , for the subset $T_i = Y^{\{i\}} \cup X_{(l)}$ of S there is a concept $h_i \in \mathscr{F}$ with $S \cap h_i = T_i$. Since $S \cap h_i = (Y \cap h_i) \cup (X_{(l)} \cap h_i)$, the concept h_i must satisfy the following two conditions:

$$Y \cap h_i = Y^{[i]},\tag{1}$$

$$X_{(I)} \cap h_i = X_{(I)}. \tag{2}$$

Note that no concept in G satisfies condition (2), and no concept in $F_{i'}$ with $i' \neq i$ satisfies condition (1). Therefore, such an $h_i \in \mathcal{F}$ is in F_i , and thus we can assume $h_i = f_{ij}$ for some $j \in \{1, \ldots, \log m\}$. The above condition (2) requires that f_{ij} contains all elements from $X_{(i)}$. Especially, remark that $x_{j,l(j)} \in X_{(i)}$ is included in f_{ij} for the above j. By the definition of f_{ij} , the element $x_{j,l(j)}$ is in $X_j^*(E_i)$. Thus the clause E_i satisfies either (a) or (b):

- (a) E_i contains a positive literal v_{it} with digit(l(j), 2, t) = 1,
- (b) E_i contains a negative literal $\neg v_{it}$ with digit(l(j), 2, t) = 0.

By the definition of σ_S , we see $\sigma_S(v_{jt}) = 1$ in case of (a), and $\sigma_S(v_{jt}) = 0$ in case of (b). In each case, $\sigma_S(E_t) = 1$. Therefore, σ_S satisfies every disjunction E_i in Φ . Thus Φ is satisfiable. \square

4. Complexity of the VC*-dimension problem

In this section, we introduce a natural generalization of the VC-dimension, which is defined for a class of $\{0, ..., N\}$ -valued functions. Then we show that the generalized VC-dimension problem is still in $SAT_{\log^2 n}$ and $SAT_{\log^2 n}^{CNF}$ -hard, as well as the original

VC-dimensional problem. Therefore we may interpret that the generalized VC-dimension problem is also "complete" for the class of $n^{O(\log n)}$ time computable sets.

Let $\mathbb N$ be the set of natural numbers. For a class $\mathscr F$ of functions from U to $\mathbb N$, we define $range(\mathscr F) = \bigcup_{f \in \mathscr F} \{f(x) | x \in U\}$. We represent $\mathscr F$ by a $|U| \times |\mathscr F|$ matrix M with $M_{ij} = f_j(x_i)$. For an integer matrix M, let $\mathscr F_M$ denote the class of functions which M represents.

The following definition seems to be one of the most natural extensions of the VC-dimension for a class of $\{0, ..., N\}$ -valued functions.

Definition 4. Let \mathscr{F} be a class of functions over U. We say that \mathscr{F} shatters a set $S \subseteq U$ if for every function g from S to $range(\mathscr{F})$, there exists a function $f \in \mathscr{F}$ such that f(x) = g(x) for all $x \in S$. The VC^* -dimension of \mathscr{F} , denoted by VC^* -dim (\mathscr{F}) , is the maximum cardinality of a set which is shattered by \mathscr{F} .

We can easily see that VC^* -dim (\mathcal{F}) coincides with VC-dim (\mathcal{F}) for any class \mathcal{F} of functions with $range(\mathcal{F}) = \{0, 1\}$. It is not hard to verify the following inequality, that is a generalization of Lemma 1.

Lemma 3. For any class F of functions,

$$VC^*$$
-dim $(\mathscr{F}) \leq \frac{\log |\mathscr{F}|}{\log |range(\mathscr{F})|}$.

Definition 5. The VC^* -dimension problem is, given an integer matrix M and integer $K \ge 1$, to determine whether VC^* -dim $(\mathscr{F}_M) \ge K$ or not.

We now show that the VC*-dimension problem is polynomial-time reducible to the satisfiability problem of a boolean formula of length J with $O(\log^2 J)$ variables. The next theorem includes Theorem 1 as a special case.

Theorem 3. The VC^* -dimension problem is in SAT_{log^2n} .

Proof. Let M be an $m \times r$ matrix and K be an integer, and let $N = |range(\mathscr{F})|$. We denote the elements in $range(\mathscr{F}_M)$ by $y_1, y_2, ..., y_N$. By Lemma 3, we can assume that $K \le \log r/\log N$ without loss of generality. Moreover, we can also assume that $m = 2^l$ for some integer l; if $m < 2^l$ for $l = \lceil \log m \rceil$, then we enlarge M by duplicating the last row of M until the row size reaches 2^l . It is easy to see that the size of the enlarged matrix M' is less than twice as large as that of the original matrix M, and VC^* -dim $(\mathscr{F}_{M'}) = VC^*$ -dim (\mathscr{F}_M) .

We now construct a boolean formula Φ_M which contains $K \cdot l$ variables v_{kt} $(1 \le k \le K, 1 \le t \le l)$ as follows:

$$\Phi_M = \bigwedge_{s=1}^{N^K} \bigvee_{j=1}^r \beta_{sj},$$

$$\beta_{sj} = \bigwedge_{k=1}^{K} \alpha_{kj,digit(s,N,k)+1} \quad (1 \leqslant s \leqslant N^{K}, 1 \leqslant j \leqslant r),$$

$$\alpha_{kjq} = \bigvee_{i \in \{i \mid M_{ij} = y_q\}} \chi_{ki} \quad (1 \leqslant k \leqslant K, 1 \leqslant j \leqslant r, 1 \leqslant q \leqslant N),$$

$$\chi_{ki} = \bigwedge_{k=1}^{K} \left[v_{ki}; digit(i,2,t) = 1 \right] \quad (1 \leqslant k \leqslant K, 1 \leqslant i \leqslant m).$$

Note that the length of Φ_M is

$$\begin{aligned} |\Phi_M| &\leqslant l \cdot m \cdot K \cdot r \cdot N^K \\ &\leqslant \log m \cdot m \cdot \log r \cdot r \cdot r \quad \text{(since } N^K \leqslant r) \\ &< n^2 \log^2 n, \end{aligned}$$

where $n = m \cdot r$ is the size of the given matrix M. Also note that Φ_M can be constructed in polynomial time with respect to n.

Let $U = \{x_1, x_2, ..., x_m\}$ be the learning domain and $\mathscr{F}_M = \{f_1, f_2, ..., f_r\}$ be the class of functions which M represents. We will show that the formula Φ_M is satisfiable if and only if \mathscr{F}_M shatters a set $S \subseteq U$ of cardinality K.

For each assignment σ , we define a set $S_{\sigma} \subseteq U$ as follows:

$$S_{\sigma} = \{x_{\langle \sigma, k \rangle} | 1 \leq k \leq K\}, \text{ where } \langle \sigma, k \rangle = \sum_{t=1}^{l} 2^{t-1} \cdot \sigma(v_{kt}) + 1.$$

It should be noted that the cardinality of S_{σ} is not always equal to K, since there may be two distinct k_1 and k_2 with $\langle \sigma, k_1 \rangle = \langle \sigma, k_2 \rangle$ in general.

We now show through a sequence of equivalences that an assignment σ satisfies Φ_M if and only if $|S_{\sigma}| = K$ and S_{σ} is shattered by \mathscr{F}_M .

First, for any $k \in \{1, ..., K\}$ and any $i \in \{1, ..., m\}$,

$$\sigma(\chi_{ki}) = 1 \iff \sigma([v_{kt}; digit(i, 2, t) = 1]) = 1 \text{ for each } t \in \{1, ..., l\}$$

$$\Leftrightarrow \sigma(v_{kt}) = \begin{cases} 1 & \text{if } digit(i, 2, t) = 1 \\ 0 & \text{if } digit(i, 2, t) = 0 \end{cases} \text{ for each } t \in \{1, ..., l\}$$

$$\Leftrightarrow digit(i, 2, t) = \sigma(v_{kt}) \text{ for each } t \in \{1, ..., l\}$$

$$\Leftrightarrow \sum_{t=1}^{l} 2^{t-1} \cdot digit(i, 2, t) = \sum_{t=1}^{l} 2^{t-1} \cdot \sigma(v_{kt})$$

$$\Leftrightarrow i = \langle \sigma, k \rangle.$$

Next, for any $k \in \{1, ..., K\}$, any $j \in \{1, ..., r\}$, and any $q \in \{1, ..., N\}$,

$$\sigma(\alpha_{kjq}) = 1 \iff \sigma(\chi_{ki}) = 1 \text{ and } M_{ij} = y_q \text{ for some } i \in \{1, ..., m\}$$

$$\iff i = \langle \sigma, k \rangle \text{ and } f_j(x_i) = y_q$$

$$\iff f_j(\chi_{\langle \sigma, k \rangle}) = y_q.$$

For every integer $s \in \{1, ..., N^K\}$, let g_s be the function from S_σ to $range(\mathscr{F}_M)$ such that $g_s(x_{\langle \sigma, k \rangle}) = y_{digit(s, N, k) + 1}$ for each $k \in \{1, ..., K\}$. Then, for any $s \in \{1, ..., N^K\}$ and any $j \in \{1, ..., r\}$,

$$\sigma(\beta_{sj}) = 1 \Leftrightarrow \sigma(\alpha_{kj,digit(s,N,k)+1}) = 1 \quad \text{for each } k \in \{1, ..., K\}$$

$$\Leftrightarrow f_j(x_{\langle \sigma, k \rangle}) = y_{digit(s,N,k)+1} \quad \text{for each } k \in \{1, ..., K\}, \text{ and }$$

$$digit(s,N,k_1) \neq digit(s,N,k_2) \text{ implies } \langle \sigma, k_1 \rangle \neq \langle \sigma, k_2 \rangle$$

$$\text{for any } k_1, k_2 \in \{1, ..., K\}.$$

$$\Leftrightarrow f_j(x_{\langle \sigma, k \rangle}) = g_s(x_{\langle \sigma, k \rangle}) \quad \text{for all } k \in \{1, ..., K\}, \text{ and }$$

$$digit(s,N,k_1) \neq digit(s,N,k_2) \text{ implies } \langle \sigma, k_1 \rangle \neq \langle \sigma, k_2 \rangle$$

$$\text{for any } k_1, k_2 \in \{1, ..., K\}.$$

$$\Leftrightarrow f_j(x) = g_s(x) \quad \text{for all } x \in S_\sigma, \text{ and }$$

$$digit(s,N,k_1) \neq digit(s,N,k_2) \text{ implies } \langle \sigma, k_1 \rangle \neq \langle \sigma, k_2 \rangle$$

$$\text{for any } k_1, k_2 \in \{1, ..., K\}.$$

Finally, we get the following equivalence:

$$\sigma(\Phi_{M}) = 1 \Leftrightarrow \sigma\left(\bigvee_{j=1}^{r} \beta_{sj}\right) = 1 \quad \text{for any } s \in \{1, ..., N^{K}\}$$

$$\Leftrightarrow \text{ for each } s \in \{1, ..., N^{K}\},$$

$$\text{there exists } f_{j} \in \mathscr{F}_{M} \text{ with } g_{s}(x) = f_{j}(x) \text{ for all } x \in S_{\sigma} \text{ and }$$

$$digit(s, N, k_{1}) \neq digit(s, N, k_{2}) \text{ implies } \langle \sigma, k_{1} \rangle \neq \langle \sigma, k_{2} \rangle$$

$$\Leftrightarrow k_{1} \neq k_{2} \text{ implies } \langle \sigma, k_{1} \rangle \neq \langle \sigma, k_{2} \rangle, \text{ and }$$

$$\text{for every function } g \text{ from } S_{\sigma} \text{ to } range(\mathscr{F}), \text{ there exists } f_{j} \in \mathscr{F}_{M}$$

$$\text{such that } f_{j}(x) = g(x) \text{ for all } x \in S_{\sigma}$$

$$\Leftrightarrow |S_{\sigma}| = K \text{ and } S_{\sigma} \text{ is shattered by } \mathscr{F}_{M}$$

Thus the formula Φ_M is satisfiable if and only if VC-dim $(\mathscr{F}_M) \geqslant K$.

The next theorem shows that the VC*-dimension problem is $SAT_{log^2 n}^{CNF}$ -hard.

Theorem 4. Every $L \in SAT_{\log^2 n}^{CNF}$ is polynomial-time reducible to the VC^* -dimension problem.

Proof. The generalized VC-dimension problem includes the original VC-dimension problem in which an instance is restricted to $\{0,1\}$ -valued matrix. Therefore, Theorem 2 immediately derives this theorem. \square

5. Complexity of the Ψ -dimension problems

The VC*-dimension introduced in the previous section seems to be one of the most natural extension of the VC-dimension to the class of $\{0, ..., N\}$ -valued functions. However, it has not been used actually in the literatures. The reason is that the cardinality of the largest class \mathscr{F} of functions over U of a given dimension grows exponentially in |U| for all $|range(\mathscr{F})| > 2$ [1,2], whereas polynomial growth is desirable for the PAC-learning model. As alternative definitions, a variety of notions of dimension to classes of $\{0, ..., N\}$ -valued functions had been proposed [4,7], and Ben-David et al. [2] gave a general scheme which unified them. They introduced Ψ -dimension, where Ψ is a family of mappings which translate $\{0, ..., N\}$ -valued functions into $\{0,1\}$ -valued ones. In this section, we investigate the complexity of computing Ψ -dimension for two special families Ψ_* and Ψ_G . We show that the Ψ_* -dimension problem is NP-complete, while the Ψ_G -dimension is still in SAT $_{\log^2 n}$.

Definition 6. Let Ψ be a family of the mappings ψ from \mathbb{N} to $\{0, 1, *\}$, where * will be thought of as a null element. Let \mathscr{F} be a class of functions over U. We say that \mathscr{F} Ψ -shatters a set $S \subseteq U$ if there exists a mapping $\psi \in \Psi$ which satisfies the following condition: for every subset $T \subseteq S$, there exists a function $f \in \mathscr{F}$ with $\psi(f(x)) = 1$ for any $x \in T$ and $\psi(f(x)) = 0$ for any $x \in S - T$. That is, Ψ -shattering requires that under some mapping $\psi \in \Psi$, \mathscr{F} contains all functions from U to $\{0,1\}$. The Ψ -dimension of \mathscr{F} , denoted by Ψ -dim(\mathscr{F}), is the maximum cardinality of a set which is Ψ -shattered by \mathscr{F} .

Remark 1. In [2], they introduced more general notions of Ψ -shatter and Ψ -dimension. Our definition of the Ψ -dimension corresponds to the *uniform* Ψ -dimension they call.

Definition 7. For a family Ψ of mappings from \mathbb{N} to $\{0,1,*\}$, we define the Ψ -dimension problem as the decision problem to determine whether Ψ -dim $(\mathscr{F}_M) \geqslant K$ or not for given integer matrix M and an integer $K \geqslant 1$.

Let Ψ_* be the family of all mappings from $\mathbb N$ to $\{0,1*\}$. Therefore, the Ψ_* -dimension problem is the most general one in the family of Ψ -dimension problems.

Theorem 5. The Ψ_* -dimension problem is NP-complete.

Proof. It is easy to see that the Ψ_* -dimension problem is in NP: guess a set $S \subseteq U$ of size K and a mapping $\psi \in \Psi_*$ nondetereministically, and verify that \mathscr{F}_M Ψ_* -shatters

S by consecutively guessing appropriate f's in \mathcal{F}_M . This procedure terminates in polynomial time.

We now give a polynomial-time reduction from 3SAT to the problem. Let $\Phi = E_1 \cdots E_m$ be a formula in 3-CNF with n variables. Without loss of generality, we can assume that m is a power of 2, and variables are indexed as $v_2, v_3, ..., v_n, v_{n+1}$. We first construct a matrix M_{Φ} which has $\log m + 2$ rows and 6m columns, and then prove that Ψ_* -dim $(\mathscr{F}_{M\Phi}) \geqslant \log m + 2$ if and only if Φ is satisfiable.

The learning domain U corresponding to Φ is defined as $U = \{x_0, x_1, y_1, y_2, ..., y_{\log_m}\}$. The class $\mathscr{F}_{M,p}$ of functions from U to $\{0, 1, ..., n+1\}$ is

$$\mathscr{F}_{M_{\phi}} = \bigcup_{i=1}^{m} \{f_{i1}, f_{i2}, f_{i3}, g_{i1}, g_{i2}, g_{i3}\},\$$

where each function in $\mathscr{F}_{M_{\phi}}$ is defined as follows. For each $i \in \{1, ..., m\}$ and $u \in \{1, ..., \log m\}$,

$$f_{ik}(y_u) = g_{ik}(y_u) = digit(i, 2, u)$$
 for all $k \in \{1, 2, 3\}$,

that is, the value of f_{ik} and g_{ik} on y_u corresponds with the *u*th binary digit of the number i-1. For each $i \in \{1, ..., m\}$,

$$g_{i1}(x_0) = 0$$
, $g_{i2}(x_0) = 1$, $g_{i3}(x_0) = 1$,

$$g_{i1}(x_1) = 0$$
, $g_{i2}(x_1) = 0$, $g_{i3}(x_1) = 1$,

which are independent of the structure of Φ . On the other hand, the values of f_{i1} , f_{i2} and f_{i3} on x_0 and x_1 reflect the structure of the clause $E_i = (l_{i1} \lor l_{i2} \lor l_{i3})$ in Φ . For each $k \in \{1, 2, 3\}$, if the literal l_{ik} is a negative literal $\neg v_a$, then we define

$$f_{ik}(x_0) = q, \qquad f_{ik}(x_1) = 1.$$

Otherwise $(l_{ik}$ is a positive literal v_a),

$$f_{ik}(x_0) = 0, \quad f_{ik}(x_1) = q.$$

It should be noted that q ranges from 2 to n+1. Fig. 2 illustrates the structure of the matrix M_{Φ} .

It is easy to see that M_{Φ} can be constructed in polynomial time with respect to the length of given formula Φ .

We now prove that if the formula Φ is satisfiable then Ψ_* -dim $(\mathscr{F}) = \log m + 2$. For an assignment σ which satisfies Φ , we consider a mapping $\psi_{\sigma} \in \Psi_*$ with

$$\psi_{\sigma}(0) = 0, \qquad \psi_{\sigma}(1) = 1,$$

$$\psi_{\sigma}(q) = \sigma(v_q)$$
 for each $q \in \{2, ..., n+1\}$.

Let $i \in \{1, ..., m\}$ be fixed arbitrarily. Since the clause E_i is satisfied by the assignment σ , E_i contains either positive literal v_a with $\sigma(v_a) = 1$ or negative literal $v_a = 0$.

	!	E_1				E_2						E_3						\mathbf{F}/\mathbf{E}					,				E_8				
	g 11	g 12	g 13	f ₁₁	f ₁₂	f ₁₃	g ₂₁	g ₂₂	g ₂₃	f ₂₁	f ₂₂	f ₂₃	g ₃₁	g ₃₂	g 33	f ₃₁	f ₃₂	f ₃₃	g41	g ₄₂ g		g ₇₃	f ₇₁	f ₇₂	f ₇₃	g 81	g ₈₂	g ₈₃	f ₈₁	f ₈₂	f ₈₃
																				1				0	0	1	1	1	1	1	1
																				1				1	1	1	1	1	1	1	1
																				0											1
x ₀	0	1	1	10	1	9	0	1	1	70		4)	0	1	1	10	/	4	0	1	1	1	(0)	1	9	0	1	1	701	7	4)
x ₀ x ₁	0	0	1	9	or	1	0	0	1	(9)	or	ı)	0	0	1	Įq,	or	1)	0	0	١	1	9	or	1)	0	0	1	(9)	or	1)
																					٠,	7									

Fig. 2. Structure of the matrix M_{Φ} reduced from a boolean formula $\Phi = E_1 \wedge E_2 \wedge \cdots \wedge E_8$. The only shadowed elements depend on the structure of each clause E_i in Φ .

In each case, we have $f_{ik} \in \mathcal{F}_{M_{\phi}}$ such that

$$\psi_{\sigma}(f_{ik}(x_0)) = 0, \quad \psi_{\sigma}(f_{ik}(x_1)) = 1,$$

for some $k \in \{1, 2, 3\}$. Thus we can see that, under the mapping ψ_{σ} , the class $\mathscr{F}_{M_{\sigma}}$ contains all functions from U to $\{0, 1\}$. Therefore, U is Ψ_* -shattered by $\mathscr{F}_{M_{\sigma}}$.

We now show the converse. Suppose that Ψ_* -dim $(\mathscr{F}_{M_{\phi}}) = \log m + 2$. Then there is a subset of U with cardinality $\log m + 2$ which is Ψ_* -shattered by $\mathscr{F}_{M_{\phi}}$. Since $|U| = \log m + 2$, U itself is Ψ_* -shattered by $\mathscr{F}_{M_{\phi}}$. That is, there exists a mapping $\psi \in \Psi_*$, under which $\mathscr{F}_{M_{\phi}}$ contains all functions from U to $\{0,1\}$. We can assume that $\psi(0) = 0$ and $\psi(1) = 1$ without loss of generality. For such a ψ , we define the assignment σ_{ψ} with $\sigma_{\psi}(v_q) = \psi(q)$ for each $q \in \{2, ..., n+1\}$. Then we can verify that σ_{ψ} satisfies every disjunction E_i in Φ . Thus Φ is satisfiable. \square

Natarajan [7] introduced the *graph dimension* in order to characterize the learnability of a class of $\{0, ..., N\}$ -valued functions.

Definition 8. The graph dimension is the Ψ_G -dimension, where $\Psi_G = \{\psi_{G,\tau} | \tau \in \mathbb{N} \}$, and $\psi_{G,\tau}$ is defined by

$$\psi_{G,\tau}(a) = \begin{cases} 1 & \text{if } a = \tau, \\ 0 & \text{otherwise.} \end{cases}$$

From the definition, Ψ_G is a subset of Ψ_* . The following theorem gives an interesting contrast with the Theorem 5.

Theorem 6. The Ψ_G -dimension problem is in SAT_{log2 n}.

Proof. The outline and notations follow the proof of Theorem 3. Let M be an $m \times r$ matrix and K be an integer. We should remark that in this time, the inequality

 $K \leq \log r/\log N$ does not necessarily hold. Instead, we can only assume that $K \leq \log r$. We construct a boolean formula Φ'_M as

$$\Phi'_{M} = \bigvee_{q=1}^{N} \Phi'_{q},$$

$$\Phi'_{q} = \bigwedge_{s=1}^{2^{K}} \bigvee_{j=1}^{r} \beta'_{sjq} \quad (1 \leq q \leq N),$$

$$\beta'_{sjq} = \bigwedge_{k=1}^{K} \left[\alpha_{kjq}; digit(s, 2, k) = 1 \right] \quad (1 \leq s \leq 2^{K}, 1 \leq j \leq r, 1 \leq q \leq N),$$

where α_{kjq} is the same as that in the proof of Theorem 3. Then the length of Φ'_M is $|\Phi'_M| \le l \cdot m \cdot K \cdot r \cdot 2^K \cdot N \le n^3 \log^2 n$.

since $2^K \le r$. We now show that an assignment σ satisfies Φ'_M if and only if $|S_{\sigma}| = K$ and S_{σ} is Ψ_G -shattered by \mathscr{F}_M .

For every integer $s \in \{1, ..., 2^K\}$, let g_s be the function from S_σ to $\{0, 1\}$ such that $g_s(x_{\langle \sigma, k \rangle}) = digit(s, 2, k)$ for each $k \in \{1, ..., K\}$. Then for any $s \in \{1, ..., 2^K\}$, any $j \in \{1, ..., r\}$, and any $q \in \{1, ..., N\}$,

$$\begin{split} \sigma(\beta'_{sjq}) &= 1 \iff \sigma([\alpha_{kjq}; digit(s, 2, k) = 1]) = 1 \quad \text{for each } k \in \{1, \dots, K\} \\ & \iff \begin{cases} f_j(x_{\langle \sigma, k \rangle}) = y_q & \text{if } \quad digit(s, 2, k) = 1 \\ f_j(x_{\langle \sigma, k \rangle}) \neq y_q & \text{if } \quad digit(s, 2, k) = 0 \end{cases} \quad \text{for each } k \in \{1, \dots, K\} \\ & \iff \psi_{G, y_q}(f(x_{\langle \sigma, k \rangle})) = digit(s, 2, k) \quad \text{for each } k \in \{1, \dots, K\}, \text{ and } \\ & \quad digit(s, 2, k_1) \neq digit(s, 2, k_2) \text{ implies } \langle \sigma, k_1 \rangle \neq \langle \sigma, k_2 \rangle \\ & \quad \text{for any } k_1, k_2 \in \{1, \dots, K\}. \\ & \iff \psi_{G, y_q}(f_j(x_{\langle \sigma, k \rangle})) = g_s(x_{\langle \sigma, k \rangle}) \quad \text{for all } k \in \{1, \dots, K\}, \text{ and } \\ & \quad digit(s, 2, k_1) \neq digit(s, 2, k_2) \text{ implies } \langle \sigma, k_1 \rangle \neq \langle \sigma, k_2 \rangle \\ & \quad \text{for any } k_1, k_2 \in \{1, \dots, K\}. \\ & \iff \psi_{G, y_q}(f_j(x)) = g_s(x) \quad \text{for all } x \in S_\sigma, \text{ and } \\ & \quad digit(s, 2, k_1) \neq digit(s, 2, k_2) \text{ implies } \langle \sigma, k_1 \rangle \neq \langle \sigma, k_2 \rangle \\ & \quad \text{for any } k_1, k_2 \in \{1, \dots, K\}. \end{split}$$

For each $q \in \{1, ..., N\}$,

 $\sigma(\Phi_q')=1 \Leftrightarrow digit(s,2,k_1) \neq digit(s,2,k_2) \text{ implies } \langle \sigma,k_1 \rangle \neq \langle \sigma,k_2 \rangle, \text{ and}$ for every function g from S_σ to $\{0,1\}$, there exists $f_j \in \mathscr{F}_M$ such that $\psi_{G,\gamma_q}(f_j(x))=g(x)$ for all $x \in S_\sigma$

 $\Leftrightarrow |S_{\sigma}| = K$ and S_{σ} is shattered by \mathscr{F}_{M} under the mapping $\psi_{G, y_{q}}$.

Thus Ψ'_{M} is satisfiable if and only if Ψ_{G} -dim $(\mathscr{F}) \geqslant K$. \square

According to the hardness result, the following corollary is immediately derived from the Theorem 2.

Corollary 1. Every $L \in SAT_{\log^2 n}^{CNF}$ is polynomial-time reducible to the Ψ_G -dimension problem.

6. Conclusion

We showed that the VC-dimension problem, VC*-dimension problem and Ψ_G -dimension problem are all in $SAT_{\log^2 n}$ and $SAT_{\log^2 n}^{CNF}$ -hard, while the Ψ_* -dimension problem is NP-complete. It remains open that these problems are in $SAT_{\log^2 n}^{CNF}$, or $SAT_{\log^2 n}$ -hard.

As a dual to the VC-dimension, Romanik [11] defined the testing dimension of a concept class \mathscr{F} as the minimum cardinality of a set $S \subseteq U$ which is not shattered by \mathscr{F} . We can see that the testing dimension problem is also in SAT_{log^2n} , by a similar reduction in the proof of Theorem 1. It is also open whether the problem is $SAT_{log^2n}^{CNF}$ hard or not.

As another crucial characterization of the complexity of computing VC-dimension, recently Papadimitriou and Yannakakis [10] defined a new complexity class LOGNP, for which the (original) VC-dimension problem becomes complete. Their results imply the polynomial-time reducibility from the satisfiability problem with $O(\log^2 n)$ variables in conjunctive normal form to the VC-dimenson problem, which we gave explicitly in the proof of Theorem 2.

Acknowledgement

The author would like to thank H. Arimura, S. Shimozono, and T. Uchida for helpful discussions.

References

- [1] N. Alon, On the density of sets of vectors, Discrete Math. 46 (1983) 199-202.
- [2] S. Ben-David, N. Cesa-Bianchi and P.M. Long, Characterizations of learnability for classes of $\{0, \ldots, n\}$ -valued functions, in: *Proc. 5th Ann. Workshop on Computational Learning Theory* (1992) 333-340.
- [3] A. Blumer, A. Ehrenfeucht, D. Haussler and M.K. Warmuth, Learnability and the Vapnik-Chervonenkis dimension, J. ACM 36 (1989) 929-965.
- [4] D. Haussler, Decision theoretic generalizations of the PAC model for neural net and other learning applications, Inform. and Comput. 100 (1992) 78-150.
- [5] N. Linial, Y. Mansour and R.L. Rivest, Results on learnability and the Vapnik-Chervonenkis dimension, Inform. and Comput. 90 (1991) 33-49.

- [6] N. Megiddo and U. Vishkin, On finding a minimum dominating set in a tournament, *Theoret. Comput. Sci.* 61 (1988) 307-316.
- [7] B.K. Natarajan, On learning sets and functions, Machine Learning 4(1) (1989) 67-97.
- [8] B.K. Natarajan, Machine Learning A Theoretical Approach (Morgan Kaufmann, Los Altos, CA, 1991).
- [9] S.H. Nienhuys-Cheng and M. Polman, Complexity dimensions and learnability, in: Proc. European Conf. on Machine Learning, Lecture Notes in Artificial Intelligence, Vol. 667 (Springer, Berlin, 1993) 348-353.
- [10] C.H. Papadimitriou and M. Yannakakis, On limited nondeterminism and the complexity of the V-C dimension, in: Proc. 8th Ann. Conf. on Structure in Complexity Theory (1993) 12-18.
- [11] K. Romanik, Approximate testing and learnability, in: Proc. 5th Ann. Workshop on Computational Learning Theory (1992) 327-332.
- [12] L.G. Valiant, A theory of the learnable, Comm. ACM 27 (1984) 1134-1142.