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Abstract

Ordered binary decision diagrams (OBDD, for short) represent Boolean
functions as directed acyclic graphs. The minimum consistent OBDD problem
is, given an incomplete truth table of a function, to find the smallest OBDD that
is consistent with the truth table with respect to a fixed variable ordering. First,
we show that this problem is NP-hard. Then, we prove that there is a constant
€ > 0 such that no polynomial time algorithm can approximate the minimum
consistent OBDD within the ratio n»¢ unless P=NP, where n is the number
of variables. These results suggest that OBDDs are unlikely to be polynomial
time learnable in PAC-learning model. Furthermore, we give a polynomial time
learnable subclass of OBDDs representing symmetric functions.

1 Introduction

An ordered binary decision diagram (OBDD for short) [9] represents a Boolean func-
tion as a directed acyclic graph whose internal nodes correspond to the input variables
and terminal nodes associated with the output values. Many useful Boolean functions,
such as symmetric functions and threshold functions, can be expressed succinctly by
OBDDs [9]. The size of an OBDD is, however, strongly dependent on the variable
ordering [9], and it is known that finding the optimal ordering that realizes the min-
imum size OBDD representing the function is intractable [8]. For a fixed variable
ordering, the minimum size OBDD representing the function can be computed in

linear time from the complete truth table [19].
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However, to our knowledge, the problem of finding the minimum size OBDD from
an incomplete truth table has not been investigated. It corresponds to the minimum
consistent problem to find the smallest hypothesis that explains given positive and
negative examples correctly, from the viewpoint of computational learning theory.
Computational complexity of the minimum consistent problem for a class of repre-

sentations of hypotheses is closely related to the efficiency of learning algorithms.

For the class of deterministic finite automata (DFA, for short), the problem of
determining the minimum state DFA consistent with given examples was shown to
be NP-hard [1, 13]. This negative result was enhanced as the lower bound on ap-
proximation ratios due to Li and Vazirani [15]. They showed that, unless P=NP, the
minimum consistent DFA cannot be approximated within the ratio g in polynomial
time. Pitt and Warmuth [18] improved to the ratio opt*, where opt is the minimum

number of states and k is any positive integer.

Hancock et al. [14] investigated the problem for decision lists and decision trees
that represent n-ary Boolean functions. They showed that decision lists cannot be
approximated in polynomial time within a factor of n¢ for some constant ¢ > 0, unless
P=NP. They also showed that decision trees cannot be approximated in polynomial

time within a factor of n¢ for any ¢ > 0 unless NP is included in DTIME[2ro%vlosn],

In this paper, we analyze the complexity of the minimum consistent problem for
OBDD with a fixed variable ordering. First, we show that the problem is NP-hard,
even the number of positive examples is only one. Then, we show that there is a
constant € > 0 such that no polynomial time algorithm can approximate the minimum
consistent OBDD within the ratio n® unless P=NP. The proof employed in our result
does not use cyclic transitions, which is the essence of the hardness for DFA in [18].
Our results suggest that any efficient algorithm for learning OBDDs would have to
produce very large hypotheses.

On the learnability of OBDDs from examples, Gavalda and Guijarro [12] studied in
the model of exact learning via queries [2, 3, 4]. They claimed that learning algorithm
for DFA using both membership and equivalence queries can be applied to learning
OBDDs if the variable ordering is fixed. Ergiin et al. [10] introduced bounded-width
OBDDs! and investigated learnability of OBDDs in probably approximately correct
(PAC for short) learning model [17, 20]. They have shown that, for a fixed variable
ordering, width-2 OBDDs are polynomial time PAC-learnable?, although learning

!The paper [10] deals with the notion of branching programs instead of OBDDs.
2Note that the result in [10] is not a proper PAC-learnability.



width-£ OBDDs is as hard as learning DNF formulas for & > 3. In this paper, we
also consider a learnable subclass of OBDDs, and show that OBDDs representing

symmetric functions are polynomial time PAC-learnable.

2 Minimum Consistent OBDD Problem

We first give definitions and notations for OBDDs. Then we introduce the minimum

consistent problem of OBDD as a combinatorial optimization problem, and show that

the problem is NP-hard.

Definition 1. Let X be a set {z,...,2,} of variables, and let V' be a set {1,...,m}
of positive integers. A binary decision diagram D = (V, Eq, Eo, X, var) over X is a
rooted, directed acyclic graph (V, Eo U Ey) whose nodes are labeled with variables in
X, except terminal nodes labeled with output values 0 and 1. Labels are associated
with the nodes by the mapping var : V. — X U {0,1}. Two sets Fy and FE; of arcs
are disjoint. Every internal node u has exactly two arcs (u,vy) € Ey and (u, vg) € Fo,
which indicate successors vy and vy with respect to values 1 and 0 assigned to var(u).
The root node is the only node in D that has no incoming arcs. The size of an OBDD

is the number of internal nodes.

Let < be a total order #1 < -+ < @, on X. We say D = (V, Fy, Fy, X,var) is an
ordered binary decision diagram (OBDD for short) if the order satisfy var(u) < var(v)

whenever v is reachable from wu.

For a given input w in {0,1}", the output value of D is determined by tracing
the arcs from the root node to terminal nodes according to the values wll],. .., w[n]
assigned to the associated variables zy,...,z,. We call the terminal nodes labeled

with 1 and 0 by 1-terminal and 0-terminal, respectively.

We define an OBDD Dy, by the partial diagram of D whose root node is v. Then we
say that v and v are duplicated nodesif D,y and D,y are the same partial diagrams.
Let P and N be disjoint subsets of {0,1}". We say that D is consistent with P and
N if D outputs 1 for any input in P and outputs 0 for any input in N. We say that
two OBDDs D and D’ are equivalent with respect to P and N if both of them are
consistent with P and N. Let D be an OBDD that is consistent with P, N C {0, 1}".
Let u be a node of D with arcs (u,vy) € Ey and (u,vy) € Eg, and let D" and D" be

the OBDD obtained from D by removing u and redirecting all incoming arcs of u to



either v, or vy, respectively. If D is equivalent to D’ or D", then we say that wu is
redundant. We say that an OBDD D is reduced it D has no duplicated nodes and no
redundant nodes. Note that redundant nodes defined here are generalization of those

introduced in [9].

Given disjoint sets P, N C {0,1}" of strings, a reduced OBDD that is consistent
with P and N can be obtained by a trivial polynomial-time algorithm: It first pro-
duces a tree whose path to a terminal corresponds to each string in {0,1}", and leaves
are duplicated terminal nodes, then it reduces duplicated and redundant nodes in the

tree.

Now we consider the following problem.

Definition 2. MINIMUM CONSISTENT OBDD

Instance: Two disjoint sets P, N C {0,1}".
Solution: An n-variable OBDD D that is consistent with P and N.

Clost: The size of D.

The goal of this combinatorial optimization problem is to find an OBDD of the
smallest size. In the case PUN = {0,1}", a reduced OBDD is unique and minimum

[9]. However, in general, the following theorem holds.

Theorem 1. MINIMUM CONSISTENT OBDD is NP-hard.

Proof. We present a log-space reduction from an NP-hard combinatorial optimiza-
tion problem MINIMUM COVER [11] that has presented in [14] to show that the
shortest consistent monomial cannot be approximated within a ratio logn in polyno-
mial time. Given a collection C' of subsets over U/, MINIMUM COVER is the problem
to find a subcollection €' C ' that covers U as small as possible. We provide, for C
over U with n = |C|, the sets P and N of strings as follows: P consists of only one
string 1™, and N consists of |U]| strings each of which, for every ¢ € U, is obtained by
placing 0s on 1™ at all positions k for ¢, such that ¢ € ¢;,. Then any OBDD consistent
with P and N has only one path to 1-terminal on which the £th node detect all
negative strings that correspond to elements contained in ¢;. Thus there is an OBDD
that has m nodes and is consistent with P and N if there is a cover C' C C for U
such that |C']| =m. O



3 Approximating the Minimum Consistent OBDD

Since the problem to find a minimum consistent OBDD is NP-hard, it is natural to
ask whether there is an efficient algorithm that approximates the minimum OBDD
with a ratio nearly 1. Notice that the reduction referred in Lemma 1 preserves the
cost between MINIMUM COVER and MINIMUM CONSISTENT OBDD. Hence, even
for an instance with only one positive example, we do not have any polynomial-time
algorithm that can approximate the minimum consistent OBDD within the ratio

logn, unless NP C DTIME[n*°!¢"] [16]. We raise this lower bound by a reduction

that involves many positive examples.

To obtain our result, we invoke the non-approximability result on the well-known
combinatorial optimization problem GRAPH COLORING (CHROMATIC NUMBER) [11,
16]. Let G = (V, E) be an undirected graph. We say that G is k-colorable if there
is a k-coloring of G, that is, a mapping f : V — {1,...,k} such that f(u) # f(v)
whenever (u,v) € E. The chromatic number of GG is the minimum number k such
that G is k-colorable. We denote the chromatic number of GG by K((G). Then the
problem GRAPH COLORING is, given a graph G, to find a k-coloring for GG such that
k is as small as possible. It is known in [16] that there is a constant ¢ > 0 such that
GRAPH COLORING cannot be approximated within the ratio n® unless P=NP. Thus,
there is ¢ > 0 such that no polynomial-time algorithm can always find a k-coloring

satisfying k/ K (G) < n¢ for all G.

Let us start with introducing a translation from a graph to sets of strings for dealing
with OBDDs. Let ¢ = (V, E') be a graph with the set V= {1,...,n} of nodes. For
each node ¢ € V, we define the adjacency sets P; and N; as follows: (i) P; consists of
1" and p;; = 197101"77 for every (i,5) € E, and (ii) N; consists of only one string
¢; = 1'"1 017" corresponding to the node 7. Note that, for any : € V, P; and N; are
disjoint.

Let U be a subset of V. We denote the union U;ciy F; by P and Uiy N; by Nu.
We identify a mapping f: V — {1,..., k} with the partition of nodes Uy,..., U, CV
defined by U; = {v € V | f(v) = ¢}.

Lemma 1. A partition Uy,..., Uy of V is a k-coloring of G if and only if Py, and
Ny, are disjoint for all 1 <@ < k.

Proof. This holds since there is (¢,7) € E such that ¢,j € U, for some 1 < h < k if
and only if there are the same strings p;; in P, C Py, and ¢; in N; € Ny, .

5



Lemma 2. Let G = (V| ) be a graph and let Py and Ny be disjoint unions of the
adjacency sets for U C V of (. Then a reduced OBDD that is consistent with Py
and Ny is the minimum OBDD and has exactly |U| nodes with only one path to

1-terminal.

Proof. Every string in Py U Ny includes exactly one 0, except 1™ in Py. Therefore,
any non-terminal node detects either one negative string or one positive string from
the others. Since there are only |U| negative strings in Ny, a reduced OBDD has
exactly |U] nodes on the only path to 1-terminal each of which detects one string in

Ny.

The translation of graphs to strings presented here is rather different from those
provided for the reductions to other problem, such as k-term DNF and k-Decision
List [14, 17]. This is because OBDDs can count easily the number of 0s (or 1s) in the

input string. Now we are ready to prove our main theorem.

Theorem 2. There is a constant 0 < € < 1 such that MINIMUM CONSISTENT

OBDD cannot be approximated within a ratio n° in polynomial time unless P =

NP.

Proof. We show a reduction preserving the approximation ratio from GrRAPH COL-
ORING to MINIMUM CONSISTENT OBDD. Let (¢ = (V, E) be a graph with the set
V ={1,...,n} of nodes. We denote the binary representation of ¢ — 1 of the length
[ = [logn] by (¢) for 1 <i < n. For (G, we define the sets P and N of strings, which

consist of three parts, as follows:

(()1"p|lieV Ape P}
(Y1"q i eV Age NJU{(E) V017 1" | j e VY,

Po=
N = {
where P, and N; for ¢« € V are the adjacency sets of (G. Notice that P and N are
disjoint.

First, we show the following: Any reduced OBDD that is consistent with P and NV
partitions Py and Ny by [+ n prefix of strings, i.e., the header part and the middle
and NU“-- .,NU

. corresponding to k-coloring of G.

part, into P, ..., Py

k

By a complete binary tree that examines all the first [ symbols of the header part,
P, and N, for all 2 € V can be separated from other P; and N; with ¢ # j. Of course,

a complete binary tree is the “worst case” that uses n — 1 nodes. However, we ignore



how many nodes are involved to make a partition: The number of nodes needed to

make a partition that corresponds to a coloring will be considered later.

Let D be a reduced OBDD that is consistent with P and N. Any path of D to
1-terminal has every node labeled with variables x;11,..., x4, to detect all negative
strings <i>1i_101”_i1” for 1 < ¢ < n. This is the same discussion in the proof of
Lemma 2. We will call this part on a path consisting of n nodes a conduit. We say a
conduit C' encloses a string s if all nodes of (' are traced when computing the output

of D for input s , i.e., s “flows” through C.

Let u be a of node of a conduit enclosing (z)1"1". The node u is a duplicate node
if and only if there is a node v of a conduit enclosing (7)171" such that P, U P; and
N; U N; are disjoint. Therefore, for U C V, all conduits enclosing any string with
header () for ¢ € U can be overlayed into one conduit if and only if Py and Ny are
disjoint.

Suppose that D classifies the strings in P and N into a partition consisting of k
groups by overlaying conduits. Let Uy,...,Up € V be a partition representing the
groups classified by the header part. Then, for any 1 <¢ < k, Py, and Ny, must be
disjoint. If the partition makes k conduits, there needs nk nodes in the diagram D

to construct the conduits.

The rest of each path only needs to detect 0 of ¢; as we have seen in Lemma 2.

Therefore, D must have exactly n nodes labeled with =, 1 1,..., Z110pn.

Now we consider the number of nodes to partition the strings into a pairs of disjoint
sets. For classifying n strings by their header part into k& groups, there needs at least
k — 1 nodes and at most n — 1 nodes, depending on how the numbers representing
nodes are classified. Therefore, if a reduced and consistent OBDD has &k conduits,

then the number of nodes of D is at least £k — 1 +nk +n and at most n — 1 +nk + n.

Let us consider the approximation ratio of MINIMUM CONSISTENT OBDD. Let
D be a OBDD consistent with P and N. We can compute a reduced OBDD D’ with
respect to P and N from D in polynomial time with |P U N|. Let k be the number
of conduits in D'. Then, for k > K(G) > 2, the approximation ratio r of D satisfies

k - k—14+nk+n
2K(G) n—14nK(G)+n —

Since conduits in D’ corresponds to a k-coloring for G, the lower bound n® <

% for GRAPH COLORING also gives the lower bound of the ratio for MINIMUM

CoNSISTENT OBDD. Let m be the length of strings in P and N (so the number of
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variables). Then m = [+ 2n < 3n and thus the inequality %(%)C < %nc < r holds.
Therefore, there is 0 < € < ¢ < 1 such that n® < r for sufficiently large m satisfying
(2- 3C)ﬁ < m unless P = NP. O

4 A Learnable Subclass of OBDDs

In this section, we discuss the relationship between the learnability of OBDDs and
our results on MINIMUM CONSISTENT OBDD.

Valiant [20] has proposed a criterion of correct identification of a concept from
examples in a stochastic setting. The idea of this model is that after randomly sam-
pled examples and non-examples of a concept are given, an identification procedure
should conjecture a concept with “high probability” that is “not too different” from
the correct concept. This model is called a probably approzimately correct (PAC, for

short) learning model.

Angluin [2, 3] has introduced the “minimally adequate teacher” in order to learning
DFAs, and developed the learning model which is allowed to make several types of
queries. The goal of this model is ezact identification of a concept from a concept class,
that is, to succeed the algorithm must halt and output a concept which is equivalent
to a target concept. In this section, the learning algorithm gathers information about

a target concept using two types of queries; membership and equivalence queries.

Let D, be a target OBDD. For any w € {0,1}", the answer to the membership
query is yes if w satisfies D,; otherwise, no. For a hypothesis OBDD D, the answer
to the equivalence query is yes if D is equivalent to D,; otherwise, the answer is no,

and the query returns a counterexample w in symmetric difference of D and D,, that

iswe (D—D,)U(D, — D).

By regarding OBDDs as DFAs and by applying Angluin’s results [2, 4] to OBDDs,
Gavalda and Guijarro [12] have obtained the following results: (1) The OBDDs are
polynomial time learnable with both membership and equivalence queries; (2) The

OBDDs are not polynomial time learnable with equivalence queries alone.

It is known that if a concept class is not polynomial time PAC-learnable, then
it 1s not polynomial time learnable with equivalence queries, but the converse does
not hold [3]. Hence, the above theorem does not guarantee that OBDDs are not
PAC-learnable. Also our results on MINIMUM CONSISTENT OBDD do not show
that OBDDs are not PAC-learnable. However, our results do show that any efficient
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Figure 1: An initial internal OBDD

algorithm for learning OBDDs would have to produce very large hypothesis.

Our results suggest that OBDDs are unlikely to be polynomial time learnable in
PAC-learning model. Then, in the reminder of this section, we investigate polynomial
time learnable subclasses of OBDDs. Ergiin et al. [10] have already shown that width-
2 OBDDs are polynomial time PAC-learnable, although learning width-£ OBDDs is
as hard as learning DNF formulas for £ > 3. The learnability of width-2 OBDDs

follows that OBDDs representing parity functions and monomials are PAC-learnable.

As another learnable subclass, we can consider OBDDs representing symmetric
functions. A function f(xy,---,2,) is called symmetric if f remains unchanged for
every permutation of its variables xy,---,x,, that is, the value of f depends only
on the number of variables equal to 1. Note that n-ary symmetric functions are
representable as OBDDs with O(n?) nodes. Hence, we can show that OBDDs repre-
senting symmetric functions are polynomial time learnable with equivalence queries

as follows. This result is related to the paper [6].
Fix the order zy < 9 < --- < x,, of variables. Let D, be a target OBDD and D

be an internal OBDD in our learning algorithm. Assume that our learning algorithm
returns a reduced OBDD D’ of D as a hypothesis. The initial internal OBDD is
described as Figure 1. While an hypothesis D’ is not equivalent to D,, our learn-
ing algorithm receives a counterexample w € {0,1}" from equivalence queries, and

exchanges the label 0 of the terminal node connected by w in D to 1.

It is O(|D]) time to generate the initial internal OBDD. By the form of OBDD,



the number of equivalence queries is at most n + 1. It is O(n) time to determine
the terminal node connected by w. The time complexity of the reduction of D is
O(|D]) [19], where | D] is the number of nodes in the OBDD D. Since |D| < (n +
1)(n+2) = O(n?), the total learning time is: O(n?)+ (n+1)(O(n)+ O(n?)) = O(n?).

Hence, we obtain the following result:

Theorem 3. The OBDDs representing n-ary symmetric functions are learnable in

time O(n®) with at most n + 1 equivalence queries. Hence, they are also polynomial

time PAC-learnable.

5 Conclusion

We have shown some intractabilities of the problem to find the minimum consistent
OBDD from given examples, where the variable ordering is fixed. We first have
shown that the problem is NP-hard, even the number of positive examples is only
one. Secondly, we have proved that the problem is hard to approximate within a
factor n® in polynomial time, where n is the number of variables and ¢ > 0 is some

constant.

Our results provide some interesting contrasts to the similar results on the problems
to find the minimum consistent decision lists and decision trees due to Hancock et
al. [14]. The first result is essentially the same to their result on hardness to find
the shortest monomial. According to the second result, however, the difficulties of
finding minimum decision lists and decision trees mainly relies on choosing the optimal
ordering of the variables, while the variable ordering is fixed in our problem. Thus,
the proof strategy to reduce from GRAPH COLORING completely differs from theirs,

although they have also reduced from the same problem.

On the other hand, since the variable ordering is fixed in our setting, OBDDs can
be regarded as a kind of DFA. Pitt and Warmuth [18] have shown that finding the
minimum consistent DFA cannot be approximated within opt® states, where opt is
the minimum number of states and £ is any constant greater than 1. They have
used a special form of DFAs, so called counter-like DFAs, where the cyclic transitions
plays an essential role to show their hardness. In contrast to their reduction, since
OBDDs cannot have any cycles, our results would suggest that finding the minimum
consistent DFA is still very difficult even when the DFA is restricted to be acyclic. In

future works, we will deal with the problem of finding the minimum consistent acyclic
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DFA directly.

Finally, we note that our hardness results do not imply that OBDDs are not poly-
nomial time learnable in PAC-model, since an Occam algorithm [7] is allowed to
produce an OBDD whose size is also dependent on the number of given examples.
Our result gives a partial negative result on the polynomial time learnability, in the
same sense of the results on DFAs [18], decision lists and decision trees [14]: Under

the assumption P#£NP, there exists an € > 0 such that there is no polynomial time

€

, Where s is

learning algorithm which always outputs an OBDD of size at most s'T

the size of the target OBDD.
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