
Linear-Time Off-Line Text Compression by

Longest-First Substitution

Shunsuke Inenaga1,2, Takashi Funamoto1, Masayuki Takeda1,2, and
Ayumi Shinohara1,2

1 Department of Informatics, Kyushu University 33, Fukuoka 812-8581, Japan
{s-ine, t-funa, ayumi, takeda}@i.kyushu-u.ac.jp

2 PRESTO, Japan Science and Technology Corporation (JST)

Abstract. Given a text, grammar-based compression is to construct a
grammar that generates the text. There are many kinds of text com-
pression techniques of this type. Each compression scheme is categorized
as being either off-line or on-line, according to how a text is processed.
One representative tactics for off-line compression is to substitute the
longest repeated factors of a text with a production rule. In this paper,
we present an algorithm that compresses a text basing on this longest-
first principle, in linear time. The algorithm employs a suitable index
structure for a text, and involves technically efficient operations on the
structure.

1 Introduction

Text compression is one of the main stream in the area of string processing [4].
The aim of compression is to reduce the size of a given text by efficiently remov-
ing the redundancy of the text. Compressing a text enables us to save not only
memory space for storage, but also time for transferring the text since its com-
pressed size is now smaller. It is ideal to compress the text as much as possible,
but compression in reality has to be done in the trade-off between time and space,
i.e. text compression algorithms are also required to have fast performance.

One major scheme of text compression is grammar-based text compression,
where a grammar that produces the text is generated. Many attempts to gener-
ate a smaller grammar have been made so far, such as in the well-known LZ78
algorithm [20] and the Sequitur algorithm [14, 15]. These two algorithms both
process an input text on-line, namely, they read the text in a single pass, and
begin to emit compressed output (production rules for a grammar) before they
have seen all of the input. Actually, the history of text compression algorithms
began with processing texts on-line, since limitation of available memory space
has until recently been a big concern. On-line algorithms run on relatively small
space by employing the idea of a sliding window, but they only generate a gram-
mar based on replacing the repeating factors in the window that is of bounded
size. Therefore some possibilities to compress texts into smaller sizes would re-
main.

M.A. Nascimento, E.S. de Moura, A.L. Oliveira (Eds.): SPIRE 2003, LNCS 2857, pp. 137–152, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [600 600] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein
 Bitanzahl pro Pixel: Wie Original Bit

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Untergruppen bilden unter: 100 %
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: []
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil:
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Nein
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein
 EPS-Info von DSC beibehalten: Nein
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue false
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed []
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [600 600]
>> setpagedevice

138 Shunsuke Inenaga et al.

Due to recent hardware developments, we are now allowed to dedicate more
memory space to text compression. This gives us opportunities to design off-
line algorithms that more efficiently process an input text and give us better
compression. Two strategies for seeking for repeating factors in the whole input
text are possible; the most-frequent-first and longest-first strategies.

Text compression by the most-frequent-first substitution was first considered
by Wolff [19]. His algorithm is, given a text, to recursively replace the most
frequently occurring digram (factor of length two) with a new character, which
results in a production rule corresponding the digram. Though Wolff’s algorithm
takes O(n2) time for an input text of length n, Larsson and Moffat [12] devised
a clever algorithm, named Re-Pair, that runs in O(n) time and compresses the
text by recursively substituting new characters for the most frequent digram.

In this paper we consider the other one, text compression by the longest
first substitution, where we generate a grammar by substituting new characters
for the longest repeating factors of a given text of length more than one. For
example, from string abcacaabaaabcacbabababcaccabacabcac of length 35 we
obtain the following grammar

S → AaBaAbBbAcBcA

A → abcac

B → aba.

of size 24. Bentley and McIlroy [5] gave an algorithm for this compression scheme,
but Nevill-Manning and Witten [16] stated that it does not run in linear time.
They also claimed the algorithm by Bentley and McIlroy can be improved so as
to run in linear time, but they only noted a too short sketch for how, which is
unlikely to give a shape to the idea of the whole algorithm. This paper, there-
for, introduces the first explicit, and complete, linear-time algorithm for text
compression with the longest-first substitution. The core of our algorithm is the
use of suffix trees [18], for they are quite useful for finding the longest repeating
factors as is mentioned in [16]. Our algorithm, which is really combinatorial, in-
volves highly technical but necessary update operations on suffix trees towards
upcoming substitutions. We give a precise analysis for the time complexity of
our algorithm, which results in being linear in the length of an input text string.

2 Preliminaries

2.1 Notations on Strings

Let Σ be a finite alphabet. An element of Σ∗ is called a string. Strings x, y, and
z are said to be a prefix, factor, and suffix of string w = xyz, respectively. The
sets of all prefixes, factors, and suffixes of a string w are denoted by Prefix (w),
Factor(w), and Suffix(w), respectively.

The length of a string w is denoted by |w|. The empty string is denoted by ε,
that is, |ε| = 0. Let Σ+ = Σ∗ − {ε}. The i-th character of a string w is denoted

Linear-Time Off-Line Text Compression by Longest-First Substitution 139

by w[i] for 1 ≤ i ≤ |w|, and the factor of a string w that begins at position i and
ends at position j is denoted by w[i : j] for 1 ≤ i ≤ j ≤ |w|. For convenience,
let w[i : j] = ε for j < i, and w[i :] = w[i : |w|] for 1 ≤ i ≤ |w|. For any factor
x of a string w, let BegPosw(x) denote the set of the beginning positions of all
occurrences of x in w.

For a non-empty factor x of a string w, #occw(x) denotes the possible max-
imum number of non-overlapping occurrences of x in w. If #occw(x) ≥ 2, then
x is said to be repeating in w. We abbreviate a longest repeating factor of w to
an LRF of w. Remark that there can exist more than one LRF for w.

Let x ∈ Σ+. An integer 1 ≤ p ≤ |x| is said to be a period of x if the suffix
x[p + 1 :] of x is also a prefix of x, that is, x[p + 1 :] = x[1 : |x| − p].

2.2 Suffix Trees

The suffix tree of a string w, denoted by STree(w), is an efficient index structure
which is defined as follows:

Definition 1. STree(w) is a tree structure such that:

1. every edge is labeled by a non-empty factor of w;
2. every internal node has at least two child nodes;
3. all out-going edge labels of every node begin with mutually distinct characters;
4. every suffix of w is spelled out in a path starting from the root node.

Quite a lot of applications of suffix trees have been introduced so far, in the
literature such as [1, 9, 8].

Assuming any string w terminates with the unique symbol $ not appearing
elsewhere in w, there is a one-to-one correspondence between a suffix of w and
a leaf node of STree(w). STree(w) for string ababa$ is shown in Fig. 1. For any
node v of STree(w), label (v) denotes the string obtained by concatenating the
labels of the edges in the path from the root node to node v. The length of node
v, denoted length(v), is defined to be |label (v)|. The number of the leaf node of
STree(w) corresponding to w[i :] is defined to be i, for 1 ≤ i ≤ |w|. The i-th
leaf node of STree(w) is denoted by leaf i. Every node v of STree(w) except for
the root node has the suffix link, denoted suf (v), such that suf (v) = v′ where
label (v′) ∈ Suffix(label (v)) and length(v′) + 1 = length(v).

If there exists a node v in STree(w) such that label (v) = x for some x ∈
Factor(w), then we sometimes specify that x is represented by an explicit node.
Otherwise, we say that x is represented by an implicit node in STree(w). The
implicit node is indicated by a reference pair 〈s, α〉 of a node and string, such
that label (s) · α = x.

Actually, every edge label x of STree(w) is implemented by a pair 〈i, j〉 of
integers such that x = w[i : j], and thus occupies only constant space. Therefore,
the size of STree(w) is linear in |w|. More precisely:

Theorem 1 (McCreight [13]). For any string w ∈ Σ∗ with |w| > 1, STree(w)
has at most 2|w| − 1 nodes and 2|w| − 2 edges.

140 Shunsuke Inenaga et al.

1

5

3
2

4

6
a b

a

$

$

$

$
$

a

a

a

b

b

b

$

Fig. 1. STree(w) with w = ababa$. Solid arrows represent edges, and dotted
arrows are suffix links.

Moreover, on the assumption that Σ is fixed;

Theorem 2 (Weiner [18]). For any string w ∈ Σ∗, STree(w) can be con-
structed in linear time.

Construction of STree(w) has been studied in various contexts. For instance,
Weiner [18] gave the first algorithm to construct STree(w) in linear time. Later
on, McCreight [13] and Ukkonen [17] individually presented conceptionally new
linear-time algorithms for construction of STree(w). A merit of the two latter
algorithms is that the order of the creation of a leaf node exactly corresponds
to the beginning position of the suffix represented by the leaf node. Namely, the
i-th created leaf node of STree(w) is exactly leaf i for any 1 ≤ i ≤ |w|. Hereby
we can easily associate each leaf node with its number, without any extra effort
after the construction of STree(w) is completed.

3 Off-Line Compression by Longest-First Substitution

Given a text string w ∈ Σ∗, we here consider to replace an LRF x of w such
that |x| ≥ 2, with a new character not appearing in w. We call this operation
longest-first substitution on w. Applying it to w as many times as possible, we
can accomplish encoding of w, where we resultingly obtain a grammar consisting
of the rules that produce the replaced factors. For instance, let us consider string
abaaabbababb$, which has two LRFs aba and abb. Let us here choose abb for
being replaced by a new character A, and then we obtain

S → abaaAabA$
A → abb.

Replacing ab by B results in a grammar consisting of the production rules

S → BaaABA$
A → abb

B → ab.

Linear-Time Off-Line Text Compression by Longest-First Substitution 141

3.1 Suffix Trees Are Useful for Longest-First Substitution

To compress w according to the above principle and in O(|w|) time, we need to
find in (amortized) constant time an LRF of w at every stage of compression.
Preprocessing w is a direct and clever choice for this purpose, and concretely, we
first construct STree(w). We consider only the strings corresponding to the inter-
nal nodes of STree(w) as candidates for LRFs. Since there can be LRFs of w that
are not represented as nodes of STree(w), one may think that such LRFs remain
unsubstituted for, and violate our longest-first principle (e.g., see STree(ababa$)
of Fig. 1 in which factor ab is an LRF of ababa$, but is represented only as an
implicit node.). However, we can fortunately prove the following lemma which
guarantees that we have only to consider the strings represented as an internal
node of STree(w). This lemma is essential to our algorithm for text compression
with longest-first substitution.

Lemma 1. Suppose x is an LRF of w not corresponding to a node of STree(w).
Then, there exists another LRF y of w that corresponds to an internal node such
that |x| = |y| and #occw(y) ≥ #occw(x) = 2. Moreover, x is no longer present
in the string after the substitution for y. (See Fig. 2.)

Proof. Suppose the implicit node representing x is on the edge from some node
s to node t of STree(w). Let u = label(t), and then we have BegPosw(x) =
BegPosw(u). Since x is an LRF of w and a proper prefix of u, the string u is
not repeating. Let i, j be the minimum and maximum elements of BegPosw(u),
respectively. It is obvious that j − i = |x| < |u| and therefore the string u has a
period |x|. Let � = |u|. The string w[i : j + � − 1] = xu has a period |x|. Let p
be the smallest period of the same string, and let z be the length-p prefix of x.
By the periodicity lemma, we can show that x = zk for some k ≥ 1 as in Fig.2.
Let �′ (�′ ≥ �) be the largest integer such that the string w[i : j + �′ − 1] has a
period p. It is not hard to show that w[i : j + �′ − 1] = z2kz′ for some prefix z′

of z. Let y be the length-|x| suffix of this string, and y′ be the length-|z′| prefix
of x. Then, w[i : j + �′ − 1] = y′yy. Let a = w[j + �′] and b = w[j + �′ − p].
From the choice of �′, the characters a, b must be distinct. Since |y| = k · p,
we have b = w[j + �′ − p] = w[j + �′ − |y|]. The occurrences of y at positions
j + �′ and j + �′ − |y| in w are followed by a and b, respectively, and therefore
y is represented as an explicit node of STree(w). Since x occurs only within the
region w[i : j + �′−1], it cannot be present after substitution for the occurrences
of y. ��

The above lemma implies that it suffices to consider the strings corresponding
to the internal nodes of STree(w) as candidate repeating factors for substitution.
In fact, we only need to consider the LRF ba of ababa$ that is represented by an
explicit internal node of STree(ababa$) of Fig. 1, in spite of the implicit one ab
By sorting the internal nodes of STree(w) in the order of their path lengths, we
can maintain the list of such candidates. Notice that, however, the above lemma
does not address every node of STree(w) corresponds to a repeating factor of
w. Namely, an overlapping factor x with #occw(x) = 1 may be represented by

142 Shunsuke Inenaga et al.

y

i j j +l ’j +l

ab

u

x x’

b

x

yy’

u

z z ’z z z z z

w =

Fig. 2. An illustration for Lemma 1. An LRF x of w not corresponding to a
node of STree(w) implies two consecutive occurrences of x. In this case, there
necessarily exists an LRF y corresponding to an internal node. The replacement
of the two consecutive occurrences of y destroys the occurrences of x.

a

a

b

b
a
b
b

$

b
a

a a

b

b

b

b

$

$

$

$

ba

b
ba
bb

$
ba

b
b
$

b

b
a

$

b
a

a

b

b
ab
b

$
b
a b

$

b
a b

$

b

ba

$
ba

b

b
a
b
b

$

b
a

a

a
a

3
41

8

5

10

2

7

9

6

11

12

13

<3, 4>
<1, 8>

<1, 10>

<1, 10>

<5, 10>
<2, 9>

<2, 12>

<6, 11>

<7, 9>

Fig. 3. Every node v of STree(abaaabbababb$) shown here has got a pair 〈i, j〉,
where the leftmost and rightmost occurrences of label(v) are i, j, respectively.

a node of STree(w). For example, see Fig. 1 displaying STree(ababa$). Remark
factor aba appears twice in the string, but #occu(aba) = 1 since the two occur-
rences are overlapping. Let i, j be the beginning positions of the leftmost and
rightmost occurrences of a factor x of a string w, respectively. If |x| > j− i, then
it means that all occurrences of x are overlapping in w, and thus #occw(x) = 1.
Otherwise, we have #occw(x) ≥ 2, and therefore string x is a repeating factor of
w. For any internal node s of STree(w), the beginning position of the leftmost
(rightmost) occurrence of label(s) can be computed by a standard bottom-up
traversal of the tree issuing the numbers of the leaf nodes upward. The time cost
is proportional to the number of the edges in STree(w), which is O(|w|).

See Fig. 3, where every node v of STree(abaaabbababb$) has got a pair 〈i, j〉
of integers, where i, j are the beginning positions of the leftmost and rightmost
occurrences of label(v), respectively.

Linear-Time Off-Line Text Compression by Longest-First Substitution 143

abaabaabaabaababaabaabababaabaaba$
1 5 10 15 20 25 30

Fig. 4. An example for a string in which some occurrences of its LRF are
overlapping.

The sole remaining matter is how to construct the list of the internal nodes
for substitutions, which has to be sorted by the lengths of the nodes. It can
simply be done by a bin sort in linear time in the number of internal nodes in
STree(w), therefore in O(|w|) time (according to Theorem 1).

As a result of the above discussion, it has been shown that STree(w) is
quite effective in providing us the list of the repeating factors of w sorted in the
decreasing order of their lengths. In the following sections we will see how an
LRF of w is actually replaced by a new character, and what maintenance has to
be done for the suffix tree.

3.2 Substitution for Longest Repeating Factor

According to the discussion in the previous section, we have got the list of nodes
candidate for longest first substitution, and now the first element of the list
corresponds to an LRF x of w. If |x| < 2, then any substitution does not reduce
the size of the string, and thus we halt here. Otherwise, we actually replace x
with a new character, say A, and then create the production rule A → x.

A subtle consideration reveals that every occurrence of an LRF x in w is not
allowed to be replaced by A, if w contains some overlapping occurrences of x.
Conversely, we then could have more than one choice of the occurrences of x for
being replaced by A. See Fig. 4 in which the string shown contains abaabaaba
as a unique LRF. For example, we can choose the occurrences of abaabaaba
beginning at positions 7 and 25 for substitution. Then, no other occurrences
of abaabaaba cannot be replaced since they are overlapping either of the two
chosen occurrences. Notice, however, we have #occu(abaabaaba) = 3, that is, the
occurrences beginning at positions 1, 15 and 25 could be chosen to be replaced,
for instance. Below we give a way to choose exactly #occw(x) occurrences of an
LRF x of a string w for substitution.

Definition 2. Let x be a non-empty factor of w ∈ Σ∗. The left-first greedily
selected occurrences of x in w is the sequence i1, . . . , ik (k ≥ 1) of integers
satisfying:

1. i1 = minBegPosw(x).
2. i� is the smallest integer such that i� ∈ BegPosw(x) and i�−1 + |x| ≤ i�, for

every � = 2, . . . , k.
3. There is no integer i such that i ∈ BegPosw(x) and ik + |x| ≤ i.

Proposition 1. Let x be a non-empty factor of w ∈ Σ∗. If i1, . . . , ik (k ≥ 1) is
the left-first greedily selected occurrences of x in w, then k = #occw(x).

144 Shunsuke Inenaga et al.

The above proposition states that the left-first greedy choice of occurrences of
an LRF for substitutions achieves the maximum number of substitutions. What
has to be considered next is how to sort the positions of occurrences of an LRF
in the increasing order.

The proposition below follows from the periodicity lemma.

Proposition 2. For any non-empty factor x of a string w and integer � with
1 ≤ � ≤ |w|, the set S = {i | i ≤ � ≤ i + |x| and x = w[i : i + |x| − 1]} forms a
single arithmetic progression. If |S| ≥ 3, then the step is the smallest period of
x. All the occurrences of x at positions i ∈ S with i 	= maxS are followed by a
unique character.

Lemma 2. For any non-repeating factor x of w, the set BegPosw(x) forms a
single arithmetic progression. When |BegPosw(x)| ≥ 3, the step is the smallest
period of x.

Proof. Let � be the maximum element of BegPosw(x). Since x is non-repeating,
i ≤ � ≤ i + |x| for every i ∈ BegPosw(x). We can apply Proposition 2 to prove
the lemma. ��

Remark that an arithmetic progression can be represented as a triple of the
first and last elements, and the number of its elements. We store in every internal
node s of STree(w) the triple of the minimum element, the maximum element,
and the cardinality of BegPosw(u), which is a compact representation of the set
BegPosw(u) if u is non-repeating, where u = label (s).

The next proposition directly follows from the definition of BegPos .

Proposition 3. Let s be an internal node of STree(w) having children s1, . . . , sk.
Then, the set BegPosw(label (s)) is the disjoint union of the sets

BegPosw(label(s1)), . . . ,BegPosw(label (sk)).

Lemma 3. Suppose x is an LRF of w corresponding to an internal node s of
STree(w). Let s1, . . . , sk be the children of s. Then, BegPosw(x) is the disjoint
union of BegPosw(label(s1)), . . . ,BegPosw(label (sk)), each of which forms a sin-
gle arithmetic progression.

Proof. Notice that the strings label (s1), . . . , label (sk) are non-repeating because
they are longer than x that is an LRF of w. We can prove the lemma by Propo-
sition 3 and Lemma 2. ��
For finite sets S, T of integers, we write S ≺ T if every element of S is smaller
than any of T .

Lemma 4. Suppose x is an LRF of w corresponding to an internal node s of
STree(w). Let s1, . . . , sk be the children of s arranged in the increasing order of
the minimum elements of BegPosw(label (si)). Then,

BegPosw(label (s1)) ≺ · · · ≺ BegPosw(label(sk)).

Linear-Time Off-Line Text Compression by Longest-First Substitution 145

Proof. It suffices to prove the next claim.

Claim. For any child t of s with |BegPosw(label (t))| ≤ 2, the node t has no
sibling t′ such that BegPosw(label (t′)) contains an integer k with i < k < j,
where i and j are the minimum and maximum elements of BegPosw(label (t)).

Let u = label(t) and let x′ be the prefix of u of length j− i . Since x is an LRF of
w and x′ is repeating, x cannot be shorter than x′ and thus we have |x| ≥ j − i.
Assume, for a contradiction, that t has a sibling t′ such that BegPosw(label (t′))
contains an integer k with i < k < j. Since j belongs to the intervals [i, i + |x|],
[k, k + |x|], and [j, j + |x|], we can show that {i, k, j} is a subset of an arithmetic
progression and w[i + |x|] = w[k + |x|] by Proposition 2. On the other hand, the
characters w[i + |x|] and w[k + |x|] are the first characters of the labels of the
edges from s to t and t′, respectively. Hence the two characters must be distinct,
a contradiction. The proof of the claim is now complete. ��

The above lemma implies that we have only to sort the k integers that are, re-
spectively, the minimum elements of BegPosw(label (s1)), . . . ,BegPosw(label (sk)).
The discussion below, however, reveals that we indeed need not explicitly sort
these k integers.

Recall that an edge label α in the suffix tree of a string w is represented by
an ordered pair 〈i, j〉 of integers with w[i : j] = α.

Proposition 4. Ukkonen’s suffix-tree construction algorithm guarantees that the
first argument i of the ordered pair representing the label of the edge from a node
s to a node t in STree(w) is equal to minBegPosw(label (t)) + |label (s)|.
The above proposition states that it suffices to arrange the out-going edges of
a node s in the increasing order of the first arguments of the corresponding
pairs. A short consideration reveals that this order coincides with the order of
creation of the edges by Ukkonen’s algorithm. Thus, all we have to do is to keep,
for every node s, the list of the out-going edges of s arranged in the order of
creation, which can be easily done during the suffix tree construction.

Finally, we achieve the following lemma.

Lemma 5. For any LRF x corresponding to an internal node s of STree(w) of
a string w, the left-first greedily selected occurrences of x in w can be enumerated
in O(k) time, after an O(|w|) time and space preprocessing of w, where k is the
number of children of s.

Proof. It is feasible in O(|w|) time and space to build STree(w) and store in
each node t the triple of the minimum element, the maximum element, and the
cardinality of BegPosw(label (t)). By Lemma 3 and Lemma 4, we can prove the
lemma. ��

3.3 Preparation for Next Substitution

In this section, we show how to maintain our suffix-tree based data structure
after the substitution for an LRF of a string w, in order to prepare for the

146 Shunsuke Inenaga et al.

next LRF substitution. Let xk denote the string being replaced with a new
character, say Ak, at the k-th stage of the compression of string w with longest-
first substitution. Let w1 = w, and let wk+1 denote the string obtained by
replacing every occurrence of xk in wk that is greedily selected in the left-first
manner, with Ak which is followed by (|xk| − 1)-times repetition of a special
character • /∈ Σ. The aim of the introduction of the special character • is so
that we have |wk| = |w| for every k. The string obtained by removing all •’s
from wk, is denote by wk. Clearly, wk is identical to the string obtained just
after the (k − 1)-th stage of the compression of w. By definition, xk is an LRF
of wk.

Proposition 5. For every k, the string xk consists only of characters from Σ.

Proof. Assume contrarily that xk contains a character Aj for some j < k, with
which some occurrences of xj have been replaced since the j-th stage. Because
#occwk

(xk) ≥ 2, we have #occwj
(xk) ≥ 2. This implies that xk is a longer

repeating factor of wj than xj , and this is a contradiction. ��
We say that a position i of wk (1 ≤ i ≤ |w|) is active if wk[i] ∈ Σ, and inactive,

otherwise. Let Actk and Inactk be the sets of the active positions and inactive
positions of wk, respectively, for every k. Act1 = {1, . . . , |w|} and Inactk = ∅ as
w1 = w. Due to Proposition 5, we have Act1 ⊃ Act2 ⊃ · · · .

In the running example with abaaabbababb$, the sequence abaaA••abA••$
is yielded after the substitution of A for the LRF abb, where every position
assigned • or A is now inactive. We now have Act2 = {1, 2, 3, 4, 8, 9, 13} and
InAct2 = {5, 6, 7, 10, 11, 12}. After the substitution of B for the next LRF ab,
the sequence B • aaA • •B • A • •$ is yielded, which gives us Act3 = {3, 4, 13}
and Inact3 = {1, 2, 5, 6, 7, 8, 9, 10, 11, 12}.

The data structure we want to maintain for k = 1, 2, . . . resembles the sparse
suffix tree [11] of wk that represent only the suffixes beginning at the active
positions of wk. In the sequel, we present an update procedure for this data
structure. It is obvious that the following lemma stands.

Lemma 6. For any factor y of wk+1 with y ∈ Σ+, #occwk+1
(y) < #occwk

(y)
if and only if an occurrence of y overlaps some occurrence of xk in wk.

See Fig. 5, in which an LRF xk beginning at position i of wk is being replaced
by a new character A. First we consider a suffix of wk beginning at position j
with j ≤ i. The latter part of such a suffix after position i has to be modified,
since its factor xk is converted to A at position i. The number of such suffixes
is proportional to i, and thus it reaches O(|wk|) in the worst case. However,
the suffixes we actually have to care are only those beginning at position j with
i−|xk|+1 ≤ j ≤ i, since in the principle of the longest-first substitution any LRF
xk+1 cannot be longer than xk, and all we need to know is if #occwk+1

(xk+1)
becomes smaller than #occwk

(xk+1) and it only happens if xk+1 overlaps xk in
wk (by Lemma 6). Hereby we define the attentional zone for xk with respect to
position i to be the region from i− |xk|+ 1 to i. In the right figure of Fig. 5, the
suffixes in the attentional zone are light shaded.

Linear-Time Off-Line Text Compression by Longest-First Substitution 147

wk xk
i
xk wk+1

i
A

i-|xk|+1

A
A
A
A

i-|xk|+1 i+|xk|-1 i+|xk|-1

Fig. 5. Changes of the suffixes affected by the replacement of the occurrence
of xk beginning at position i of wk during the k-th stage (from the left figure
into the right figure). The occurrence of xk in wk is replaced with A followed by
(|xk|−1)-times repetition of • in wk+1. In the right figure, the light-shaded region
and the dark-shaded region denote the attentional and dead zones, respectively.
The suffixes of wk beginning at the positions in the attentional zone are modified
accordingly, and those in the dead zone are no longer present in the sparse suffix
tree for wk+1.

To update our data structure for wk to that for wk+1 according to the sub-
stitution for the LRF xk, we have to check all the paths corresponding to the
suffixes beginning at the positions in the attentional zone, and convert each of
them accordingly. If naively traversing all these paths from the root node of the
tree, then the total time cost will be O(#occwk

(xk) × |xk|2). However, we have
the following lemma that reduces it to linear time.

Lemma 7. At every k-th stage it is feasible in O(|xk|) time to maintain all
paths spelling out a suffix of wk which begins at a position in the attentional
zone of wk.

Proof. Let j = i−|xk|+1, and uj = wk[j : i−1], uj+1 = wk[j+1 : i−1], . . . , ui =
wk[i : i− 1] = ε. Note any position in the attentional zone is in Actk. Let sj and
t1 be the longest nodes in the tree for wk, such that label (sj) ∈ Prefix (uj) and
label (tj) ∈ Prefix(ujxk), respectively (see the left figure of Fig. 6). Note label(sj)
is a prefix of label (tj). These two nodes can be found by simply traversing the
path spelling out ujxk from the root node of the tree. Since |uj| + 1 = |xk|, the
traversal can be done in O(|xk|) time (assuming |Σ| is constant). Let z ∈ Σ∗ be
the string such that label(sj) · z = uj. If z 	= ε, then we create a new child node
vj of sj such that label(vj) = uj. Otherwise, suppose vj = sj . Note that node tj
always has a unique out-going edge that is in the path spelling out ujxk from
the root node. Let rj be the child node of tj connected by this edge, and let yj

be the label of this edge. We reconnect rj to vj with the edge labeled by Aky,
and then remove the out-going edge of vj which no longer has a node underneath
(see the right figure of Fig. 6). This operation takes only constant time.

Now we focus on u� for some j < � ≤ i. We need to find where nodes s� and
t� in the tree such that label(s�) ∈ Prefix(u�) and label(t�) ∈ Prefix (u�), respec-
tively. Remark that we have label (suf (s�−1)) ∈ Prefix(s�) and label (suf (t�−1)) ∈

148 Shunsuke Inenaga et al.

uj

xk

y

sj

rj

tj

{
{

{

{uj sj
vj

tj

rj
yAk

Fig. 6. Illustration for the former part of the proof of Lemma 7.

Prefix(t�), and thus we can detect them in O(|label (s�)| − |label(suf (s�−1))|+ 1)
time and in O(|label (t�)|− |label(suf (t�−1))|+1) time, respectively, by using the
suffix links. Then the total time cost for detecting s� and t� for all possible � is
proportional to

i∑

�=j+1

{(|label(s�)| − |label (suf (s�−1))| + 1)+(|label(t�)| − |label (suf (t�−1))|+1)}

= (|label (sj+1)| − |label (suf (sj))| + 1) + (|label(tj+1)| − |label(suf (tj))| + 1)
+ (|label (sj+2)| − |label (suf (sj+1))| + 1)+(|label(tj+2)| − |label (suf (tj+1))|+1)

· · · · · ·
+ (|label (si)| − |label (suf (si−1))| + 1) + (|label (ti)| − |label (suf (ti−1))| + 1)
= |label (si)| − |label(suf (sj))| + |label(ti)| − |label (suf (tj))| + 4(i − j − 1) + 2
= |label (si)| − |label(sj)| + |label (ti)| − |label(tj)| + 4(i − j)
= |ε| − |label(sj)| + |xk| − |label (tj)| + 4(|xk| − 1)
≤ |xk| − |xk| + 4(|xk| − 1)
= 4(|xk| − 1).

This operation for the detection is illustrated in Fig. 7. Of course, after each
detection we create a new node v� for each s�, or possibly v� = s�, and reconnect
to v� the out-going edge of t� leading to its certain child r� corresponding to
string u�. This reconnection as well takes just constant time. ��

Secondly, we consider the suffixes of wk beginning at position h with i ≤ h ≤
i + |xk| − 1. As seen in Fig. 5, the beginning positions of those suffixes become
inactive after the substitution of Ak for xk occurring at position i. It means that
all of them have to be removed from the tree structure. Hereby we call the region
from i + 1 to i + |xk| − 1 the dead zone for xk with respect to position i. The
suffixes in the dead zone are dark shaded in the right figure of Fig. 5.

Lemma 8. At every k-th stage, it is feasible in O(|xk|) time to remove all paths
spelling out a suffix of wk which begins at a position in the dead zone of wk.

Linear-Time Off-Line Text Compression by Longest-First Substitution 149

uj+2

xk

uj

xk
tj

rj

sj
uj+1

xk
yj

tj+1

sj+1

} }sj+2

tj+2 }

rj+2}
}
rj+1

} }
}

}yj+1

yj+2

Fig. 7. Illustration for the latter part of the proof of Lemma 7.

Proof. Assume the path spelling out xk is already converted to that spelling out
a new character Ak. Remark there always exists a node v such that label(v) =
Ak. Then, there exists leaf i in the subtree rooted at node v. It is trivial that
suf (leaf i) = leaf i+1, and thus we can find it in constant time. By removing
leaf i+1 and its in-coming edge, we can delete the path spelling out the suffix
wk[i+1 :]. Similarly it takes constant time for any h with i+1 < h ≤ i+ |xk|−1.

��
See Fig. 8 and Fig. 9 that show the trees after the first and second substitu-

tions for the LRFs, respectively, with respect to string abaaabbababb$.
As stated above, we can maintain the data structure for w1, w2, In this

data structure, BegPoswk
(label (s)) is exactly the set of leaves in the subtree

rooted at node s. The sole remaining matter is, for each node s, to maintain the
triple of the minimum element, the maximum element, and the cardinality of
BegPoswk

(label(s)). A short consideration reveals that we need the triples only
for the nodes whose proper descendents represent non-repeating factors of wk at
the k-th stage. We can maintain the triples for such nodes only in linear time
with respect to |xk| · #occwk

(xk).
The last thing we have to clarify is how to deal with the node list from which

we find the next LRF for substitution. One may think reordering the list is
necessary after every substitution since some occurrences of the upcoming LRFs
may disappear because of the previous LRF substitution. However, we in fact
do not need to do that. If we encounter in the list a node that does not exist
in the tree any more, then we just ignore it and focus on the next node in the
list. Concerning the case that we encounter in the list a node s which still exists
in the tree but label (s) is not repeating any more, we do the followings. First,

150 Shunsuke Inenaga et al.

a

a

b

$

$

b

b
a

$

b
a

a

b

b
a
b
b

$

b
a

A

5

10

2

13

a

a

b

b
a

$

b
a

b

b
a

$

b
a

a

b

a

b

ba
bb

$
ba

$

3

4

1

a
A A

A

8

$

9

A

Fig. 8. The resulting tree structure for w2 = abaaAabA$. It is sufficient for us
to find an LRF x2. In fact, x2 = ab is represented by an internal node.

$

$

b

b
a

$

b
a

A

5

10

13

a

b

b
a

$

b
a

b

b
a

$

b
a

aa

b

ba
bb

$
ba

$

3

4

1

a A A
A

8

B a

Fig. 9. The resulting tree structure for w3 = BaaABA$. Since there is no
internal node of length more than one, the encoding of the text halts here.

we focus on the subtree rooted at the node s and see its all leaf nodes. If the
remainder of subtracting the maximum leaf number from the minimum one is
less than |label (s)|, it implies that label (s) is non-repeating. We then mark node
s ‘dead’, and focus on the upcoming LRF in the list. If in traversing the subtree
rooted at s we encounter any internal node t marked ‘dead’, then we do not
traverse the subtree rooted at t. This way we can avoid touching the leaf nodes
of the subtree for t more than once. The total time cost is therefore only linear
in the number of the leaf nodes, which is O(|w|).

Last, recall the proof of Lemma 7 where a possibility of creation of a new
node v is mentioned. If label(v) is a repeating factor of length more than one,
then we insert v to the bin-sorted list for LRFs. This insertion can be done in
constant time. The matter is how to examine if the new node v should be in
the node list or not. The length check can be done in constant time by seeing

Linear-Time Off-Line Text Compression by Longest-First Substitution 151

length(v). Then we see all child nodes of v and their minimum and maximum
beginning positions. Since the number of the child nodes of v is at most |Σ|,
we can compute the minimum and maximum beginning positions i, j of v in
constant time assuming Σ is fixed. If j − i ≥ length(v) then v is inserted into
the list, and otherwise not. Clearly this calculation takes constant time.

We now have the main result of this paper.

Theorem 3. The text compression based on the longest-first substitution is fea-
sible in linear time.

Proof. The preprocessing of input string w is feasible in O(|w|) time. Let
N be the number of stages in the compression of w. The k-th stage of
the compression takes O(|xk| · #occwk

(xk)) time. Since |xk| · #occwk
(xk) ≤

2(|xk|− 1) ·#occwk
(xk) = 2(|wk|− |wk+1|), we obtain

∑N
k=1 |xk| ·#occwk

(xk) ≤
2

∑N
k=1(|wk| − |wk+1|) ≤ 2|w1| = O(|w|). ��

4 Conclusions and Future Work

This paper introduced a linear-time algorithm to compress a given text by
longest-first substitution. We employed a suffix tree in the core of the algo-
rithm, gave some operations for updating the tree after the substitution for a
longest repeating factor, and delved in the analysis of the accuracy and time
complexity of the algorithm.

An interesting fact is that we can also use compact directed acyclic word
graphs (CDAWGs) [6] that are smaller than suffix trees. Note that, though
Proposition 4 relies on Ukkonen’s suffix tree construction algorithm, the on-
line algorithm of [10] could the same role for CDAWGs. However, the operation
to maintain a CDAWG after the substitution for an LRF, is relatively more
complicated, since it is a graph which has only one sink node. Namely, all suf-
fixes of an input text are represented by one node, unlike the suffix tree with a
one-to-one correspondence between a suffix and leaf node. However, it is possible
in (amortized) constant time to simulate the suffix link traversal between two
leaf nodes of a suffix tree in the corresponding CDAWG, by a technique similar
to the one introduced in the latter part of the proof for Lemma 7.

The ultimate goal of off-line grammar-based text compression is to first re-
place the factor x of input string w with a new character, such that #occw(x)×
|x| ≥ #occw(y)× |y| for any other y ∈ Factor(w) [16]. Namely, the largest-area-
first substitution mechanism. For this purpose, every node v of STree(v) has to
be annotated by #occw(label (v)). It corresponds to the minimal augmented suf-
fix tree (MASTree) of w [3, 2]. The size of MASTree(w) is known to be O(|w|),
but there currently exists only an O(|w| log |w|)-time algorithm for its construc-
tion [7]. Therefore, to achieve a linear-time algorithm for text compression by
largest-area-first substitution, we first need to develop a linear-time construc-
tion algorithm for MASTree(w). In addition, we need a linear-time solution for
sorting nodes of the tree in the order of their ‘areas’, and it is also a challenging
open problem.

152 Shunsuke Inenaga et al.

References

[1] A. Apostolico. The myriad virtues of subword trees. In A. Apostolico and Z. Galil,
editors, Combinatorial Algorithm on Words, volume 12 of NATO Advanced Sci-
ence Institutes, Series F, pages 85–96. Springer-Verlag, 1985.

[2] A. Apostolico and S. Lonardi. Off-line compression by greedy textual substitution.
Proc. IEEE, 88(11):1733–1744, 2000.

[3] A. Apostolico and F. P. Preparata. Data structures and algorithms for the string
statistics problem. Algorithmica, 15:481–494, 1996.

[4] T. C. Bell, J. G. Cleary, and I. H. Witten. Text Compression. Prentice Hall, New
Jersey, 1990.

[5] J. Bentley and D. McIlroy. Data compression using long common strings. In Proc.
Data Compression Conference ’99 (DCC’99), pages 287–295. IEEE Computer
Society, 1999.

[6] A. Blumer, J. Blumer, D. Haussler, R. McConnell, and A. Ehrenfeucht. Complete
inverted files for efficient text retrieval and analysis. J. ACM, 34(3):578–595, 1987.

[7] G. S. Brødal, R. B. Lyngsø, A. Östlin, and C. N. S. Pedersen. Solving the string
stastistics problem in time O(n log n). In Proc. 29th International Colloquium
on Automata,Languages, and Programming (ICALP’02), volume 2380 of LNCS,
pages 728–739. Springer-Verlag, 2002.

[8] M. Crochemore and W. Rytter. Jewels of Stringology. World Scientific, 2002.
[9] D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University

Press, New York, 1997.
[10] S. Inenaga, H. Hoshino, A. Shinohara, M. Takeda, S. Arikawa, G. Mauri, and

G. Pavesi. On-line construction of compact directed acyclic word graphs. In
A. Amir and G. M. Landau, editors, Proc. 12th Annual Symposium on Com-
binatorial Pattern Matching (CPM’01), volume 2089 of LNCS, pages 169–180.
Springer-Verlag, 2001.

[11] J. Kärkkäinen and E. Ukkonen. Sparse suffix trees. In Proc. 6th Annual Interna-
tional Conference on Computing and Combinatorics (COCOON’96), volume 1090
of LNCS, pages 219–230. Springer-Verlag, 1996.

[12] N. J. Larsson and A. Moffat. Off-line dictionary-based compression. Proc. IEEE,
88(11):1722–1732, 2000.

[13] E. M. McCreight. A space-economical suffix tree construction algorithm. J. ACM,
23(2):262–272, 1976.

[14] C. G. Nevill-Manning and I. H. Witten. Identifying hierarchical structure in
sequences: a linear-time algorithm. J. Artificial Intelligence Research, 7:67–82,
1997.

[15] C. G. Nevill-Manning and I. H. Witten. Phrase hierarchy inference and compres-
sion in bounded space. In Proc. Data Compression Conference ’98 (DCC’98),
pages 179–188. IEEE Computer Society, 1998.

[16] C. G. Nevill-Manning and I. H. Witten. Online and offline heuristics for inferring
hierarchies of repetitions in sequences. 88(11):1745–1755, 2000.

[17] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260,
1995.

[18] P. Weiner. Linear pattern matching algorithms. In Proc. 14th Annual Symposium
on Switching and Automata Theory, pages 1–11, 1973.

[19] J. G. Wolff. An algorithm for the segmentation for an artificial language analogue.
Britich Journal of Psychology, 66:79–90, 1975.

[20] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate
coding. IEEE Trans Information Theory, 24(5):530–536, 1978.

	Introduction
	Preliminaries
	Notations on Strings
	Suffix Trees

	Off-Line Compression by Longest-First Substitution
	Suffix Trees Are Useful for Longest-First Substitution
	Substitution for Longest Repeating Factor
	Preparation for Next Substitution

	Conclusions and Future Work

