
Processing Text Files as Is: Pattern Matching

over Compressed Texts, Multi-byte Character
Texts, and Semi-structured Texts

Masayuki Takeda1,2, Satoru Miyamoto1, Takuya Kida3, Ayumi Shinohara1,2,
Shuichi Fukamachi4, Takeshi Shinohara4, and Setsuo Arikawa1

1 Department of Informatics, Kyushu University
Fukuoka 812-8581, Japan

{takeda,s-miya,ayumi,arikawa}@i.kyushu-u.ac.jp
2 PRESTO, Japan Science and Technology Corporation (JST)

3 Kyushu University Library
Fukuoka 812-8581, Japan
kida@lib.kyushu-u.ac.jp

4 Department of Artificial Intelligence, Kyushu Institute of Technology
Izuka, 820-8502, Japan

{fukamati,shino}@ai.kyutech.ac.jp

Abstract. Techniques in processing text files “as is” are presented, in
which given text files are processed without modification. The com-
pressed pattern matching problem, first defined by Amir and Benson
(1992), is a good example of the “as-is” principle. Another example is
string matching over multi-byte character texts, which is a significant
problem common to oriental languages such as Japanese, Korean, Chi-
nese, and Taiwanese. A text file from such languages is a mixture of
single-byte characters and multi-byte characters. Naive solution would
be (1) to convert a given text into a fixed length encoded one and then
apply any string matching routine to it; or (2) to directly search the text
file byte after byte for (the encoding of) a pattern in which an extra
work is needed for synchronization to avoid false detection. Both the
solutions, however, sacrifice the searching speed. Our algorithm runs on
such a multi-byte character text file at the same speed as on an ordinary
ASCII text file, without false detection. The technique is applicable to
any prefix code such as the Huffman code and variants of Unicode. We
also generalize the technique so as to handle structured texts such as
XML documents. Using this technique, we can avoid false detection of
keyword even if it is a substring of a tag name or of an attribute descrip-
tion, without any sacrifice of searching speed.

1 Introduction

In the standard ASCII, alphabetic, numeric, and other special characters are rep-
resented in 7 bits and thus there are only 128 codewords. An extra 128 suffices
to represent other characters for most western languages. However, an oriental

A.H.F. Laender and A.L. Oliveira (Eds.): SPIRE 2002, LNCS 2476, pp. 170–186, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Processing Text Files as Is 171

language such as Japanese, Korean, Chinese, and Taiwanese, has often much
more characters and multi-byte character code is therefore used to represent
them. Since the ASCII characters are still expressed with a single byte for com-
patibility, there are single byte characters and multi-byte characters in one text
file. For example, a text in Japanese Extended-Unix-Code (EUC) is a mixture
of single byte characters and two byte characters. This destroys a comfortable
property: one-to-one correspondence between the characters in a text string and
the bytes in its representation.

Consider the classical string matching problem over such a text. One naive
solution would be to convert a text file into a sequence of two byte codewords by
padding each single byte codeword and then apply a favoured string matching
algorithm. The method, however, requires an additional time for the conversion
which is linearly proportional to the text length, and this is not desirable from
the practical viewpoint despite the theoretical complexity does not get worse. We
want to process a text file without modification. Another solution would be to
directly search the text file for the encoding of a pattern by using a Boyer-Moore
type string matching algorithm. An extra work for synchronization is needed to
avoid false-detection. Simple and quick verification is possible for some specific
codes. For example, we have only to go backward to find a byte in the range of
00h to 7fh, not used to represent multi-byte characters in the Japanese EUC.
However, we do not adopt such approach by the following reasons: (1) A set of
keywords should be simultaneously searched for. Although there are several mul-
tipattern variants of the BM algorithm (e.g. [12]), the performance gets worse if
the keyword set contains at least one short keyword. (2) Keywords in Japanese
are often of length two or three (as the number of characters is very large), and
therefore they are represented by 4 or 6 bytes. (3) The above mentioned synchro-
nization technique depends upon a code being used. In general, synchronization
requires reading all of the symbols of a text encoded with a prefix code, and
therefore it decelerates the over-all task even if we adopt a BM-type algorithm
that allows skipping most of the symbols of the encoded text.

Our idea is to merge the synchronization and the string searching tasks into
one. This enables us to perform string pattern matching over a multi-byte char-
acter text without sacrifices of searching speed. The method is to build a pattern
matching machine by embedding a DFA recognizing the set of codewords into an
ordinary Aho-Corasick machine and then make it run over a text file byte after
byte. Although this synchronization technique has not been published yet, it was
adopted as the main engine of the general purpose text database management
system SIGMA [4], which has been exploited e.g. for literary analysis of whole
volume of novel writers. Also, the technique can be generalized to handle any
prefix code including the Huffman code, variants of Unicode, and so on. This
technique can be generalized to handle any prefix code including the Huffman
code, variants of Unicode, and so on.

Thus, researchers who must process such multi-byte character text files are
forced to be aware of the difference between a text string and its representation.
“Processing text files as is” has been one of the most important research topics

172 Masayuki Takeda et al.

for such researchers. The compressed pattern matching problem, which is first
defined by Amir and Benson [2] and the aim of which is to efficiently perform
string pattern matching over a compressed text without decompressing it, can
be recognized as a topic along the “as-is” principle.

Here, we present another example along the “as-is” principle. In the query
processing for XML documents, it is usual to convert each XML document into
a tree structure and then process a user-specified query by node operations
over the trees. However, this conversion often consumes much CPU time and
a huge amount of memory. It is desirable to process XML documents with-
out conversion, namely, “as is”. The problems to be overcome are: (1) to avoid
false-detection of keyword when it is a substring of a tag name or of attribute
descriptions; and (2) to detect all occurrences of the start and the end tags even
when many attribute descriptions are included in a start tag. A naive solution
exists which requires an extra work to distinguish the inside and outside of a tag
expression, but it sacrifices the searching speed. To resolve these problems, we
generalize the synchronization technique so as to handle tag strings in struc-
tured texts such as XML documents. Using this method with a stack for storing
tag names, we develop a fast pattern matching algorithm for structured texts.
Experimental results show that it is approximately 7 ∼ 10 times faster than
sgrep [5], an alternative tool for processing structured texts as strings.

2 Preliminaries

Let Σ be a finite set of characters, called an alphabet. A finite sequence of
characters is called a string. The empty string is denoted by ε.Let Σ∗ be the set
of strings over Σ, and let Σ+ = Σ∗\{ε}. Strings x, y, and z are said to be a
prefix, factor, and suffix of the string u = xyz, respectively. A prefix, factor, and
suffix of a string u is said to be proper if it is not u. Let Prefix(u) be the set of
prefixes of a string u, and let Prefix(S) =

⋃
u∈S Prefix(u) for a set S of strings.

2.1 Prefix Code

Definition 1. A subset L of Σ+ is said to have the prefix property if no string
in L is a proper prefix of another string in L.

Let Σ be a source alphabet and ∆ be a code alphabet. The code alphabet ∆
is usually a binary alphabet {0, 1}, but can be an arbitrary finite set of symbols.
A mapping code : Σ → ∆+ is called a prefix code if and only if:

1. For any a, b ∈ Σ, code(a) = code(b) implies a = b.
2. The set code(Σ) = {code(a) | a ∈ Σ} has the prefix property.

An element of code(Σ) is called a codeword. With a prefix code code, a string
a1 . . . an over the source alphabetΣ is encoded as concatenation of the codewords
of characters a1, . . . , an, namely, code(a1 . . . an) = code(a1) . . . code(an).

Processing Text Files as Is 173

a b a b b
0 1 2 3 4 5

6 7

9

b

b

c aba

bb

abca

ababb, bb

Σ

8

a

Fig. 1. Aho-Corasick machine for Π = {aba, ababb, abca, bb}. The circles de-
note states. The solid and the broken arrows represent the goto and the failure
functions, respectively. The underlined strings adjacent to the states mean the
outputs from them

The Huffman code is a typical example of prefix code, where the code alpha-
bet is ∆ = {0, 1}. Multi-byte character encoding schemes for oriental languages
such as Japanese, Korean, Chinese, and Taiwanese are also prefix codes, where
the code alphabet is ∆ = {00, 01, . . . , ff}, i.e., a set of one byte integers (repre-
sented here in hexadecimal) rather than the binary alphabet {0, 1}.

2.2 Aho-Corasick Pattern Matching Machine

The Aho-Corasick pattern matching machine (AC machine for short) [1] is a fi-
nite state machine which simultaneously recognizes all occurrences of multiple
patterns in a single pass through a text. The AC machine for a finite setΠ ⊆ Σ+

of patterns consists of three functions: goto, failure, and output. Figure 1 displays
the AC machine for the patterns Π = {aba, ababb, abca, bb}.

There is a natural one-to-one correspondence between the states of the AC
machine and the pattern prefixes. For example, the initial state 0 corresponds
to the empty string ε and the state 4 corresponds to the string abab in Fig. 1.
Based on this correspondence, the move of the AC machine is characterized as
the following theorem.

Theorem 1 ([1]). Let a1 . . . an be the text (n > 0). After reading a text pre-
fix a1 . . . aj (1 ≤ j ≤ n), the AC machine is in state corresponding to the
string ai . . . aj (1 ≤ i ≤ j) such that ai . . . aj is the longest suffix of a1 . . . aj

that is also a prefix of some pattern in Π.

3 Pattern Matching over Variable-Length Encoded Texts

Suppose we are given a text string encoded with a variable-length prefix code,
and want to find a pattern within the text. One solution would be to apply
a favoured string searching algorithm to find the encoded pattern, with per-
forming an extra work to determine the beginning of codewords within the en-
coded text. This work can be done if we build a DFA that accepts the language

174 Masayuki Takeda et al.

code(Σ)∗ ⊆ ∆∗ and make it run on the encoded text. An occurrence of the
encoded pattern that begins at position i is a false match if the DFA is not in
accepting state just after reading the (i−1)th symbol. However, even if we adopt
a BM-type algorithm that allows skipping most symbols of the encoded text, the
DFA reads all the symbols in it and therefore this decelerates the over-all task.

Klein and Shapira [6] proposed a probabilistic method: When the encoded
pattern is found at index i, jump back by some constant number of symbols,
say K, and make the DFA run on the substring of length K starting at the
(i−K)th symbol. They showed that if K is large enough the probability of false
match is low. However, the probability is not zero unless K = i.

Our idea is to merge the DFA and the AC machine into one pattern matching
machine (PMM). This section illustrates the construction of such PMMs which
never report false matches. The technique was originally developed for process-
ing Japanese texts, and then generalized for prefix codes including variants of
Unicode, other multi-byte encodings, and the Huffman code. However, the al-
gorithm and its correctness proof have not been published yet. For this reason,
the authors present the algorithm and give a correctness proof, together with
presenting its applications.

3.1 PMM Construction Algorithm

Let us illustrate the algorithm with an example of the Huffman code. Suppose
that the source alphabetΣ = {A,B,C,D,E}, the code alphabet∆ = {0, 1}, and
the encoding is given by the Huffman tree shown in Fig. 2. Let EC and CD be the
patterns to be searched for. Their encodings are, respectively, code(EC) = 1001
and code(CD) = 00101. The AC machine for these bit strings is shown in Fig. 2.
This machine, however, leads to false detection.

The way for avoiding false detection is quite simple. We build a DFA that
accepts the set of codewords and then embed it into the AC machine. Such a DFA
is called the codeword DFA. The smallest codeword DFA for the Huffman tree
of Fig. 2 is shown in Fig. 3.

Proposition 1. Let L ⊆ ∆+ be a regular language over ∆. If L has the prefix
property, the smallest DFA accepting L has only one final state.

From the proposition, if code is a prefix code, then the smallest codeword DFA
has only one final state. The construction of the smallest codeword DFA is
(1) building a codeword DFA as a trie representing the set code(Σ) and (2)
then minimizing it. The minimization can be performed in only linear time with
respect to the size of the codeword trie, by using the minimization technique [10].

We construct a PMM by embedding the codeword DFA into the ordinary AC
machine. The algorithm is summarized as follows. (We omit the construction of
the output function.)

Construction of the goto function.

Processing Text Files as Is 175

1 0 0 1
0 1 2 3 4

76

0

0

EC

CD
5 8 91 0 10,1

C C D B

text

state

0 0 1 0 0 1 0 1 0 0 0 1

0 5 6 7 8 3 4 8 9 2 3 6 7

2 6

CD

7 1

EC

5

output

Fig. 2. On the upper-left a Huffman tree is displayed. On the upper-right the
ordinary AC machine built from 1001 and 00101 that are the encodings of pat-
terns EC and CD, respectively, is displayed. The move of this machine on the
encoding 001001010001 of text CCDB is illustrated on the lower, in which a false
detection of pattern EC occurs

1. Build the smallest codeword DFA for code, which has a unique final state
without outgoing edges. (See the DFA on the upper-left in Fig. 3.)

2. For the given pattern set Π = {w1, . . . , wk} ⊆ Σ+, build a trie for the set
code(Π) = {code(w1), . . . , code(wk)} ⊆ ∆+. We call the trie pattern trie.

3. Replace the unique final state of the codeword DFA by the root node of the
pattern trie. (See the state 0 of the PMM on the upper-right in Fig. 3.)

Construction of the failure function.

1. (Basis) Create a failure link from the root of the pattern trie to the initial
state of the codeword DFA. (See the broken arrow from state 0 to state 10
in the PMM on the right in Fig. 3.)

2. (Induction Step) Consider a node s of depth d > 0 in the pattern trie.
Assume the failure links are already computed for all nodes of depth less
than d. Let r be the father of the node s and a be the label of the edge
from r to s. Start from r and repeat failure transitions until a node r′ is
found that has an outgoing edge labeled a to some node s′. Create a new
failure link from s to s′.

It should be noted that the induction step of the failure function construction
is exactly the same as that of the original AC algorithm. The only difference is
in the codeword DFA attached to the root node.

176 Masayuki Takeda et al.

1 0 0 1
0 1 2 3 4

76

0

0

EC

CD
5 8 91 0 1

0

0

0
0,1

1

1

1

0

10

11

12

13

C C D B

text

state

0 0 1 0 0 1 0 1 0 0 0 1

0 5 6 7 8 6 7 8 9 5 6 0

5 12

13

CD

0

output

Fig. 3. On the upper-left the smallest DFA that accepts the set of codewords is
shown. On the upper-right the PMM obtained by embedding this DFA into the
AC machine of Fig. 2. The move of this PMM on the encoding 001001010001 of
text CCDB is displayed on the lower. No false detection occurs when using this
PMM

3.2 Correctness of the Algorithm

Now, we give a characterization of the PMM constructed by the above mentioned
algorithm. Let Π ⊆ Σ+ be the given pattern set. Since there is a natural one-to-
one correspondence between the nodes of the pattern trie for Π and the strings
in Prefix(code(Π)), a node of the pattern trie can be referred to as a string in
Prefix(code(Π)). A string u in Prefix(code(Π)) can be specified by a pair of
a string x ∈ Prefix(Π) overΣ and a string v ∈ ∆∗ such that u = code(x)·v. Such
a reference pair 〈x, v〉 is said to be canonical if x is the longest one. Hereafter,
we identify a canonical reference pair 〈x, v〉 with the corresponding node of the
pattern trie, if no confusion occurs. For the pattern set Π ⊆ Σ+, let denote
by SΠ the set of canonical reference pairs to the nodes of the pattern trie for Π .
Note that, for every 〈x, v〉 in SΠ , there exists a character a in Σ such that v is
a proper prefix of the codeword code(a) for a.

Definition 2. For any pair 〈x, v〉 ∈ SΠ, let y be the longest proper suffix of x
such that 〈y, v〉 ∈ SΠ , and denote by Φ(x, v) the pair 〈y, v〉. If there is no such
pair, let Φ(x, v) = nil.

The failure function computed by the above algorithm has the following property.

Lemma 1. Let s be any node of the pattern trie for Π, and 〈x, v〉 be its canonical
reference pair.

Processing Text Files as Is 177

1. If Φ(x, v) = 〈y, v〉 is defined, the failure link from s goes to the node 〈y, v〉.
2. If Φ(x, v) = nil, the failure link from s goes to the state of the codeword DFA

to which the string v leads starting from the initial state.

Proof. By induction on the depth of the nodes in the pattern trie. When s is of
depth 0, that is, 〈x, v〉 = 〈ε, ε〉, then Φ(x, v) = nil and the lemma trivially holds.
We now consider the nodes of depth > 0.

1. When v ∈ ∆+: The string v can be written as v = wb with w ∈ ∆∗ and
b ∈ ∆. Then, there is a sequence x0, x1, . . . , xm ∈ Σ∗ with m ≥ 0 such that

x0 = x; 〈xi, w〉 ∈ SΠ (0 ≤ i ≤ m);
Φ(xi−1, w) = 〈xi, w〉 (1 ≤ i ≤ m); Φ(xm, w) = nil.

(a) If there is an integer ! (0 < ! ≤ m) such that 〈x
, wb〉 ∈ SΠ , take !
as small as possible. By the definition of Φ, Φ(x,wb) = 〈x
, wb〉. By the
induction hypothesis, for each i = 1, . . . , !, the failure link from the node
〈xi−1, w〉 goes to 〈xi, w〉. By the construction of the failure function, the
failure link from s goes to the node Φ(x,wb) = 〈x
, wb〉.

(b) If there is no such integer !, Φ(x,wb) = nil. On the other hand, since
Φ(xm, w) = nil, by the induction hypothesis, the failure link from the
node 〈xm, w〉 goes to the state of the codeword DFA to which the string w
leads from the initial state. By the construction of the failure function,
the failure link from s goes to the state of the codeword DFA to which
the string v = wb ∈ ∆+ leads from the initial state.

2. When v = ε: If x = ε, s is the root of the pattern trie. This contradicts the
assumption that s is of depth > 0. Hence we have x ∈ Σ+. We can write x
as x′a with x′ ∈ Σ∗ and a ∈ Σ. Since there uniquely exist w ∈ ∆∗ and b ∈ ∆
with wb = code(a), we can prove this case in a way similar to 1. ��

Theorem 2. Let a1 . . . an be the text (n > 0). After reading the encoding of
a text prefix a1 . . . aj (1 ≤ j ≤ n), PMM is in state corresponding to the en-
coding of ai . . . aj (1 ≤ i ≤ j) such that ai . . . aj is the longest suffix of a1 . . . aj

that is also a prefix of some pattern in Π.

The boldfaced portions are the difference in comparison with Theorem 1.

3.3 Applications

Searching in Multi-byte Character Texts. The ASCII (American Standard
Code for Information Interchange) code, which is the basic character code in
the world, represents characters with a 7-bit code. Variants of ISO646 such
as BS4730 (England version), DIN66 003 (Germany version), and NF Z62-010
(France version) are also 7-bit codes. A string encoded with such a code is
a sequence of bytes, and therefore people who use such codes are hardly conscious
of the codeword boundaries. The boundaries, however, must be distinguished in
multi-byte encoding scheme for oriental languages, such as Japanese, Korean,
Chinese, and Taiwanese. The requirements of such a scheme are as follows.

1. Per byte encoding.
2. Single byte characters in range of 00h–7fh, which is compatible with ASCII.

178 Masayuki Takeda et al.

Fig. 4. The codeword DFAs for the Japanese EUC and for UTF-8 (Unicode) are
shown on the left and on the right, respectively

3. Multi-byte characters do not begin with 00h-7fh.

The codes are therefore prefix codes.
For example, in the Japanese Extended-Unix-Code (EUC), both the bytes of

each two-byte codeword fall into the range of a1h to feh. The smallest codeword
DFA for the Japanese EUC is shown on the left of Fig. 4, where the code alphabet
is ∆ = {00, . . . , ff}. By using the codeword DFA, we can process Japanese EUC
texts in a byte-by-byte manner. The DFA can also be used for CN-GB (Chinese),
EUC-KR (Korean), and BIG5 (Taiwanese).

Both Unicode and ISO10646 are devised to put all the characters in the
world into one coded character set. The former is a 16-bit code, and the latter is
a 32-bit code. UCS-2 and UCS-4, which are respectively the encoding schemes of
Unicode and ISO10646, are fixed-length encodings. Hence we can process texts
encoded by such schemes byte after byte by using the codeword DFAs for them
(although omitted here). UTF-8, an alternative encoding of Unicode is rather
complex. The smallest codeword DFA for UTF-8 is shown on the right in Fig. 4.

Searching in Huffman Encoded Texts. The PMM for a Huffman code makes
one state-transition per one bit of an encoded text, and such bit-wise processing
is relatively slow. This problem can be overcome by converting PMM into a new
one so that it runs in byte-by-byte manner, as shown in [9]. The new PMM runs
on a Huffman encoded file faster than the AC machine on the original file. The
searching time is reduced at nearly the same rate as the compression ratio.

Dividing a Codeword ([3]). Assume that the number of the states of PMM
is !. The size of a two-dimensional table storing the state transition function is
then |∆|·!. If a target text is encoded with a byte code, i.e.,∆ = {00, 01, . . . , ff},
the table size becomes 256 · !. This space requirement could be unrealistic when
a great deal of patterns are given. We can reduce the table size with the help
of the syncronization technique. Consider dividing each byte of input text into
two half bytes and replacing one state transition by two consecutive transitions.
Namely, we use the code alphabet ∆ = {0, 1, . . . , f} instead of {00, 01, . . . , ff},
and regard a text and a pattern as sequences of half bytes. The table size is
reduced to 1/8, that is, it becomes |∆| · (2!) = 32! even in the worst case. False
detection never occurs thanks to the syncronization technique.

Processing Text Files as Is 179

3.4 Comparing with BM Algorithm Followed by Quick Verification

In Japanese EUC, bytes in the range of 00h to 7fh do not appear in the code-
words representing two-byte characters. This provides us with a simple verifi-
cation technique fast on the average: If an occurrence of the encoded pattern
that begins at position i is found, start at the (i − 1)th byte and go backward
until a byte in the range of 00h to 7fh is found. The occurrence is false match
if and only if the number of bytes not in the range is odd. For codes for which
such a quick verification is possible, the “search-then-verify” method might be
faster than the PMM-based method. Here, we compare the performance of the
“search-then-verify” method with that of the PMM-based method.

We implemented a multipattern variant [12] of the BM algorithm so that the
quick verification routine is invoked whenever the encoded pattern is found. On
the other hand, the PMMwas built from the encoded patterns and converted into
a deterministic finite automaton by eliminating failure transitions as described
in [1], and the state-transition function was implemented as a two-dimensional
array, with the technique so-called table-look-at [7].

Our experiment was carried out on an AlphaStation XP1000 with an Al-
pha21264 processor at 667 MHz running Tru64 UNIX operating system V4.0F.
The text file we used is composed of novels written by Soseki Natsume,
a Japanese famous novelist, and of size 53.7Mb. The number k of patterns being
searched for varied from 1 to 57. Each pattern set consists of uniform length pat-
terns. The pattern length m varied from 2 to 10 bytes. The patterns were text
substrings randomly chosen from the text file. For each combination of k and m,
we generated 50 pattern sets and made the two algorithms run on the text file
for each pattern set. The searching time reported in Fig. 3.4 is the average over
the 50 runs. The solid lines show the total time, whereas the broken lines exclude
the verification time. The verification time varies depending upon the number
of occurrences of the encoded patterns and upon the expected number of bytes
inspected in a single call of verification routine. The latter depends only on the
nature of a text file. For the text file we used, this value was approximately 369
bytes. It should be stated that almost all occurrences of the single-byte char-
acters in the file are those of the “newline” code. For this reason, almost every
verification task for this file ended with encountering it.

Let us focus on the case of m = 4, which occurs frequently in Japanese lan-
guage. The PMM-based method outperforms the “search-then-verify” method
for k > 2. Even if we exclude the verification time, it is faster for k > 10. We
observe that the “search-then-verify” method shows a good performance only
when (1) all the patterns are relatively long and (2) the number of patterns is
relatively small.

4 Generalization of Prefix Codes

The synchronization technique presented in the previous section is applicable to
any prefix code. In this section, we generalize the scheme of prefix codes so as to

180 Masayuki Takeda et al.

allow the characters have one or more (possibly infinite) codewords. This may
sound strange from the viewpoint of data compression, but has rich applications.

4.1 Generalized Prefix Codes

Recall that a prefix code to express the characters in a source alphabet Σ can
be represented by a code tree in which every leaf is associated with a character a
in the source alphabet Σ and the path from the root to the leaf spells out the
codeword over ∆ for a. See again the Huffman tree of Fig. 2. As a generalization
of code tree, we consider a DFA called code automaton where:

1. there are exactly |Σ| final states each corresponding to a character in Σ, and
2. every final state has no outgoing edge.

An example of the code automaton is shown on the left of Fig. 6, where the
source alphabet is Σ = {A,B,C,D,E} and the code alphabet is ∆ = {0, 1}.

Let denote by fa the final state associated with a character a in Σ. For any
a ∈ Σ, there can be more than one string in ∆+ that leads to the state fa
starting at the initial state. Let such strings be the codewords to express the
character a. Let code be the encoding determined by a code automaton. Then,
code maps a character in Σ to a regular set over ∆. In the case of Fig. 6, it is
easy to see that code(A) = 01∗000, code(B) = 01∗001, code(C) = 01∗01+100,
code(D) = 101, and code(E) = 11. One of the encodings of text ACED is
0100001110111101. Since a prefix code is a special case where |code(a)| = 1 for
all a ∈ Σ, this encoding scheme is a generalization of prefix codes. We call such
a code generalized prefix code. The subgraph induced by the paths from the initial
state to the final state fa for a ∈ Σ is called the partial code automaton for a, and
denoted by PCA(a). Similarly, we define PCA(S) for a subset S of Σ. Note that
PCA(S) is a DFA that accepts the language code(S) =

⋃
a∈S code(a) ⊆ ∆+.

Our algorithm for constructing PMMs can be extended to generalized prefix
codes. The main difference is in the goto function construction.

0 20 40
0

1

number of patterns

te
xt

 s
ea

rc
hi

ng
 ti

m
e

m=2(total) m=4(total)
m=2

m=6(total)

m=4

m=8(total)
m=6

m=10

m=8
m=10(total)

(sec)

PMM(m=10)

Fig. 5. Comparing the two methods.
For the “search-then-verify” method,
the solid lines show the total searching
time, whereas the broken lines exclude
the verification time. For the PMM-
based method, we show the searching
time only for m = 10

Processing Text Files as Is 181

Fig. 6. An example of the code automaton is displayed on the left, and the
pattern graph for patterns EC and CD is shown on the right, where the source
alphabet is Σ = {A,B,C,D,E} and the code alphabet is ∆ = {0, 1}

1. Create a pattern trie from a given pattern set Π .
2. Replace each edge of the pattern trie labeled a with the graph PCA(a).

More precisely, if the node represented by a string v ∈ Prefix(Π) has k
outgoing edges labeled a1, . . . , ak ∈ Σ, respectively, replace these edges with
PCA({a1, . . . , ak}). We call the obtained graph the pattern graph. The node
corresponding to the root node of the pattern trie is referred to as the source
node. (An example of the pattern graph is shown on the right in Fig. 6.)

3. Build the smallest codeword DFA that accepts the language code(Σ) ⊆ ∆+.
It can be obtained from the code automaton.

4. Replace the unique final state of the codeword DFA with the root node of
the pattern graph.

The construction of the failure function is essentially the same as that for
prefix codes.

4.2 Applications

One application is to make no distinction between some characters. People who
use a western language might be often faced with the need for ignoring the
distinction between upper-case and lower-case of alphabetic characters. More
complex situation happens in the case of multi-byte encoding scheme for oriental
languages. A two-byte character is usually twice of the width compared to single-
byte characters. Wider characters are called “zen-kaku” - meaning full width,
narrower characters are called “han-kaku” - meaning half width. The “zen-kaku”
characters are usually fixed width. For the sake of proportion to multi-byte
characters displayed in the “zen-kaku” form, there are “zenkaku” version of the
ASCII characters such as alphabetic, numeric, and other special characters. Thus
each of the characters has two representations of different length. Our technique
described above is applicable in order to identify the two representations.

In the next section, we mention applications of our techniques to query pro-
cessing for XML documents.

182 Masayuki Takeda et al.

<db>

<virus>

<name> W32.Badtrans.B </name>

<type> worm </type>

<distribution> high </distribution>

</virus>

<virus>

<name> W32.Zoek </name>

<type> Trojan horse </type>

<distribution> low </distribution>

</virus>

</db>

db

W32.Badtrans.B W32.Zoekworm high Trojan horse low

name type distribution name type distribution

virus virus

Fig. 7. On the left an example of XML documents is displayed and on the right
the tree structure it represents is shown

5 Applications to Query Processing for XML Documents

XML (Extensible Markup Language) is emerging as a standard format for data
and documents on the Internet. An example of XML documents and the corre-
sponding tree structure are displayed in Fig. 7.

Several query languages for XML have been proposed, e.g., XQL, Xquery,
XPath. Most of them are based on the so-called path expressions. An example of
the path expressions is “db/virus/type”, where “db”, “virus”, and “type” are
tag names which are node labels in the tree structure, and “/” means a direct
descendant. We can also use “//” to indicate a descendant (not necessarily direct
descendant). In processing path expression based queries, XML documents are
usually converted into tree structures, and query processing is performed as node
operations over the trees. Another approach stores all possible paths from the
root in a tree structure into a relational database [13]. We shall adopt a different
approach along our “as-is” principle.

5.1 XML Documents and What They Represent

A tag string in XML documents such as “<virus>” represents an “abstract”
symbol. We shall put an explicit distinction between such abstract symbols and
their representation. From this viewpoint, an XML document represents a string
of abstract symbols, and this abstract string is generated by some unambiguous
context-free grammar. The tree structure represented by an XML document is
essentially the same as the parse tree of the abstract string.

Let Σ0 be an alphabet. Let Γ = { [1 ,]1 , . . . , [
 ,]
 }, where [i (resp.]i)
is the ith left (resp. right) bracket for i = 1, . . . , !. Assume Σ0 ∩ Γ = ∅, and
let Σ = Σ0 ∪ Γ be the source alphabet. The elements of Σ are “abstract”
symbols. Consider the context-free grammar G = (Σ,N, P,A1), where N is
the set of nonterminals A1, . . . , A
; A1 is the start symbol; and P is the set of

Processing Text Files as Is 183

productions A1 → [1α1]1 , · · · , A
 → [
α
]
 , where αi is a regular expression
over Σ0 ∪N .

An XML document is an encoding of some element of the language L(G) ⊆
Σ∗ generated by G. The encodings of the left brackets [i are called the start
tags, and those of the right brackets]i the end tags. The start tags are enclosed
by the angle brackets “<”, “>”, and the end tags are enclosed by “</” and “>”.
The symbols in Σ0 are encoded with the standard ASCII (or its extension).

For example, consider the grammar with productions S → [S A
∗]S , A →

[ABCD]A , B → [BΣ
∗
0]B , C → [CΣ

∗
0]C , D → [DΣ

∗
0]D , where S,A,B,C,D are

nonterminals and [S ,]S , [A ,]A , [B ,]B , [C ,]C , [D ,]D are four pairs of brackets.
Suppose these bracket symbols are encoded as “<db>”, “</db>”, “<virus>”,
“</virus>”, “<name>”, “</name>”, “<type>”, “</type>”, “<distribution>”,
“</distribution>”, respectively. The XML document of Fig. 7 can then be
seen as an encoding of some string generated by this grammar.

5.2 Processing XML Documents as Is

We process path expression based queries by using a PMM with stack. Namely,
a PMM searches an XML document for tag strings as well as the keywords
appearing in the queries. If a start tag is found, then push the corresponding
nonterminal into the stack. If an end tag is found, then pop an element from the
stack. The stack content is therefore the sequence of nonterminals on the path
from the root node to the node corresponding to the current position within the
XML document being processed. Path expressions can be regarded as limited
regular expressions over the nonterminals, for which DFAs can be built only
in linear time. We perform pattern matching of path expressions against the
stack content using DFAs. In this way, we can process XML documents with
recognizing its structure, without explicitly constructing tree structures.

We are faced with two difficulties in this approach. One is a problem of false-
detections which occur when a keyword in the queries appears inside a tag. Of
course, this problem is easily resolved if we keep a boolean value which indicates
whether the current point is inside the tag enclosed with the angle brackets
“<”, “>”. However, such an extra work requires an additional time. By using
the synchronization technique mentioned in the previous section, we resolve the
problem without sacrifices of running speed. Since we regard each tag string as
an encoding of one symbol from the source alphabet Σ = Σ0 ∪ Γ , the above-
mentioned false-detection never occurs.

The other difficulty is as follows. A start tag can contain descriptions of
attribute values, e.g., as in “<section�number="1.2">”, where “�” is a blank
symbol. Even when we can omit the attribute values because of the irrelevance
to the query, we have to identify the start tags with various attribute values
whenever they have a unique tag name in common. One naive solution would
be to eliminate all the attribute descriptions inside the tags. This, however,
contradicts the “as-is” principle and sacrifices the processing speed. Let us recall
that the generalized prefix coding scheme allows us to assign more than one
codeword to each left-bracket symbol. With this scheme, for example, every

184 Masayuki Takeda et al.

string of the form “<section�” · w · “>” can be regarded as one of the possible
encodings of the left bracket represented simply as “<section>”, where w is
a string over ∆ − {<, >}. The difficulty is thus resolved by using the PMMs for
generalized prefix codes presented in the previous section.

Moreover, we have only to distinguish the start tags appearing in the path
expressions in the queries. The start tags not appearing in the path expressions
should not necessarily distinguished. We can take them as encodings of one left
bracket symbol. Similarly, the end tags irrelevant to the queries can be treated
as different encodings of one right bracket symbol.

5.3 Experimental Results

First, we estimated the performance of PMM with synchronization technique in
searching XML documents for keywords, in comparison with that of the ordi-
nary AC machine with extra work for recognizing the inside/outside of a tag.
We generated XML documents of various size by using the tool “XMLgen”
(XML-benchmark project)1. The keywords were chosen from the XML docu-
ments. We performed this experiment on the AlphaStation XP1000 mentioned
in Section 3.4. Although we omit here the detailed results for lack of space, they
demonstrate that the PMM with synchronization runs approximately 1.2 ∼ 1.5
times faster than the ordinary AC machine with extra work.

Next, we implemented a prototype system for processing relatively simple
path expression based queries for XML documents, based on the PMM with
stack. We then compared its performance with that of sgrep [5]. This experiment
was carried out on a Personal Computer with Celelon processor at 366 MHz
running Kondara/MNU Linux 2.1 RC2. We used one of the XML documents
generated with “XMLgen”. It is of size 110 Mb and contains 77 different tag
names. The corresponding tree is of height 21. The running times for each of
the queries are shown in Table 1. We observe that our prototype system is
approximately 7 ∼ 10 times faster than sgrep concerning these queries. Moreover
a simultaneous processing of the three queries by our prototype system is only
about 15% slower than single query case.

6 Conclusion

Along the “as-is” principle, we have presented a synchronization technique for
processing multi-byte character text files efficiently, on the basis of Aho-Corasick
pattern matching machine. The technique is applicable to any prefix code. We
also generalize the scheme of prefix codes and then extend our algorithm to cope
with text files encoded with the generalized scheme. One important application
is query processing for XML documents. Experimental results demonstrate that
our method is approximately 7 ∼ 10 times faster than sgrep in processing XML
documents for some path expression based queries.
1 http://monetdb.cwi.nl/xml/Benchmark/benchmark.html

Processing Text Files as Is 185

Table 1. Running time for query processing (sec). We compared the two meth-
ods for the three queries shown in this table. The first query, for example, means
“Find the tree nodes labeled text from which a text node containing an occur-
rence of the keyword summers is directly descended.” We remark that the query
language of sgrep is based on the region algebra, and therefore we translated the
three queries appropriately

query PMM with stack sgrep

//text/"summers" 4.794 31.826
//text//"summers" 5.056 32.036
/site/regions/africa/item/location/"United(States" 4.880 52.102
simultaneous processing of the three queries 5.614 —

The “as-is” principle also leads us to the question: Which form should be
better in storing text? Shibata et al. [11] gave an answer to this question: they
showed that a BM-type string pattern matching algorithm running over text
files compressed by Byte-Pair Enconding (BPE) — which is a restricted version
of Re-Pair [8] — is approximately 1.2 ∼ 3.0 times faster than that in the ASCII
format. Namely, the BPE compressed format is one good format from the view-
point of string pattern matching. Problems of representation of text strings from
a viewpoint of processing speed thus attract special concerns.

References

[1] A.V. Aho and M. Corasick. Efficient string matching: An aid to bibliographic
search. Comm. ACM, 18(6):333–340, 1975. 173, 179

[2] A. Amir and G. Benson. Efficient two-dimensional compressed matching. In Proc.
Data Compression Conference, page 279, 1992. 172

[3] S. Arikawa and T. Shinohara. A run-time efficient realization of Aho-Corasick
pattern matching machines. New Generation Computing, 2(2):171–186, 1984.
178

[4] S. Arikawa et al. The text database management syste SIGMA: An improvement
of the main engine. In Proc. of Berliner Informatik-Tage, pages 72–81, 1989. 171

[5] J. Jaakkola and P. Kilpeläinen. A tool to search structured text. University of
Helsinki. (In preparation). 172, 184

[6] S.T. Klein and D. Shapira. Pattern matching in Huffman encoded texts. In
Proc. Data Compression Conference 2001, pages 449–458. IEEE Computer Soci-
ety, 2001. 174

[7] D.E. Knuth. The Art of Computer Programing, Sorting and Searching, volume 3.
Addison-Wesley, 1973. 179

[8] N. J. Larsson and A. Moffat. Offline dictionary-based compression. In Proc. Data
Compression Conference ’99, pages 296–305. IEEE Computer Society, 1999. 185

[9] M. Miyazaki, S. Fukamachi, M. Takeda, and T. Shinohara. Speeding up the
pattern matching machine for compressed texts. Transactions of Information
Processing Society of Japan, 39(9):2638–2648, 1998. (in Japanese). 178

186 Masayuki Takeda et al.

[10] D. Revuz. Minimisation of acyclic deterministic automata in linear time. Theo-
retical Computer Science, 92(1):181–189, 1992. 174

[11] Y. Shibata, T. Matsumoto, M. Takeda, A. Shinohara, and S. Arikawa. A Boyer-
Moore type algorithm for compressed pattern matching. In Proc. 11th Ann. Symp.
on Combinatorial Pattern Matching, volume 1848 of Lecture Notes in Computer
Science, pages 181–194. Springer-Verlag, 2000. 185

[12] N. Uratani and M. Takeda. A fast string-searching algorithm for multiple patterns.
Information Processing & Management, 29(6):775–791, 1993. 171, 179

[13] M. Yoshikawa and T. Amagasa. XRel: a path-based approach to storage and
retrieval of XML documents using relational databases. ACM Transactions on
Internet Technology, 1(1):110–141, August 2001. 182

	Processing Text Files as Is: Pattern Matching over Compressed Texts, Multi-byte Character Texts, and Semi-structured Texts
	Introduction
	Preliminaries
	Prefix Code
	Aho-Corasick Pattern Matching Machine

	Pattern Matching over Variable-Length Encoded Texts
	PMM Construction Algorithm
	Correctness of the Algorithm
	Applications
	Comparing with BM Algorithm Followed by Quick Verification

	Generalization of Prefix Codes
	Generalized Prefix Codes
	Applications

	Applications to Query Processing for XML Documents
	XML Documents and What They Represent
	Processing XML Documents as Is
	Experimental Results

	Conclusion

