
Musical Sequence Comparison
for Melodic and Rhythmic Similarities

Takashi Kadota� Masahiro Hirao� Akira Ishino� Masayuki Takeda���

Ayumi Shinohara� Fumihiro Matsuo�

� Department of Informatics, Kyushu University 33, Fukuoka 812-8581, Japan

� PRESTO, Japan Science and Technology Corporation (JST)

E-mail: � kadota, hirao, ishino, takeda, ayumi, matsuo � @i.kyushu-u.ac.jp

Abstract

We address the problem of musical sequence comparison
for melodic similarity. Starting with a very simple similarity
measure, we improve it step-by-step to finally obtain an ac-
ceptable measure. While the measure is still simple and has
only two tuning parameters, it is better than that proposed
by Mongeau and Sankoff (1990) in the sense that it can dis-
tinguish variations on a particular theme from a mixed col-
lection of variations on multiple themes by Mozart, more
successfully than the Mongeau-Sankoff measure. We also
present a measure for quantifying rhythmic similarity and
evaluate its performance on popular Japanese songs.

1 Introduction

Sequence comparison is an important technique in a
large variety of applications, e.g., text editing, document re-
trieval, biocomputing, linguistic analysis, and literary anal-
ysis. It will also play a central role in music retrieval or
musicological analysis because music can be regarded as a
sequence of symbols. A number of studies have been un-
dertaken in such analysis, mainly at the end of the twentieth
century (e.g., [19, 6, 5, 7, 8, 9, 15, 16]), and several mu-
sic information retrieval systems have been proposed (e.g.,
[18, 14]). In some cases, music is represented as a note
sequence, where each note is an ordered pair of pitch and
duration, and in some cases the pitches are replaced with
so-called intervals, the pitch differences between two con-
secutive notes. Even when dealing with acoustic input, it
is often converted into a sequence called a contour, i.e., a
string consisting of three symbols indicating possible direc-
tions of the intervals: upwards, downwards, and a repeat.
The reader is referred to [11] for a summary of current prac-
tice.

The key question when comparing musical sequences is

how to choose, or design, an appropriate measure to quan-
tify their affinities. Mongeau and Sankoff [19] adapted the
weighted edit distance measure (see, e.g., [10]), and showed
how their measure could be tuned and the framework ex-
tended in order to handle musical entities in a meaningful
way. They introduced new edit operations, called consol-
idation and fragmentation, which associate one note with
multiple consecutive notes or vice versa. They reported
in [19] that the measure is able to arrange Mozart’s nine
variations on the theme “Twinkle, Twinkle Little Star” in a
reasonable order, which almost coincides with the subjec-
tive impression. Their method, however, suffers from the
need to tune the weight matrix for the substitution opera-
tion. This is done on the basis of a knowledge of harmonics,
and the determination of detailed values requires consider-
able effort.

Although the scheme of weighted edit distance has tra-
ditionally been used to quantify affinities between strings,
there may be alternative frameworks for designing string
similarity measures. As a trial in this direction, Takeda et
al. [21] introduced a formal framework named string resem-
blance systems (SRSs). In their framework, the similarity of
two strings can be viewed as the maximum score of a pat-
tern that matches them both. The differences among the
measures are therefore the choices of the (1) pattern set to
which common patterns belong, and (2) pattern score func-
tion, which assigns a score to each pattern.

For example, if we choose the set of patterns with vari-
able length don’t cares and define the score of a pattern to
be the number of symbols in it, then the obtained measure
is the length of the longest common subsequence (LCS) of
two strings. In fact, the strings acdeba and abdac have
a common pattern a�d�a� which contains three symbols.
With this framework, the design and modification of mea-
sures is easy. Takeda et al. [21] designed some measures to
quantify affinities among classical Japanese poems (Waka)
within this framework, and reported their success in discov-

ering previously unnoticed instances of Honkadori (poetic
allusion), one important rhetorical device in Waka poems
based on specific allusion to earlier famous poems.

In this paper, we use the framework of SRSs and en-
deavor to design good similarity measures for musical se-
quence comparison. Musical similarities we wish to mea-
sure are not gross similarities in overall key signature,
tempo, or mode between two scores. We are interested in
local similarities in melody and rhythm. For developing ef-
fective measures to quantify the two kinds of similarities,
we employed a stepwise-improvement approach. That is,
we started with a very simple measure, and then improved it
step-by-step by analyzing its weaknesses. The measure we
finally obtained is still simple, but better than that of Mon-
geau and Sankoff in the sense that only two parameters need
to be determined and that it can distinguish variations on a
particular theme from a mixed collection of variations on
multiple themes by Mozart, whereas the Mongeau-Sankoff
measure has difficulty with this task.

It should be emphasized that the aim of the present paper
is not to establish a reliable measure for musical compari-
son. It is simplistic to consider that there is a unique best
measure. There can be various types of affinities of mu-
sical entities, and therefore “goodness” of measure varies
depending on the users and their particular interests. Thus,
we believe, it is more significant to give a good framework
under which we can easily design, or modify, a similarity
measure so that it is sensitive to the resemblances we wish
to quantify.

2 Dissimilarity measure by Mongeau and
Sankoff

This section gives an overview of the dissimilarity mea-
sure by Mongeau and Sankoff, and then describes this mea-
sure’s problems.

2.1 Mongeau and Sankoff’s measure

Mongeau and Sankoff [19] defined a dissimilarity mea-
sure for musical sequence comparison. They considered a
monophonic score as a sequence of ordered pairs of pitch
and duration. A rest is a special note whose pitch is a
dummy symbol. To make their measure transposition in-
variant, the pitch of each note is encoded as the relative po-
sition from the tonic in semitone-units. We remark that the
musical key must be known for such encoding, and deter-
mination of the key is often difficult without human inter-
vention. Note durations are coded in 16th note units.

Their dissimilarity measure is a type of weighted edit
distance. The basic edit operations are the substitution, in-
sertion and deletion of one note. The weight on a substi-
tution of two notes � and � is a linear combination of two

quantities:

���� �� � ������������ �� � ������	�
��� ���

where �� is the relative contribution of length difference
versus that of pitch difference (i.e., interval), and is deter-
mined empirically. While the length weight � ���	�
��� ��
is simply the difference of the lengths of the two notes �
and �, the interval weight ������������ �� is linked to the
consonance of the interval. The insertion and deletion op-
erations are considered as a substitution of two notes, one
of which has a duration of zero. In addition to the three
edit operations, special edit operations called consolidation
and fragmentation are introduced. These associate one note
with multiple notes, and vice versa. The interval weight on
a fragmentation is the sum of the interval weights between
each of the replacing notes and that of the replaced notes,
whereas the length weight is the difference between the total
length of the replacing notes and the length of the replaced
notes. The interval and the length difference weights are
defined in a similar way for a consolidation.

The main disadvantage is that a large number of parame-
ters must be tuned to musical sequences that are to be com-
pared.

2.2 Evaluation of Mongeau and Sankoff ’s mea-
sure

Mongeau and Sankoff showed a dynamic programming-
based algorithm for computing the dissimilarity value ac-
cording to the measure, and then applied it to the set of
all possible pairs of Mozart’s nine variations on the theme:
Ah! vous dirai-je maman (K.265, “Twinkle, Twinkle Little
Star”). They reported that the result confirmed subjective
impressions of the patterns of similarities among the vari-
ations, but only the result on K.265 was presented in [19].
For this reason, we first carried out additional experiments
against: K.25, K.354, K.398, K.460, and K.501 by Mozart,
six Variations on Paisiello’s duet “Nel cor piu”, 16 Vari-
ations on opus 32 “Eroica”, and seven Variations on “God
Save the King” by Beethoven, and “Menuet con Variazione”
by Anna Bon di Venezia. We confirmed that the result al-
most coincides with subjective impressions.

Next, we merged the themes and variations of K.265,
K.25, and K.354, and applied the algorithm to them. The
result is shown in Table 1. In the table, “K.265-th” and
“K.265-5” mean the theme and the fifth variation of K.265,
respectively. We remark that the arrangement of the data of
K.265 differs from that of the data used by Mongeau and
Sankoff, and the obtained dissimilarity values do not match
theirs for this reason. It is observed that seven of the most
similar 10 items in the list for the theme of K.265 are occu-
pied by variations of K.25 and K.354. The situation on the
list for the theme of K.25 is similar. This means that some

Table 1. Partial results of dissimilarity mea-
sure by Mongeau and Sankoff.

K.265-th K.25-th
rank title dissimilarity title dissimilarity

1 K.265-5 33.0 K.25-7 12.4
2 K.25-th 36.7 K.25-1 17.6
3 K.25-7 38.3 K.25-5 27.3
4 K.25-5 46.4 K.354-4 36.7
5 K.265-11 46.8 K.265-12 43.3
6 K.25-1 49.1 K.265-5 50.0
7 K.354-th 51.8 K.265-th 50.7
8 K.265-9 53.3 K.25-3 53.8
9 K.354-2 55.5 K.354-7 56.2

10 K.354-6 57.0 K.265-11 56.6

variations on a theme are very similar to another theme, as
compared with its own variations. This does not coincide
with subjective impressions. When this similarity measure
is used, this point will be crucial in any melodic similarity
search. Why does the measure make such an assignment of
dissimilarity values? One of the main reasons would be that
the insertion or deletion of a note can cause a poor corre-
spondence between the notes of two melodies.

3 A unifying framework for string similarity

This section briefly sketches the framework of string re-
semblance systems according to [21]. In practical appli-
cations such as biological sequence comparisons, it is of-
ten preferred to measure similarity rather than distance be-
tween two given strings. We in this paper regard a distance
measure as a similarity measure by multiplying the distance
values by ��. Also, Gusfield [10] pointed out that in deal-
ing with string similarity the language of alignments is of-
ten more convenient than the language of edit operations.
Our framework is a generalization of the alignment based
scheme and is based on the notion of common patterns.

3.1 String resemblance systems

Before describing our scheme, we need to introduce
some notation. The set of strings over an alphabet � is de-
noted by ��. The length of a string � is denoted by ���. The
string of length 0 is called the empty string, and denoted by
�. Let �� � �� � ���. Let us denote by � the set of real
numbers.

A pattern system is a triple ����� 	� of a finite alphabet
�, a set � of descriptions called patterns, and a function 	
that maps a pattern in � to a language 	�
� 	 �. A pattern

 � matches a string �
 �� if � belongs to 	�
�.
Also, a pattern
 in � is a common pattern of strings ��

and �� in ��, if
 matches both of them. Usually, a set �
of patterns is expressed as a set of strings over an alphabet
� ��, where � is a finite alphabet which is disjoint to �.

Definition 1 A string resemblance system (SRS) is a
quadruple ����� 	� Score�, where ����� 	� is a pattern
system, and Score is a pattern score function that maps a
pattern in � to a real number. We assume that Score�
� is
computable in polynomial-time with respect to the descrip-
tion length of a pattern
.

An SRS is a pair of a pattern system and a pattern score
function. Under an SRS, similarity of strings is quantified
as follows:

Definition 2 The similarity between strings � and with
respect to ����� 	� Score� is defined by

SIM��� � � �	
�Score�
� �

 � and ��
 	�
� ��

When the set �Score�
� �

 � and ��
 	�
� � is
empty or the maximum does not exist, SIM(x,y) is unde-
fined.

The definition above regards the similarity computation
as optimal pattern discovery [20]. Thus our framework
bridges a gap between similarity computation and pattern
discovery in this sense. In [21], the class of homomor-
phic SRSs was shown to cover most of the well-known and
well-studied similarity (dissimilarity) measures, including
the edit distance, the weighted edit distance, the Hamming
distance, the LCS measure.

Definition 3 A homomorphic pattern system is ��� �� �
���� 	�, where:

1. � is a set of wildcards with � �� � .

2. 	 � � � �
�

is a homomorphism such that 	��� �
��� for any �
 � and 	�
�
�� � 	�
��	�
�� for
any
��
�
 �� ����.

3. It takes linear time to decide whether or not � belongs
to 	��� for any �
 � and any �
 ��.

Definition 4 A pattern score function Score defined on
�� ���� is homomorphic, if Score�
�
�� � Score�
�� �
Score�
�� for any
��
�
 �� � ���. We assume that it
takes linear time to compute Score�
� with respect to the
description length of a pattern

 �� ����.

Definition 5 A homomorphic SRS is a pair of a homomor-
phic pattern system ��� �� ����� 	�, and a homomorphic
pattern score function Score � �� ���� � �.

We remark that, when � is fixed, a homomorphic SRS is
determined by specifying (1) the set � of wildcards, (2) the
limitation of the mapping 	 to the domain �, and (3) the
limitation of the mapping Score to the domain � ��.

As stated before, the class of homomorphic SRSs cov-
ers most of the known similarity (dissimilarity) measures.
For example, the edit distance falls into this class. Let
� � ��� where � is the wildcard that matches the empty
string and any symbol in �, namely, 	��� � � � ���. Let
Score��� � �� and Score��� � � for all �
 �. Then,
the similarity measure defined by this homomorphic SRS is
the same as the edit distance except that the values are non-
positive. Similarly, the Hamming distance can be defined
by using the wildcard � that matches any symbol in �.

We can define the LCS measure by using the wildcard �
that matches any string in ��. Namely, the homomorphic
SRS specified by (1) � � ���, (2) 	��� � ��, and (3)
Score��� � � and Score��� � � for any �
 � gives the LCS
measure. Although another definition is possible for this
measure which uses the wildcard � with 	��� � � � ���,
but the common patterns obtained are much simpler.

The weighted edit distance can also be defined as a ho-
momorphic SRS in which the wildcards ������ (�� �

� � ��� and � �� �) such that 	�������� � ��� �� are intro-
duced, and Score�������� is the weight assigned to an edit
operation �� �.

The idea of gap penalty (see, e.g., [10]) can be realized
by introducing the wildcards of the form ���with 	����� �
��� �� for all �
 ��. This is one motivation for us to
allow an infinite number of wildcards in �.

3.2 Semi-homomorphic SRSs

In the definition of a homomorphic SRS, we restrict the
pattern score function to a homomorphism from the monoid
�� ���� to �. The score of a pattern is therefore the to-
tal sum of the scores of the characters and wildcards oc-
curring in the pattern. Now, we ease this restriction in or-
der to extend the class of homomorphic SRSs. We here
consider a combination of a homomorphic pattern system
and a non-homomorphic pattern score function that satis-
fies that Score�
�
�� � Score�
�� � Score�
��, for any

��
�
 �� ����.

Definition 6 A pattern score function defined on �� ����

is semi-homomorphic if

Score�
� � �	

�
��

���

��
��

����
�
 � (� � �� � � � � �),
� � �, and
 �
� � � �
�

�
�

where � is a subset of ������ with�� � ������, and
� is a function from � to�. For the set � and the function
�, we assume that it takes linear time to decide whether

“�
 	�
�” for any �
 �� and any

 �, and that it
also takes linear time to compute ��
� for any

 �.

Definition 7 A semi-homomorphic SRS is a pair of a ho-
momorphic pattern system ��� �� � ���� 	�, and a semi-
homomorphic pattern score function Score � �� ���� �
�.

The idea behind the definition is to find the ‘best’ fac-
torization of a pattern in �� ���� into a sequence of sub-
patterns each belonging to �. It was originally motivated
in modifying the LCS measure so as to fit to finding similar
poem [21]. In fact, one of the similarity measures proposed
in [21] is a semi-homomorphic SRS that is a pair of a homo-
morphic pattern system ��� ��������� 	�with	��� � ��,
and a pattern score function Score which is designed to be
sensitive to ‘continuation’ of characters in a pattern, namely,
� � �� � ��� and

��
� �

�
���
��� if

 ���
�� if
 � ��

where � satisfies ������ � ��������� for any positive
integers ���. The measure was proved to effectively find
pairs of similar poems, some of which led to new discover-
ies in Japanese literary studies (see [21]). Also, Measures
II and III defined later in this paper belong to the class of
semi-homomorphic SRSs.

Whereas the class of semi-homomorphic SRSs is a
proper superset of the class of homomorphic SRSs, the
classes of similarity measures defined by them are shown
to be identical. Namely, every semi-homomorphic SRS can
be converted into an “equivalent” homomorphic SRS. The
advantage of using a semi-homomorphic SRS lies only in
readability of the patterns obtained as a result of similarity
computation. The time and space complexities of similarity
computation for a homomorphic (semi-homomorphic) SRS
was discussed in [21].

3.3 SRSs with non-homomorphic pattern system

As demonstrated so far, we can handle a variety of string
(dis)similarity by changing the pattern system and the pat-
tern score function. The pattern systems appearing in the
above examples are, however, restricted to homomorphic
ones. Here, we shall mention SRSs with non-homomorphic
pattern systems A fragmentary pattern (an order-free pat-
tern) is a multiset ���� � � � � ��� such that � � � and
��� � � � � ��
 ��, and is denoted by
���� � � � � ���. The
language of pattern
���� � � � � ��� is defined to be the union
of the languages �������

� � � ��������
� over all permu-

tations � of ��� � � � � ��. For example, the language of the
pattern
����� ��� is ����������� � �����������. Hori

et al.[12] proved that the membership problem for frag-
mentary patterns is NP-complete and the similarity com-
putation is NP-hard in general. However, the problems are
polynomial-time solvable when � is fixed.

The pattern languages, introduced by Angluin [1], is
also interesting for our framework. A pattern is a string
in� � ���� ��, where � is an infinite set ���� ��� � � �� of
variables and � � � � . For example, �������� is a pat-
tern, where �� �
 �. The language of a pattern
 is the set
of strings obtained by replacing variables in
 by non-empty
strings. For example, 	���������� � ������ � �� �

���. The membership problem for the Angluin patterns
is NP-complete [1], and the similarity computation is NP-
hard in general [22]. However, the problems are solvable
in polynomial-time when the number of variables occurring
more than once within
 is bounded by a fixed number �.

Both the SRSs with fragmentary patterns and with An-
gluin patterns play central rule in finding similar poems
from anthologies of classical Japanese poems (Waka) [21,
22].

4 Similarity between phrases

It is natural to conclude that similarity between two
whole musical works is determined on the basis of a com-
parison of their phrases. For this reason, we first en-
deavor to define a measure to quantify resemblance between
phrases.

In this section we aim to develop a similarity measure be-
tween phrases within the framework of SRSs. We start with
a very simple measure. Then we improve it step-by-step
by analyzing its weaknesses. Here we show three similarity
measures. The first measure is essentially the same as the
Hamming distance and falls into the class of homomorphic
SRSs, whereas the second and the third belong to the class
of semi-homomorphic SRSs. At the end of this section, we
estimate the performance of the three measures against the
variation data used in Section 2.

4.1 Measure I

Our criteria in designing a measure are as follows.

1. We divide each note of given note sequences into 16th
notes and use the obtained sequences consisting of
pitches for comparison.

2. We allow only the substitution operation. Namely, we
do not allow either insertion or deletion.

3. We consider only whether or not two pitches are iden-
tical. Namely, we do not pay attention to whether two
pitches are consonant or dissonant.

Mongeau and Sankoff basically regard a note as an indivisi-
ble unit, but they allow fragmentation (resp. consolidation),
which divides one note into several notes (resp. consolidates
multiple notes into one note). As a generalization of their
idea in regard to fragmentation and consolidation, we di-
vide each of the notes into 16th notes. Then the obtained
sequence is simply a sequence of pitches. For simplicity,
we ignore an octave difference, and therefore the number of
possible pitches is 12. Our input string is therefore a string
over an alphabet consisting of 13 symbols, which represent
pitches and a rest. We denote this alphabet by � , and de-
note the 12 pitches by the symbols

�� ��� � �� !� "� " �� #� #�� $� $�� %�

and the rest by &. We ignore the information as to whether
each of the fragmented 16th notes was originally the begin-
ning of a note. Such information will be used when consid-
ering rhythmic similarity in Section 6. Note that we can-
not measure the similarity between two strings of different
length since we allow only substitution.

Now we show a very simple similarity measure, which
we refer to as Measure I. This measure falls into the class of
homomorphic SRSs. The pattern set is � � �� � �����,
where � is a wildcard that matches any symbol in �,
namely, 	��� � �. The pattern score function Score� �
� � � is homomorphic and defined by

Score���� � � ��
 �� and Score���� � ��

That is, Score��
� is the number of symbols appearing
within
. For the sake of maintaining transposition invari-
ance, we define the similarity value between two strings �
and to be the maximum of the 12 possible similarity val-
ues obtained by transposing � by a semitone incrementally.
Note that this operation does not force us to know the mu-
sical key of the input.

4.2 Measure II

Measure I is very simple, but is useful in identifying the
repetition of a motif or in detecting very similar phrases in
a musical work. However, it may assign a high score to
dissimilar phrases, as shown in Fig. 1. Phrases A1 and A2
have a common pattern

���� � ���������������������������������

and its score is 16. On the other hand, Phrases A1 and A3
have a common pattern

���� � ���������������������������������

and its score is also 16. That is, the similarity value between
Phrases A1 and A2 is identical to that between Phrases A1
and A3. However, A1 and A2 are quite dissimilar, whereas

A1� �
� �

A2� �
� �

A3� �
� �

Figure 1. Weakness of Measure I. The measure assigns the same value to the pair of A1 and A2 and
to the pair of A1 and A3, but the former pair are not very similar while the latter pair are relatively
similar.

A1 and A3 are relatively similar. It can be seen that the
matches of pitches between A1 and A2 are intermittent and
meaningless, whereas those between A1 and A3 are contin-
uous. The subjective impression coincides with this obser-
vation. In Measure I we are not concerned with the continu-
ation of matches. We wish to improve the measure so that it
assigns a high score only to a long match. A new measure,
called Measure II, is a semi-homomorphic SRS, where the
pattern system is the same as that of Measure I, and the pat-
tern score function Score� is defined by � � �� ���� and
by

��
� �

�
�
�� if

 �� and �
� � ';
�� otherwise.

For example, Score��
���� is

� ���� � ���� � ���� � � � �� ���� � ��##�

� ���� � ����� � ��##� � ��#� � ��#�

���$$� � ��$$$$� � ��#� � ��##��

which is 12 when ' � and is 4 when ' � �� �. On the
other hand, Score��
���� is

� ���� � ���� � ��������########$$�

����� � � � �� ����

� ��������########$$��

which is 16 for any threshold ' with ' � ��.

4.3 Measure III

Measure II resolves the weakness of Measure I that we
pointed out above with the example of Fig. 1. Measure II,
however, has the following weakness. Let us focus on the
two phrases in Fig. 2. Phrases B1 and B2 have a common
pattern

� � ������������������������	��	����

Since the lengths of clusters of symbols in this pattern are
at most 2, Score��
� is 0 whenever the threshold ' is greater
than 2. The two phrases are, however, quite similar. For this
reason, we wish to ignore a short cluster of mismatches.
Let (be a threshold for this. The new measure, referred
to as Measure III, is a semi-homomorphic SRS, where the
pattern score function Score� is defined by

� � �

 �� � ����� �
 does not contain �����

and

��
� �

�
the number of symbols within
� if �
� � ';
�� otherwise,

where '� (are thresholds. For (� and ' � �, the score of
the pattern
 mentioned above is Score��
� � ��
� � ��,
since
 itself belongs to �.

4.4 Complexity of similarity computation

For any
��
� in � � �� � �����, let
� �
� if and
only if

1. �
�� � �
�� � � for some �, and

2.
���� �
���� or
���� � � for every � with � � � � �.

We write this as
� �
� if
� �
� and
� ��
�. A
common pattern
 of two strings ��
 �� is said to be
maximal if no common pattern
 � of them satisfies
 �
�.

Lemma 1 For two given strings �� of equal length, there
uniquely exists a maximal common pattern to them, and it
can only be computed in linear time and space.

We can readily show that each of the pattern score functions
Score�� Score�, and Score� of Measures I, II, and III has the
following property:

B1� �
� �

B2� �
� �� � � �� �� � � �� �� � � �� �� � � �� �� � � �� �� � � �� �� � � �� �� � � ��

Figure 2. Weakness of Measure II. The measure assigns a low similarity to this pair if the threshold '
is greater than 2, even though the two phrases are quite similar.

For any patterns
�
�
 �,
 �
� implies
Score��
� � Score��
��.

Therefore, the similarity value of two given strings �� of
equal length is identical to the score of the maximal com-
mon pattern of them. We thus have the following result.

Theorem 1 For each of Measures I, II, and III, the simi-
larity value of two given strings is computed only in linear
time and space.

4.5 Evaluation

We estimated the performances of the three measures by
using the variations of K.25，K.265，and K.354. Since
there is no established way to extract a phrase from a mu-
sical piece, we take all consecutive) -bars as phrases. We
tested for)=2, and found the number of phrases obtained
was 563. The result is shown in Table 2, where the param-
eters used in Measures II and III were ' � � and (� �.
For example, “K.265-th(21)” indicates the two bars starting
at the 21st bar.

First, we compare the result for Measure I with that of
Measure II. The points to be emphasized are that the im-
provement from I to II successfully decreases the similarity
values for dissimilar phrase pairs. The pairs having a high
similarity value are often a repetition of a motif in a theme,
or a highly similar phrase pair between a theme and its vari-
ation. However, it should be noted that there may be a risk
of decreasing the similarity value of similar pairs. Examin-
ing the result for Measure III, by comparing it with that for
Measure II, it can be seen that the similarity values of some
phrase pairs increase. We confirmed that these phrase pairs
are in fact similar. We have thus successfully improved the
similarity measure from Measure I to III.

5 Melodic similarity between musical pieces

In the previous section we developed a melodic similar-
ity measure between phrases that are parts of a whole musi-

C D E F E D C C E F G A G F E E

E
D
C
C
G
F
E
D
E
F
G
G

d = 4 d = 8

d = -6

d = 0

d = -2

Figure 3. Similarity computation for two whole
musical works.

cal piece. Now we try to give a similarity measure between
musical pieces based on this measure.

5.1 Definition

For quantifying affinities between two musical pieces �
and , we compare any phrase of � with any phrase of .
Suppose � and are converted into pitch sequences in 16th
note units. Consider a matrix of size ��� � �� as shown in
Fig. 3. In the matrix, a diagonal � with ���� * � * ��
corresponds to one alignment. That is, the diagonal � cor-
responds to a comparison of ��� � ���� and �� � � � ���, if
� � �; and to a comparison of ���� � � ���� and �� � ���,
otherwise. Since our measures compare phrases of equal
length, the tail of the longer one should be truncated. We
compute a similarity value for each diagonal �. The sim-
ilarity between � and is defined to be the total sum of
the values over all possible diagonals divided by the prod-
uct ��� � ��. The formal discussion is: Let Æ be a similarity
measure for strings of equal length in ��. Extend Æ so as to
compare strings of different lengths by

�Æ��� � � Æ���� � ��� �� � ����

Table 2. Comparison of three measures. The 15 most similar consecutive two bars against the first
consecutive two bars of the theme of K.265 are shown for each of the measures.

Measure I Measure II Measure III
rank phrase similarity phrase similarity phrase similarity

1 K.265-th(1) 32 K.265-th(1) 32 K.265-th(1) 32
2 K.265-th(21) 31 K.265-th(21) 28 K.265-th(21) 31
3 K.265-th(5) 31 K.265-th(5) 27 K.265-th(5) 31
4 K.265-th(13) 30 K.265-th(13) 20 K.265-th(13) 30
5 K.265-5(5) 23 K.265-th(8) 16 K.265-5(5) 23
6 K.265-th(3) 22 K.265-9(16) 16 K.265-5(13) 21
7 K.265-th(9) 22 K.25-th(16) 13 K.265-th(17) 21
8 K.265-5(13) 21 K.265-9(8) 13 K.265-9(21) 19
9 K.265-th(7) 21 K.265-9(1) 19

10 K.265-th(17) 21 all the others 0 K.265-5(1) 19
11 K.265-9(21) 20 K.265-5(21) 19
12 K.265-9(5) 19 K.265-9(5) 19
13 K.265-9(1) 19 K.265-9(16) 16
14 K.265-5(21) 19 K.265-th(8) 16
15 K.265-5(1) 19 K.265-11(5) 15

where � � �������� ���. We also use the notation ��� ��
for a string � and an integer � � � to represent the string
��� � ����. Moreover, we denote by ��� �� the string ��� � ����
if � � �. Now, let us define the similarity value SIMÆ��� �
between � and in �� by

SIMÆ��� � �
�

��� � ��
�

�
����������

�Æ����� � ��� �� � � ����

Theorem 2 If we use Measures I, II, and III as Æ, the simi-
larity value SIMÆ��� � of two strings �� can be computed
in+������� time using+����� ��� space.

5.2 Evaluation

We estimated the performance of the above-mentioned
measure for K.265, K.25 and K.354. We set the parameters
of Measure III as ' � �� (� �. The most similar 10 items
for each theme are shown in Table 3.

It can be seen that most of the top 10 for each theme are
occupied by its variations. This result contrasts markedly
with that of the Mongeau-Sankoff measure shown in Ta-
ble 1. Our measure is thus better than that of Mongeau and
Sankoff in identifying similar variations of a theme from a
mixture of variations on more than one theme.

6 Rhythmic similarity

We have dealt with melodic similarity, where a melody
line is converted into a pitch sequence in 16th note units.
Alternatively, let us consider rhythmic similarity in this sec-
tion. Look at the phrases in Fig. 4. The similarity between
Phrases C1 and C2 measured by Measure III presented in

Table 4. Similar phrases for Song A(18).

melodic similarity rhythmic similarity
rank phrase similarity phrase similarity

1 Song A(18) 32 Song A(18) 32
2 Song A(55) 32 Song A(55) 32
3 Song A(59) 28 Song A(120) 27
4 Song I(72) 17 Song A(76) 27
5 Song I(20) 16 Song A(39) 27
6 Song I(68) 16 Song A(21) 19
7 Song A(22) 16 Song A(59) 16
8 Song I(24) 16 Song A(22) 16
9 all the others 0 Song A(137) 14

10 Song A(136) 14

Section 4 is relatively small. However, the two phrases
sound similar to each other, probably because of their rhyth-
mic similarity.

We converted the input note sequences into strings con-
sisting of the four symbols: N (beginning of a note), n (mid-
dle of a note), R (beginning of a rest), and r (middle of
a rest). Then we applied Measure III to 10 randomly se-
lected popular songs. The parameters used are ' � � and
(� � (it is therefore considered as Measure II). The num-
ber of distinct consecutive two bars was ����. The results
are shown in Table 4, together with those produced by ap-
plying Measure III with ' � �� (� � to their pitch se-
quences. Phrases C1 and C2 in Fig. 4 are Song A(18) and
Song A(39), respectively. Phrase C2 is not present in the
top 10 for melodic similarity, but it ranks third for rhyth-
mic similarity. We have found a number of other phrases
that have no melodic similarity, but which have rhythmic
similarity to a particular phrase.

Table 3. Most similar 10 items for K.265-th, K.25-th, and K.354-th.

K.265-th K.25-th K.354-th
rank title similarity title similarity title similarity

1 K.265-5 0.0112 K.25-7 0.0233 K.354-2 0.0077
2 K.265-9 0.0105 K.25-1 0.0120 K.354-6 0.0061
3 K.265-3 0.0030 K.25-6 0.0015 K.354-5 0.0031
4 K.265-1 0.0030 K.25-3 0.0010 K.354-12 0.0024
5 K.265-11 0.0010 K.25-5 0.0010 K.25-3 0.0015
6 K.265-7 0.0005 K.25-6 0.0011
7 K.354-12 0.0003 all the others 0.0 K.354-3 0.0009
8 K.25-3 0.0003 K.265-5 0.0008
9 K.265-12 0.0001 K.354-1 0.0003

10 all the others 0.0 K.354-7 0.0003

C1� �
�

� � � �� � �
� �� � �� � � �

C2� �
�

�� � � �� � �
� �� � �� �

	

�

Figure 4. Two phrases similar in rhythm.

7 Conclusion

In this paper, we have addressed the problem of musi-
cal sequence comparison for melodic similarity. We started
with a very simple measure quantifying melodic similarity,
and incrementally refined it within the framework of SRSs.
The obtained measure is still simple and has only two pa-
rameters to be tuned, but it is superior to the dissimilarity
measure proposed by Mongeau and Sankoff. We also pre-
sented a measure for quantifying rhythmic similarity and
evaluated its performance against Japanese popular songs.

One significant application of our method would be
questions of copyright. In Japan, composer Asei Kon-
ayashi sued in 1998 another songwriter Katsuhisa Hattori,
claiming that Hattori plagiarized his 1966 hit song “Doko-
mademo Iko” in writing 1992 song “Kinenju.” The scores
of the two songs are found in Fig. 5, where they are trans-
posed from their own keys to C major, and “Dokomademo
Iko” is changed to 4/4 (originally 2/2) for comparison.
Although Kobayashi’s claim was rejected in 2000 by the
Tokyo District Court, there is a considerable amount of sim-
ilarities between the two songs. Fig. 6 is the maximal com-
mon pattern of the two melodies, where we divided each
note into 4th notes, not into 16th notes. If we set the tuning
parameters as ' � � and (� , respectively, the similarity
value of the two melodies is �� under Measure III we pro-
posed in this paper. Similar melody search on a large-scale
musical database will be helpful for composers who want

to prevent their works from being closely similar to some
earlier musical pieces. We hope that our studies on musical
sequence comparison will give a reliable criterion for this
purpose.

Our measures shown in this paper take into account
whether two corresponding pitches are identical or not, but
they do not relate to the consonance of the two pitches, un-
like the Mongeau-Sankoff measure. We wish to realize this
idea in our measure by roughly categorizing the relationship
of the two pitches, for example into three degrees: conso-
nant, dissonant, and match. Preliminary experiments con-
firm the effectiveness of the idea [13].

In this paper we have only dealt with monophonic music,
but we plan to progress to polyphonic music. In the case of
polyphonic music the input is a sequence of sets of notes.

Even when closely similar melody fragments are found,
they might not be significant if the fragments are common
and frequent. In [21], we proposed a similarity measure
where the pattern score function is a function of the rarity of
the pattern in the database, and empirically proved that the
idea effectively excludes worthless affinities. The same idea
may be effective when dealing with melodic and rhythmic
affinities.

In our method of dealing with melodic similarity, we di-
vide each note of the input note sequence into 16th notes
to obtain strings of pitches. The original and the resulting
sequences, respectively, can be viewed as a run-length com-
pressed string and its original string, where a note with pitch

B

A

�

�
�
�

�
�

�

�

� �
� �

��
��

�

�

�

�

� �

� �

� �
� �

� �

� �
��

� � �

�

�

B

A

�

�
�
�

�
�

� � � �

� � � ��

� �
� �

� �

� �
��

� �

�

�

�

�
� �
� �

��
� � �

�
�

B

A

�

�
�
�

�
�

�

�

� �
� �

� �

��

�

�

�
�

� �

�

� �

� �

� �
� �

�� �

B

A

�

�
�
�

�
�

� �

��

�
�

� �
� �

� �

� �
��

� � �

�

�

� � � �

� � � ��

B

A

�

�
�
�

�
�

� �
� �

� �

� �
��

� �

�

�

�

�
� �
� �

��
� �

�
�

�

�

� �
� �

� �

��

�

�

B

A

�

�
�
�

�
�

� �

��

�
�

� � �
�

Figure 5. The scores of (A) “Kinenju” by Katsuhisa Hattori and of (B) “Dokomademo Iko” by Asei
Kobayashi. These songs are transposed from their own keys to C major, and “Dokomademo Iko” is
changed to 4/4 (originally 2/2) for comparison.

&&� !!!� � �� � ���� ���� """"

��#� #### #### $$$# ""#$ ##��

��� !!!� � �� � � � �� � �� !!!�

�� � � ���� ���� """" � �#� ####

$$$# ""#$ ##�� ��� !!!�

�� � � ���� ��� �

Figure 6. Maximal common pattern of the two melodies, where we divided each note into 4th notes,
not into 16th notes.

� and duration of � (in 16th note units) is encoded as an �-
times repetition of a symbol �. Hence, this may be efficient
if we can perform the similarity computation in run-length
compressed strings without expanding them. The problems
of computing LCS, Levenstein edit distance, or more com-
plex distance for run-length compressed strings have been
studied by several researchers [3, 4, 2, 17]. Efficient simi-
larity computation according to our similarity measures in
run-length compressed strings will be a subject for future
work.

References

[1] D. Angluin. Finding patterns common to a set of
strings. J. Comput. Sys. Sci., 21:46–62, 1980.

[2] A. Apostolico, G. Landau, and S. Skiena. Matching
for run-length encoded strings. J. Complexity, 15:4–
16, 1999.

[3] H. Bunke and J. Csirik. An algorithm for matching
run-length coded strings. Computing, 50:297–314,
1993.

[4] H. Bunke and J. Csirik. An improved algorithm
for computing the edit distance of run-length coded
strings. Information Processing Letters, 54(2):93–96,
1995.

[5] E. Cambouropoulos, T. Crawford, and C. Iliopoulos.
Pattern processing in melodic sequences: Challenges,
caveats & prospects. In Proc. the AISB’99 Convention
(Artificial Intelligence and Simulation of Behaviour),
pages 6–9, 1999.

[6] E. Cambouropoulos, M. Crochemore, C. S. Iliopoulos,
L. Mouchard, and Y. J. Pinzon. Algorithms for com-
puting approximate repetitions in musical sequences.

In Proc. 10th Australasian Workshop on Combinato-
rial Algorithms (AWOCA’99), pages 25–27, 1999.

[7] T. Crawford, C. Iliopoulos, and R. Raman. String
matching techniques for musical similarity and
melodic recognition. Computing in Musicology,
11:73–100, 1998.

[8] T. Crawford, C. Iliopoulos, R. Winder, and H. Yu. Ap-
proximate musical evolution. Computers and Human-
ities, 2000.

[9] M. Crochemore, C. Iliopoulos, and H. Yu. Algorithms
for computing evolutionary chains in molecular and
musical sequences. In Proc. 9th Australian Workshop
on Combinatorial Algorithms (AWOCA’98), pages
172–184, 1998.

[10] D. Gusfield. Algorithms on Strings, Trees, and Se-
quences: Computer Science and Computational Biol-
ogy. Cambridge University Press, New York, 1997.

[11] W. B. Hewlett and E. Selfridge-Field, editors. Melodic
Similarity: Concepts, Procedures and Applications.
MIT Press, 1998.

[12] H. Hori, S. Shimozono, M. Takeda, and A. Shino-
hara. Fragmentary pattern matching: Complexity, al-
gorithms and applications for analyzing classic liter-
ary works. Technical Report DOI-TR-193, Depart-
ment of Informatics, Kyushu University, May 2001.

[13] T. Kadota, A. Ishino, M. Takeda, and F. Matsuo. On
similarity measures for musical sequences. In Pro-
ceedings of the 59th National Convention IPSJ, vol-
ume 2, pages 17–18, 1999. (in Japanese).

[14] K. Lemström and S. Perttu. SEMEX - an efficient
music retrieval prototype. In Proc. First Interna-
tional Symposium on Music Information Retrieval (IS-
MIR2000), 2000.

[15] K. Lemström and J. Tarhio. Searching monophonic
patterns within polyphonic sources. In Content-Based
Multimedia Information Access Conference Proceed-
ings (RIAO2000), volume 2, pages 1261–1279, 2000.

[16] K. Lemström and E. Ukkonen. Including interval en-
coding into edit distance based music comparison and
retrieval. In Proc. the AISB’2000 Symposium on Cre-
ative & Cultural Aspects and Applications of AI &
Cognitive Science, pages 53–60, 2000.

[17] V. Makinen, G. Navarro, and E. Ukkonen. Approxi-
mate matching of run-length compressed strings. In
Proc. 12th Annual Symposium on Combinatorial Pat-
tern Matching (CPM2001), 2001. to appear.

[18] R. J. McNab, L. A. Smith, D. Bainbridge, and I. H.
Witten. The New Zealand digital library MELody in-
DEX. D-Lib Magazine, 1997.

[19] M. Mongeau and D. Sankoff. Comparison of mu-
sical sequences. Computers and the Humanities,
24(3):161–175, 1990.

[20] S. Shimozono, H. Arimura, and S. Arikawa. Effi-
cient discovery of optimal word-association patterns
in large databases. New Gener. Comput., 18(1):49–60,
2000.

[21] M. Takeda, T. Fukuda, I. Nanri, M. Yamasaki, and
K. Tamari. Discovering instances of poetic allusion
from anthologies of classical Japanese poems. Theor.
Comput. Sci., 2001. (to appear).

[22] K. Yamamoto, M. Takeda, A. Shinohara, T. Fukuda,
and I. Nanri. Discovering repetitive expressions and
affinities from anthologies of classical Japanese po-
ems. In Proc. 4th International Conference on Discov-
ery Science, Lecture Notes in Artificial Intelligence.
Springer-Verlag, 2001. (to appear).

