
Fully Compressed Pattern Matching Algorithm
for Balanced Straight-line Programs

Masahiro Hirao Ayumi Shinohara Masayuki Takeda Setsuo Arikawa
Department of Informatics, Kyushu University 33, Fukuoka 812-8581, Japan

{ hirao, ayumi, takeda, arikawa } @i.kyushu-u.ac.jp

Abstract

We consider a fully compressed pattern matching prob-
lem, where both text T and pattern P are given by its suc-
cinct representation, in terms of straight-line programs and
its variant. The length of the text T and pattern P may grow
exponentially with respect to its description size n and m,
respectively. The best known algorithm for the problem runs
in O(n2m2) time using O(nm) space. In this paper, we
introduce a variant of straight-line programs, called bal-
anced straight-line programs so that we establish a faster
fully compressed pattern matching algorithm. Although the
compression ratio of balanced straight-line programs may
be worse than the original straight-line programs, they can
still express exponentially long strings. Our algorithm runs
in O(nm) time using O(nm) space.

1 Introduction

Pattern matching is a task to find all occurrences of a pat-
ternP in a text T . It is one of the most fundamental problem
in string processing. In the last decade, pattern matching on
compressed objects attracts more and more interests. The
basic problems are the compressed pattern matching and
the fully compressed pattern matching [8]:

Compressed Pattern Matching
Instance: pattern P and T = Compress(T), representing

the compressed text.

Question: does P occur in T ?

Fully Compressed Pattern Matching
Instance: P = Compress(P) and T = Compress(T),

representing the compressed pattern and compressed
text.

Question: does P occur in T ?

For recent developments on this topic, refer to an excellent
survey paper [8].

collage system

regular collage system
 = straight-line programs

simple collage system

balanced
straight-line
programs

Figure 1. Collage systems and balanced
straight-line programs

Studies on (fully) compressed pattern matching have in-
troduced a new measure to compare the performance of var-
ious compression methods. In addition to the traditional
measures such as compression ratio, compression time and
decompression time, a new measure “(fully) compressed
pattern matching time” is also considered to be an important
factor. For example, byte pair encoding [3], a simple uni-
versal text compression scheme based on the pattern substi-
tution, has been reconsidered as a practically good choice
from the new viewpoint of compressed pattern matching,
despite the fact that the compression ratio is not as good
as other competitors such as Lempel-Ziv type compres-
sion [9, 10].

In this paper, we concentrate on strings described in
terms of straight-line programs and its variant. A straight-
line program is a context-free grammar in the Chomsky
normal form that derives only one string. It is a sequence
of assignments of either a character or a concatenation of
two variables defined before. The length of the string rep-
resented by a straight-line program can be exponentially
long with respect to the size of the straight-line program.

Table 1. Comparison of the complexity
Compressed Pattern Matching Fully Compressed Pattern Matching

Collage Systems [6] O(n height(T) +m2) [6] unknown
Straight-line programs O(n +m2) [6] O(n2m2) [7]

Balanced straight-line programs O(n +m2) [6] O(nm)

We note that the class of straight-line programs is the cen-
tral subclass of collage systems, that was recently intro-
duced by Kida et al. [6] as a unifying framework for var-
ious (not fully) compressed pattern matching algorithms.
In addition to the concatenation operation, collage systems
have expressions of repetition and truncation. Their results
imply that the compressed pattern matching for straight-
line programs can be solved in O(n + m2) time using
O(n+m2) space, where n andm are the description sizes of
text and pattern, respectively. According to the fully com-
pressed pattern matching, among several studies [4, 5, 7],
the best known algorithm for straight-line programs runs in
O(n2m2) time using O(nm) space. Concerning with the
2D-text described by 2-dimensional straight-line programs,
see [1, 8].

In this paper, we introduce a variant of straight-line pro-
grams where faster pattern matching is possible. Here,
we only allow concatenations of variables which represent
strings of the same length except the last assignment. We
call them balanced straight-line programs, since the evalua-
tion trees form complete binary trees, except the root node.
Because of this restriction, the compression ratio becomes
potentially worse than the original straight-line programs,
while balanced straight-line programs can still express ex-
ponentially long strings. Moreover, compression process in
balanced straight-line programs is easier and faster than that
in the original straight-line programs.

We show a fully compressed pattern matching algorithm
for balanced straight-line programs which runs in O(nm)
time using O(nm) space. In this sense, balanced straight-
line programs have their own advantage compared with the
original straight-line programs as a succinct representation
of strings. In Fig. 1, we illustrate the relation of balanced
SLP to collage systems and their subclasses. Regular col-
lage systems directly correspond to straight-line programs.
Simple collage systems consist of the concatenation of a
string with a single character only. Note that LZ78-family
compression can be described as simple collage systems.
We summarize in Table. 1 the running times of related al-
gorithms.

2 Preliminary

In this section, we introduce basic notations and defini-
tions, and briefly summarize the known results.

A straight-line program R is a sequence of assignments
as follows:

X1 = expr1; X2 = expr2;; Xn = exprn,

where Xi are variables and expri are expressions of the
form:

• expri is a symbol of a given alphabet Σ, or

• expri = X� · Xr, (�, r < i), where · denotes the
concatenation of X� and Xr.

In this paper, both text and pattern are described in terms of
straight-line programs and its variant.

Denote by X [d] the string obtained by removing the
length d suffix from the string represented by variable X .
Denote by R the string which is derived from the last vari-
able Xn of the program R. The size of the straight-line
program R, denoted by ‖R‖, is the number n of assign-
ments in R. The length of a string w is denoted by |w|. We
identify a variableXi with the string represented byXi if it
is clear from the context.

We define the height of a variable X in a straight-line
program R by

height(X) =
{

1 if X = a ∈ Σ,
1 + max(height(X�), height(Xr)) if X = X� ·Xr.

It corresponds to the length of the longest path that connects
X to a leaf in the evaluation tree.

For a string w denote by w[f : t](1 ≤ f ≤ t ≤ |w|)
the subword of w starting at f and ending at t. We often
abbreviate w[1 : t] to w[: t], and w[f : |w|] to w[f :].

The fully compressed pattern matching for strings in
terms of straight-line programs is, given straight-line pro-
grams P and T which are the descriptions of pattern P
and text T respectively, to find all occurrences of P in T .
Namely, we will find a compact representation of the fol-
lowing set:

Occ(T ,P) = {i | T [i : i+ |P | − 1] = P}

Hereafter, we use Xi for a variable in T and Yj for a
variable in P . We assume ‖T ‖ = n and ‖P‖ = m. For

Xl Xr

X

k

Y

Figure 2. k ∈ Occ∆(X,Y), since Y covers the
boundary between X� and Xr.

a set U of integers and an integer k, we denote U ⊕ k =
{i+ k : i ∈ U} and U �K = {i− k : i ∈ U}.

We now give an overview that is common to our algo-
rithm and that in [7]. First we consider a compact represen-
tation of the set Occ(X,Y). Suppose X = X� · Xr. We
define Occ∆(X,Y) to be the set of occurrences of Y in X
such that Y covers the boundary betweenX� andXr.

Occ∆(X,Y) =

{
s+ |Y | − |X�| − 1

∣∣∣∣ s ∈ Occ(X, Y) and
|X�| − |Y | + 1 ≤ s ≤ |X�| + 1

}
.

It corresponds to the length from the boundary between
X� and Xr to the right edge of Y (see Fig. 2). For the sake
of convenience, let Occ∆(X,Y) = Occ(X,Y) for X =
a ∈ Σ.

The following lemmas hold for any straight-line pro-
gram.

Lemma 1 (Miyazaki et al. [7]) For anyX in T and any Y
in P , Occ∆(X,Y) forms a single arithmetic progression.

Lemma 2 (Miyazaki et al. [7]) For Xi = Xl(i) · Xr(i) in
T and Y in P ,

Occ(Xi, Y) = Occ(Xl(i), Y)

∪ {Occ∆(Xi, Y) ⊕ |Xl(i)| � |Y |}
∪ {Occ(Xr(i), Y) ⊕ |Xl(i)|}.

(See Fig. 3)

Xl(i) Xr(i)

Xi

k2

YY Y

k1 k3

Figure 3. k1, k2, k3 ∈ Occ(Xi, Y), while
k1 ∈ Occ(Xl(i), Y), k2 ∈ Occ∆(Xi, Y) ⊕ |Xl(i)| �
|Y | and k3 ∈ Occ(Xr(i), Y) ⊕ |Xl(i)|.

The above lemma suggests that Occ(Xn, Y) can be
represented by a combination of {Occ∆(Xi, Y)}n

i=1. By
Lemma 1, eachOcc∆(Xi, Y) forms a single arithmetic pro-
gression, which can be stored inO(1) space as a triple of the
first element, the last element, and the step of the progres-
sion. Thus the desired output, a compact representation of
the set Occ(T, P) = Occ(Xn, Ym) is some combination of
{Occ∆(Xi, Ym)}n

i=1, which occupies O(n) space. There-
fore the computation of the set Occ(T, P) is reduced to the
computation of each set Occ∆(Xi, Ym), i = 1, .., n.

The following is the best known result for fully com-
pressed pattern matching on straight-line programs.

Theorem 1 (Miyazaki et al. [7]) Fully compressed pat-
tern matching problem for straight-line programs can be
solved in O(n2m2) time using O(nm) space.

3 Balanced SLP

In this section, we introduce a variant of straight-line
programs we call balanced straight-line programs (Bal-
anced SLP) for which we can develop a faster fully com-
pressed pattern matching algorithm.

Definition 1 A balanced straight-line programs B is a se-
quence of assignments as follows:

X1 = expr1; X2 = expr2;; Xn = exprn,

where Xi are variables and expri are expressions of the
form:

X1

X3

X6

X9

X10

X7 X8

X3 X4 X5 X3 X5

X2 X1 X2 X2 X1 X1 X1 X2 X1 X1

[1]

a a a aa a ab b b b

Figure 4. Evaluation tree of R in Example 1.

• expri is a symbol of a given alphabet Σ, or

• expri = X� ·Xr with |X�| = |Xr|, (�, r < i < n).

• exprn = X
[d]
� ·Xr withXl[|Xl| − d+ 1 :] = Xr[: d]

and d ≥ 0.

Only the variables which represent the same length can be
concatenated, except for the last assignment. Therefore, for
any string, once we choose the length d of overlap in the last
assignment, the corresponding Balanced SLP is uniquely
determined.

Example 1 Let us consider the following balanced
straight-line program B:

X1 = a; X2 = b; X3 = X1 ·X2; X4 = X2 ·X1;
X5 = X1 ·X1; X6 = X3 ·X3; X7 = X4 ·X5;
X8 = X3 ·X5; X9 = X6 ·X7; X10 = X

[1]
9 ·X8.

We can see that B = X10 = ababbaaabaa. The evalu-
ation tree is shown in Fig. 4. Note that the subtrees rooted
in X9 and X8 form complete binary trees. This enable us
to develop a faster fully compressed pattern matching algo-
rithm.

We will prove the following main theorem in the rest of
this paper.

Theorem 2 Given two balanced straight-line programs T
and P , we can compute an O(n) size representation of the
set Occ(T, P) of all occurrences of the pattern P in the text
T, in O(nm) time using O(nm) work space. For this rep-
resentation, the membership to the set Occ(T, P) can be
determined in O(n) time.

4 Computation for complete binary trees

In this section, we will describe the method to compute
Occ∆(Xi, Yj) for i < n and j < m. ForXi = X�(i) ·Xr(i)

and h < height(Xi), we recursively define the rightmost
descendant of Xi at height h, denoted by rmd(Xi, h), as
follows.

rmd(Xi, h) =
{
rmd(Xr(i), h) if height(Xi) > h+ 1
Xr(i) if height(Xi) = h+ 1.

In the same way, we define the leftmost descendant ofXi at
height h by

lmd(Xi, h) =
{
lmd(Xl(i), h) if height(Xi) > h+ 1
Xl(i) if height(Xi) = h+ 1.

For example, rmd(X9, 2) = X5, rmd(X8, 1) = X1, and
lmd(X6, 2) = X3 (in Fig 4). We compute rmd(Xi, h) and
lmd(Xi, h) for each variable Xi with h < height(Y) and
store them as a table in advance, so that we can look up in
O(1) time. The construction of the table can be done in
O(nm) time.
The next lemma gives a recursive relation ofOcc∆(Xi, Yj).
The proof is rather straightforward from the illustration in
Fig. 5.

Lemma 3 Assume that both T and P are balanced stra-
ight-line programs. Let X�′(i) = rmd(Xl(i), height(Yj))
and Xr′(i) = lmd(Xr(i), height(Yj)). For Xi in T and
Yj = Y�(j) · Yr(j) in P ,

Occ∆(Xi, Yj) = Occ∆� (Xi, Yj) ∪Occ∆r (Xi, Yj), where

Occ∆� (Xi, Yj) = Occ∆(X�′(i), Y�(j))
∩ Occ∆(Xi, Yr(j)), and

Occ∆r (Xi, Yj) = Occ∆(Xi, Y�(j))
∩ Occ∆(Xr′(i), Yr(j)) ⊕ |Yr(j)|.

Since Occ∆(Xi, Yj) forms a single arithmetic progres-
sion, union operation can be answered in O(1) time. Thus,
the problem to be overcome is to perform the intersection
operation efficiently. Lemma 5 is a key to solve this prob-
lem. It utilizes the periodicity lemma below.

Lemma 4 (Periodicity Lemma (see [2], p. 29)) Let p and
q be two periods of a string w. If p + q − gcd(p, q) ≤ |w|,
then the greatest common divisor gcd(p, q) is also a period
of w.

Let 〈a, d, b〉 be the set formed by an arithmetic progres-
sion where the first element is a, the step is d, and the last
element is b.

Lemma 5 Assume 〈a1, d1, b1〉 = Occ∆(X�′(i), Y�(j)) and
〈a2, d2, b2〉 = Occ∆(Xi, Yr(j)) are given. Then we can
compute 〈a, d, b〉 = 〈a1, d1, b1〉 ∩ 〈a2, d2, b2〉 in O(1) time.

Proof. Since it is trivial for the case d1 = d2, we can assume
that d1 < d2 without loss of generality. We will prove the
following two claims.

Xi

Yj

Yl(j) Yr(j)

Xi

Yj

Yl(j) Yr(j)

Xl'(i)

Xl(i) Xr(i) Xl(i)

Xr'(i)

Xr(i)

k k

Figure 5. k ∈ Occ∆(Xi, Yj) if and only if
either k − |Yr(j)| ∈ Occ∆(X�′(i), Y�(j)) and
k ∈ Occ∆(Xi, Yr(j)) (left case), or k −
|Yr(j)| ∈ Occ∆(Xi, Y�(j)) and k − |Yr(j)| ∈
Occ∆(Xr′(i), Yr(j)) (right case).

T

T1

T'

T2

a1

a2

a1+id1

a2+jd2

a1+(k1-1)d1

a2+(k2-1)d2

Xl'(i) Xr'(i)

XL XR

Figure 6. Strings T1, T2 and T ′. Note that d1 is
a period of T1 and d2 is a period of T2.

Claim 1. 〈a, d, b〉 contains at most one element.

Claim 2. 〈a, d, b〉 ⊆ {a1, a2, b1, b2}.

By Claim 2, we can compute 〈a, d, b〉 by checking whether
a1, b1 ∈ 〈a2, d2, b2〉 and a2, b2 ∈ 〈a1, d1, b1〉. Claim 1
guarantees that at most one checking will succeed. Thus
we can compute 〈a, d, b〉 from 〈a1, d1, b1〉 and 〈a2, d2, b2〉
in O(1) time. In order to prove these claims, we pay our
attention to the strings T1 and T2 as follows (See Fig. 6),
whereXl′(i) = XL ·XR.

T1 = X�′(i)[a1 + 1 : b1 + |XL|]
T2 = XR[a2 + 1 :] ·Xr(i)[: b2]

Let T ′ be the common substring of T1 and T2. Then T ′ =
XR[a2 + 1 : b1].
Proof of Claim 1. Remark that d1 and d2 are the smallest pe-
riods of T1 and T2, respectively. Suppose 〈a, d, b〉 contains

Xn Xn

Xl(n)

Xl'(n)

Xr(n)

Yn Yn Yn Yn Yn Yn

dx dx

Xr'(n)

Xl(n)

Xr(n)

Figure 7. Occ(Xn, Ym) in Lemma 6

two elements t1 and t2 (t1 < t2). Since t1 ∈ 〈a2, d2, b2〉
and t2 ∈ 〈a1, d1, b1〉, we have t1 ≥ a2 and t2 ≤ b1.
These imply that |T ′| = b1 − a2 ≥ t2 − t1. We now
show that t2 − t1 ≥ d1 + d2 − gcd(d1, d2). Since t1, t2 ∈
〈a1, d1, b1〉∩〈a2, d2, b2〉, we have t2−t1 = d1 ·c1 = d2 ·c2
for some c1, c2 ≥ 1. We have two cases based on whether
c1 is divided by c2 or not.
(Case 1) If c1 is divided by c2, we have gcd(d1, d2) = d1.
(Case 2) Otherwise, c2 > 1. Then t2−t1 = d2 ·c2 ≥ 2d2 >
d1 + d2.
In both cases, we have t2 − t1 ≥ d1 + d2 − gcd(d1, d2),
which implies |T ′| ≥ d1 + d2 − gcd(d1, d2). Since both d1
and d2 are periods of T ′, we know that gcd(d1, d2) is also
a period of T ′ by Periodicity Lemma. Since gcd(d1, d2) ≤
d1 < d2, this contradicts with the fact d2 is the smallest
period of T2. Therefore, 〈a, d, b〉 cannot contain more than
one element.
Proof of Claim 2. Suppose there exists an element t ∈
〈a, d, b〉 − {a1, a2, b1, b2}. Let k1 and k2 be the cardinali-
ties of the sets 〈a1, d1, b1〉 and 〈a2, d2, b2〉, respectively. Re-
mark that b1 = a1+(k1−1) ·d1 and b2 = a2+(k2−1) ·d2.
Since 〈a, d, b〉 = 〈a1, d1, b1〉 ∩ 〈a2, d2, b2〉, for some inte-
gers i and j with 1 ≤ i ≤ k1 − 2 and 1 ≤ j ≤ k2 − 2), we
have t = a1 + i · d1 = a2 + j · d2. We see that

|T ′| = b1 − a2
= a1 + (k1 − 1) · d1 − a2
= (t− a2) + a1 + (k1 − 1) · d1 − t
= (a2 + j · d2 − a2) + a1

+(k1 − 1) · d1 − (a1 + i · d1)
= j · d2 + (k1 − 1 − i) · d1
≥ d1 + d2.

Since both d1 and d2 are periods of T ′, we know that
gcd(d1, d2) is also a period of T ′ by Periodicity Lemma.
Since gcd(d1, d2) ≤ d1 < d2, we see gcd(d1, d2) is a
smaller period of T2, which is a contradiction. Therefore,
〈a, d, b〉 ⊆ {a1, a2, b1, b2}.
This completes the proof of Lemma 5.

Xi

Xl(i)

Xr'(i)

Xr(i)

Xl'(i)

Yj

Xi

Xl(i)

Xr'(i)

Xr(i)

Xl'(i)

Yj

Xi

Xl(i)

Xr'(i)

Xr(i)

Xl'(i)

Yj

Figure 8. Occ∆1 (Xi, Yj)(left), Occ∆2 (Xi, Yj)(center) and Occ∆3 (Xi, Yj)(right)

The above Lemma 5 enables us to perform the intersec-
tion operation to computeOcc∆� (Xi, Yj) andOcc∆r (Xi, Yj)
in O(1) time. When computing each Occ∆(Xi, Yj) recur-
sively, we may often refer to the same setOcc∆(X ′

i, Y
′
j) re-

peatedly for i′ < i and j′ < j. We take dynamic program-
ing strategy. Let us consider an n × m table App, where
each entry App[i, j] at row i and column j stores the triple
representation of the set Occ∆(Xi, Yj). We compute each
App[i, j] in bottom-up manner, for i = 1, . . . , n − 1 and
j = 1, . . . ,m− 1. We can construct the whole tableApp in
O(nm). The size of the whole table is O(nm), since each
triple occupies O(1) space.

5 Computation for the last assignment

In this section, we will show how to compute
Occ(Xn, Ym) and Occ∆(Xi, Yj) for 1 ≤ i ≤ n and
1 ≤ j ≤ m.

In the sequel, we assume that Y�(j) > Yr(j), since the
other case is symmetric. Occ(Xn, Ym) can be computed by
next lemma.

Lemma 6 ForXn = X
[dx]
�(n) ·Xr(n) in T and Ym = Y

[dy]

�(m) ·
Yr(m) in P , the following recursive relation holds.
Occ(Xn, Ym) =


Occ(X�(n), Ym) ∪ Occ(Xr(n), Ym) ⊕ |X�(n)| � dx

∪Occ(X [dx]
�′(n) ·Xr′(n), Ym) ⊕ |X�(n)| � |X�′(n)|

if dx < |Ym|,
Occ(X�(n), Ym) ∪ Occ(Xr(n), Ym) ⊕ |X�(n)| � dx

if dx > |Ym|.
For 1 ≤ i ≤ n and 1 ≤ j < m,
Occ(Xi, Yj) =


Occ(X�(i), Yj) ∪ Occ(Xr(i), Yj) ⊕ |X�(i)|
∪Occ∆(Xi, Yj) ⊕ |X�(i)| � |Yj |

if height(Xi) > height(Yj),
Occ∆(Xi, Y�(j)) ∩ (Occ∆(Xi, Yr(j)) � |Yr(j)| ⊕ dy

∪Occ(Xr(i), Yr(j)) ⊕ dy � |Y�(j)|)
if height(Xi) = height(Yj).

Occ∆(Xi, Yj) can be computed by next lemma.

Lemma 7 For Xi = X�(i) · Xr(i) in T and Yj =
Y

[dy]

�(j) · Yr(i) in P , let X�′(i) = rmd(X�(i), height(Yj)) and
Xr′(i) = lmd(Xr′(i), height(Yj)). Then we have

Occ∆(Xi, Y) =
Occ∆1 (Xi, Yj) ∪Occ∆2 (Xi, Yj) ∪Occ∆3 (Xi, Yj), where

Occ∆1 (Xi, Yj) = Occ∆(X�′(i), Y�(j)) � dy ⊕ |Yr(j)|
�|Y�(j)| ∩ Occ∆(Xi, Yr(j)),

Occ∆2 (Xi, Yj) = Occ∆(Xi, Y�(j)) � dy ⊕ |Yr(j)|
∩ Occ∆(Xi, Yr(j)), and

Occ∆3 (Xi, Yj) = Occ∆(Xi, Y�(j)) � dy ⊕ |Yr(j)|
∩Occ(Xr′(i), Yr(j)) ⊕ |Yr(j)|.

(See Fig. 8)

Occ∆1 (Xi, Yj) and Occ∆2 (Xi, Yj) can be computed in
O(1) time by Lemma 5. Moreover, Occ∆3 (Xi, Yj) can
be computed in O(m) time (See Appendix). Since each
Occ∆(Xi, Yj) forms a single arithmetic progression, the
union operation can be computed in O(1) time. Therefore,
we can compute each Occ∆(Xi, Yj) in O(m) time. On the
other hand, by Lemma 6 we can say that Occ(Xn, Ym) can
be represented by a combination of {Occ∆(Xi, Ym)}n

i=1

and Occ(X [dx]
�′(n) · Xr′(n), Ym). Both of them can be com-

puted in O(nm) time. Moreover, by Lemma 2 and
Lemma 6, the membership to Occ(Xn, Ym) is answered in
O(n) time.

Acknowledgement

We would like to thank Professor Apostolico for insight-
ful comments.

References

[1] P. Berman, M. Karpinski, L. L. Larmore,
W. Plandowski, and W. Rytter. On the complex-

ity of pattern matching for highly compressed
two-dimensional texts. In Proc. 8th Annual Sympo-
sium on Combinatorial Pattern Matching, volume
1264 of Lecture Notes in Computer Science, pages
40–51. Springer-Verlag, 1997.

[2] M. Crochemore and W. Rytter. Text Algorithms. Ox-
ford University Press, New York, 1994.

[3] P. Gage. A new algorithm for data compression. The
C Users Journal, 12(2), 1994.

[4] M. Karpinski, W. Rytter, and A. Shinohara. Pattern-
matching for strings with short descriptions. In
Proc. 6th Annual Symposium on Combinatorial Pat-
tern Matching, volume 637 of Lecture Notes in Com-
puter Science, pages 205–214. Springer-Verlag, 1995.

[5] M. Karpinski, W. Rytter, and A. Shinohara. An effi-
cient pattern-matching algorithm for strings with short
descriptions. Nordic Journal of Computing, 4(2):172–
186, 1997.

[6] T. Kida, Y. Shibata, M. Takeda, A. Shinohara, and
S. Arikawa. A unifying framework for compressed
pattern matching. In Proc. 6th International Sympo-
sium on String Processing and Information Retrieval,
pages 89–96, 1999.

[7] M. Miyazaki, A. Shinohara, and M. Takeda. An im-
proved pattern matching algorithm for strings in terms
of straight-line programs. In Proc. 8th Annual Sym-
posium on Combinatorial Pattern Matching, volume
1264, pages 1–11, 1997. (to appear in Journal Dis-
crete Algorithms).

[8] W. Rytter. Algorithms on compressed strings and ar-
rays. In Proc. 26th Annual Conference on Current
Trends in Theory and Practice of Informatics, volume
1725 of Lecture Notes in Computer Science. Springer-
Verlag, 1999.

[9] Y. Shibata, T. Kida, S. Fukamachi, M. Takeda, A. Shi-
nohara, T. Shinohara, and S. Arikawa. Speeding
up pattern matching by text compression. In Proc.
4th Italian Conference on Algorithms and Complexity,
pages 306–315, 2000.

[10] Y. Shibata, T. Matsumoto, M. Takeda, A. Shinohara,
and S. Arikawa. A Boyer-Moore type algorithm for
compressed pattern matching. In Proc. 11th Annual
Symposium on Combinatorial Pattern Matching, vol-
ume 1848 of Lecture Notes in Computer Science,
pages 181–194, 2000.

Appendix

In this appendix, we show the detail of the method to
compute the setOcc∆3 (Xi, Yj) in Lemma 7 and estimate its
cost.

First, we describe the method of computing the follow-
ing set.

S(X,Y, k) =
{
t

∣∣∣∣ X [t : t+ |Y | − 1] = Y and
t < k < t+ |Y | − 1

}

S(X,Y, k) is the set of the occurrences of a pattern Y
that covers some position k in the string X . It also forms
a single arithmetic progression. This set can be computed
from the following recursive relation and the operation re-
quires O(height(X)) time.

S(X,Y, k) =



S(X�, Y, k) if k + |Y | < |X�|,
S(Xr, Y, k − |X�|) ⊕ |X�| if k − |Y | > |X�,
Occ∆(X,Y) ⊕ |X�| ∪Occ∆(rmd(X�, |Y�| + 1), Y)
∩{k − |Y |, ..., k, ..., k + |Y |} if k ≤ |X�| ≤ k + |Y |,
Occ∆(X,Y) ⊕ |X�| ∪Occ∆(lmd(Xr, |Y�| + 1), Y)
∩{k − |Y |, ..., k, ..., k + |Y |} if k − |Y | ≤ |X�| ≤ k.

Remind that dy is the length of overlaps between Y�(j)

and Yr(j). In the equation of Occ∆3 (Xi, Yj) in Lemma 7,
we denote Occ∆(Xi, Y�(j))�dy ⊕|Yr(j)| by triple 〈a, d, k〉
and denote Occ(Xr′(i), Y(j)) ⊕ |Yr(j)| by C. The small-
est element c in C can be computed from the table App in
O(height(Xr′(i))) time, by Lemma 2. We now consider the
partitions A and B of 〈a, d, k〉, defined as follows.

A = {x | x ∈ 〈a, d, k〉 and x ≤ b+ |Y�| − dy}

B = {x | x ∈ 〈a, d, k〉 and x > b+ |Y�| − dy}

Since d is a period of X [a : b+ |Y |], we have

A ∩C ={
{ x | x ∈ 〈c, d, b〉 and x ≤ b+ |Y�(j)| − dy} if c ∈ A

φ other

Moreover, we have

B ∩ C = B ∩ S(Xi, Yr(j), b+ |Y�(j)|).

Since both of A and B form single arithmetic progres-
sions, we can answer the intersection operation inO(1) time
by Lemma 5.

The whole operation runs in O(height(Xr′(i))) time.
Therefore, we can compute the set of Occ∆3 (Xi, Yj) in
O(m) time.

