Bit-Parallel Approach to Approximate String Matching in Compressed Texts

Tetsuya Matsumoto TakuyaKida

Masayuki Takeda

Ayumi Shinohara

Setsuo Arikawa

Department of Informatics, Kyushu University 33, Fukuoka 812-8581, Japan
{tetsuya, kida, takeda, ayumi, arikawa} @i.kyushu-u.ac.jp

Abstract

In this paper, we address the problem of approximate
string matching on compressed text. e consider this prob-
lem for a text string described in terms of collage system,
which is a formal system proposed by Kida et al. (1999)
that captures various dictionary-based compression meth-
ods. We present an algorithm that exploits bit-parallelism,
assuming that our problem fits in a single machine word,
eg., (m — k)(k+ 1) < L, where m is the pattern length,
k is the number of allowed errors, and L is the length in
bits of the machine word. For a class of smple collage sys-
tems, the algorithm runsin O(k2(||D|| + |S|) + km) time
using O(k?||D||) space, where || D|| isthe size of dictionary
D and |S| is the number of tokensin S. The LZ78 and the
LZW compression methods are covered by this class. Snce
we can regard n = ||D|| + |S| as the compressed length,
the time and the space complexities are O(k?n + km) and
O(k?n), respectively. For general k and m, they become
O(k3mn/L + km) and O(k3mn/L). Thus, our algorithm
is competitive to the algorithm proposed by Karkkainen,
et al. (2000) which runsin O(kmn) time using O(kmn)
space, when k = O(V/L).

1 Introduction

The problem of approximate string matching is to find
the locations of approximate occurrences P’ of a pattern P
inatext T such that the edit distance between P and P’ is
< k, where the edit distance between two stringsis the min-
imum number of edit operations (insertions, deletions, and
substitutions) required to convert one string into the other.
This problem has been studied extensively. See an excellent
survey paper by Navarro [7].

Baeza-Yates and Navarro [2] presented a very fast al-
gorithm for on-line approximate string matching, which is
based on the simulation of anondeterministic finite automa-
ton (NFA) built from the pattern P and the number % of

Figure 1. NFA for approximate string match-
ing for the pattern POKEMON with k& = 4.

alowed errors. Figure 1 shows the NFA for the pattern
P = POKEMON with & = 4. The simulation algorithm
exploits bit-parallelism. The idea is essentially similar to
the work of Wu and Manber [13], but the search timeisim-
proved by packing the automaton states differently. That is,
the algorithm simulates the NFA using diagonals instead of
rows. Sincetherearem — k + 1 complete diagonals and the
othersare not really necessary, we need only (m—k)(k+2)
bits for a pattern of length m. Thus the automaton states
can be packed into a machine word for a short pattern, and
the algorithm achieves an O(N) search time, where N is
the text length. Recall that the Wu-Manber agorithm uses
k + 1 machine words to encode the automaton states, and
requires O(kN) time.

On the other hand, the compressed pattern matching at-
tracts recently specia concern where the goal is to perform
the exact string matching in a compressed text without de-
compressing it. The problem has been studied in 1990's by
several researchers mainly for dictionary-based compres-
sion methods, such as the Ziv-Lempel family (e.g., LZ77
[14], LZ78 [15], LZW [12]). In[5], we introduced collage
systems, aformal system to represent atext string, that cap-

tures various dictionary-based compressions. Within this
framework, we generalized the existing compressed pattern
matching agorithms and unified the conceptsinto a general
algorithm. Thus any compression method covered by the
framework has now a compressed pattern matching algo-
rithm as an instance.

However, the studies on the compressed pattern match-
ing have been undertaken only for the exact pattern match-
ing. The approximate string matching on compressed text
has been an open problem since advocated in [1]. The
first solution to this problem was very recently given by
Kérkkainen et a. [4]. They addressed the LZ78 and the
LZW compression methods. The proposed algorithm runs
in O(mkn+r) time, where n isthe compressed text length,
m is the pattern length, k is the number of allowed errors,
and r is the number of pattern occurrences with % errors
or less. For the existence problem it needs O(mkn) time
and space. The algorithm is based on the simulation of the
classical dynamic programming algorithm for approximate
string matching [10]. They also showed that the algorithm
can be adapted to run in O(k*n + min(kmn, m?(m|%[)*))
time on the average. The experimental results reported in
[4] show that, for small £ and moderate m, the algorithm
runs faster than the method of decompressing the text on
the fly and searching over it using the modified dynamic
programming method which runsin O(kN) time on the av-
erage [11], where N isthe original text length.

In this paper, wetake the NFA simulation approach using
bit-paralelism, instead of the dynamic programming ap-
proach. We present a new algorithm for approximate string
matching to solve the existence problem. Like the work
of Baeza-Yates and Navarro [2], we assume that our prob-
lem fits in a single machine word, i.e, (m — k)(k + 1) <
L, where L is the length in bits of the machine word.
Our agorithm runs on a simple collage system (D, S) in
O(K*(|D|| + |S|) + km) time using O(k2||D||) space. It
should be emphasized that our algorithm works for any
compression method that covered by the class of simple
collage systems. For example, this class covers the LZ78
and the LZW compression methods. Since we can regard
n = ||D|| + |S], the time and the space complexities are
O(k*n + km) and O(k*n), respectively. For general k and
m, they become O(k3mn /L + km) and O(k3mn/L), re-
spectively. Thusour algorithm is competitive to the one due
to Karkkainen et a., when k = O(+v/L) which is quite rea-
sonable.

2 Preliminaries

Let > be afinite alphabet. An element of ¥* iscalled a
string. Strings x, y, and z are said to be a prefix, factor, and
suffix of the string u = xyz, respectively. The length of a
string u is denoted by |u|. The empty string is denoted by ¢,

that is, |e| = 0. The ith symbol of a string is denoted by
ufi] for 1 < i < |ul, and the factor of a string u that begins
at position ¢ and ends at position j is denoted by wu[i : j]
for1 <4 < j < |u|. For convenience, let ufi : j] = ¢
for j < i. Denote by uf the reversed string of a string
u. For a string u and a non-negative integer 4, the string
obtained by removing the length i prefix (resp. suffix) from
u is denoted by [1u (resp. ull). Thatis, Flu = uli + 1 : |ul]
andull = (1 : |u|—i]. Denoteby D(z,) theedit distance
between two strings = and y.

3 Collage system

In a dictionary-based compression, a text string is de-
scribed by a pair of a dictionary and a sequence of tokens,
each of which represents a phrase defined in the dictionary.
Kidaet al. [5] introduced a unifying framework, named col-
lage system, which abstracts various dictionary-based meth-
ods, such as the Lempel-Ziv family, the SEQUITUR [9],
the RE-PAIR [6], and static dictionary methods. In [5]
they presented ageneral compressed pattern matching algo-
rithm for the framework, which is based on the simulation
of the KMP automaton. This implies that any compression
method covered by the framework has a compressed pattern
matching algorithm as an instance.

A collage system is a pair (D, S) defined as follows:
D is a sequence of assignments X; = expry; Xo =
expry; --- ; Xy = expr,, where each X, is atoken (or a
variable) and expr,, isany of the form:

a foraeXU{e}, (primitive assignment)
X;X; fori,j <k, (concatenation)
UlX; fori < kandaninteger j, (prefix truncation)
XY fori < k and an integer j, (suffix truncation)

(3

(X;)? fori < k and aninteger j. (j times repetition)

Each token represents a string obtained by evaluating the
expression as it implies. The strings represented by tokens
are called phrases. Aswe want to distinguish a token from
the phrase it represents, we denote by X.u the phrase rep-
resented by atoken X. Thesize of D isthe number ¢ of as-
signments and denoted by || D||. Define the height of atoken
X to be the height of the syntax tree whose root is X. The
height of D is defined by height(D) = max{height(X) |
X inD}. It expresses the maximum dependency of the to-
kensin D.

On the other hand, S = X;,,X,,,...,X;, isase
quence of tokens defined in D. We denote by |S| the num-
ber n of tokens in S. The collage system represents a
string obtained by concatenating the phrases represented by
X, Xy, X

According to the framework, text strings compressed by
LZW and RE-PAIR can be represented as follows.

LZW. §$=X;,,X;,...,X;, andDisasfollows:
Xi=a;, Xpo=ay -5 Xg=ag;

X1 = Xiy Xo(in); Xgv2 = Xin Xo(is): 73
Xqunfl = X’L-”LleU(in)’

where the alphabet is¥ = {a1,...,a4}, 1 < i1 < ¢, and
o(¢) denotes the integer k, 1 < k < ¢, such that ay, is
the first symbol of the phrase X,.u. S isencoded as a se-
quence of integers i1, iz, ..., 4, IN which an integer i; is
represented in [log, (¢ + j)] bits, while D is not encoded
sinceit can be obtained from S.

RE-PAIR. §=X,,,X,,,...,X;,,and D isasfollows:
X1 =a1; Xo=ag;
KXo1 = Xy X (1)

KXots = X)X (s)s

BRI Xq:aq;

KXotz = Xo2)Xr(2); 5

whereX = {a1,---,aq}. D and S are encoded using some
appropriate encoding.

Theorem 1 (Kidaetal.[5]) The problem of pat-
tern matching for a text (D,S) can be solved in
O(height(D)(||D||+|S|)+m?+r) timeusing O(|| D||+m?)
space, where r is the number of pattern occurrences. The
factor height(D) can be dropped if D contains no
truncation.

Since the factor ||D|| + |S] is considered to be the com-
pressed text length, the algorithm runsin linear time propor-
tional to the compressed text length if D contains no trunca-
tion. The result coincides with the observation by Navarro
and Raffinot [8] that LZ77 is not suitable for compressed
pattern matching compared with LZ78 compression.

The following definitions will be needed for Sections 4
and 5.

Definition 1 A collage system is said to be regular if it
contains neither repetition nor truncation. A regular col-
lage system is said to be simple if, for every assignment
X=YZ,|Yu|=1or|Zu| =1.

Note that the collage systems for the SEQUITUR and the
RE-PAIR are regular, and those for the LZW/LZ78 com-
pressions are simple.

4 Basicidea

We give an overview of our algorithm for approximate
string matching, which is based on the simulation of the
NFA. First we give aformal description of the NFA for ap-
proximate string matching of pattern P = P[1 : m] with k&
errors. Denote by N the set of natural numbers 0,1,

Forany S C N x N and any (z,y) € N x N, let
S&(z,y) ={(i+zj+y)|(i,j) €S} Let

Q={lij)|0<i<m0<j<k}
Define the mapping 6°¢ : Q x (S U {e}) — 29 by

°4((i, j),)
6°4((i, j), a)

(i+1,74+1)i+1<m,j+ 1<k},
(i+1,5) [i+1<m,Pli+1]=a)
U{(i.d+1) [j+1<k}
U{(i+1,j+1) [i+1<m,j+1<k},

=
=

where (i,7) € Q and a € X. Define the mapping ™ :
Qx (ZuU{e}) —29by

o™ ((iyg),€) = 6°U((i,j),),
(i, 4),a) = 6°Y((i,4),a) U{(0,0) | i = j = 0},

where (i,j) e Qanda € X. Let FF = {(m,j) |0 < j <
k}.

Proposition 1 The NFA specified by

ple (Q,%,0°,{(0,0)}, F)
{we x| D(P,w) < k.

the quintu-
accepts the language

Proposition 2 The NFA specified by

ple (Q,%,0"™,{{0,0)}, F)
S {w € B* | D(P,w) < k}.

the quintu-
accepts the language

Let 5°d and 6P™, respectively, be the functions 5°¢ and
sP™ extended over the domain 29 x ¥* in the standard way
(see Section 2.4 of [3]).

Definition 2 Define the function Jump : 29 x D — 29 by
Jump(S, t) = 6P™ (S, t.u).
Define the function Output : 29 x D — {true, false} by

Output(S, t) = true
< there exists a nonempty prefix w of ¢.u such that
oP™ (S, w) N F £ ().

The basic idea of our agorithm is to simulate the NFA
in compressed text, by packing S € 29 in amachine word.
We need only (m —k+1)(k+1) statesout of @ sincethere
are'm — k + 1 complete diagonals and the others are not
necessary as pointed out by Baeza-Yates and Navarro [2].
That is, we need only the statesin

Qcore:{<zv.7>6Q|0§Z§m_k+1aOéjék}

Moreover, we know that the states on the first diagondl, i.e.,
the states (i, j) € Qcore With ¢ = j are aways active, and
therefore we do not have to store them. Thus we need only
(m — k)(k + 1) bitsto represent the NFA states.

Assume that the given pattern P = P[1 : m] issmadl so
that (m — k)(k + 1) is not greater than the machine word
length in bits. Then the union, the intersection, and the @
operations on the subsets of Q... can be performedin O(1)
time. As shown later, we can build the functions Jump and
Output in O(k2||D|| + km) time using O(k?||D||) space,
so that they return their valuesin O(k?) time, for asimple
collage system (D, S). Figure 2 gives an overview of the
algorithm using the function Jump and Output.

We thus have the next result under the assumption that
(m —k)(k+ 1) < L, where L is the machine word length
in bits.

Theorem 2 Our algorithmrunsin O(k2(||D||+|S|) +km)
time using O(k?||D||) space for a simple collage system
(D,S).

5 Algorithm in detail

In this section, we discuss the construction of the two
functions Jump and Output. Throughout this section, we
assume that the union, the intersection, and the & operations
for the subsets of) can be performed in O(1) time.

5.1 Construction of function Jump

Definition 3 Let I(w) = 6*™({(0, 0)}, w) for any string w
inX*.

We can prove the following relation between the two tran-
sition functions 6P™ and 6°4.

Lemmal Forany S € 29 andany w € ¥*,

o 6°4(S,w) U I(w), if(0,0) € S;

P _
OP (S w) = { 5°4(S, w), otherwise.
Notethat 7(w) corresponds to the existence of the self-loop
on the initial state (0,0). Note aso that the lemma is for
general S in 29. In fact, we do not have to care the sets
S such that (0,0) ¢ S, because the state (0, 0) of the NFA
(Q,%,6P™,{(0,0)}, F) isalways active.

Definition 4 For anya € ¥, let

Gla) ={(i,j) € Qi # 0, Pli] = a},
H(a)

Because we need only the states in Q... and encode
each of the sets G(a) N Qeore @d H (a) N Qeore iNt0 @amMar
chine word, these tables can be built in O(|X| + km) time
using O(|%|) spacein asimple way.

{(i,j) € Q| P[i'] = afor somei’ with1 <3¢’ <i}.

Lemma?2 For anya € ¥ and any u,v € X%,

I(@) =Qn (EU(E@(0,1)U((E®(1,0) N H(a))
I(uv) = 6°4 (I (u),v) U I(v),

where E = {(i,j) € Q | i = j}.

Proof. Straightforward. |

The above lemmaimpliesthat, for aregular collage sys-
tem, we can build the table which stores I(t.u) for the to-
kenst in D by calling the function ¢4 O(||D||) times. Thus
we concentrate on how to compute the function bed,

Definition 5 For any w € ¥* and any integers £ and d
(0</<mand0<d<k),let

V(w;l,d) = {z

and let

0<i<m, 0<i—{¢<m,
<Z’d> € 5ed({<i_€70>}aw) ,

M(wit,d) = {(i.5) € Q | i € V(wst,)}
Then we have the following lemma.

Lemma3 For any S € 2% and any w € ¥,

0°4(S,w) = J(S & (¢,d)) N M (w; £, d),
0,d

where ¢ and d satisfy max(0, |w| — k) < ¢ < min(|w| +
k,m)and0 < d < k.

Proof. Let (i,j) € §°4(S,w). There exists (i’,j') € S
such that (i, 5) € 6°4({(i,j'),w). Let{ =i —i' andd =
j— 7. Itiseasy to seethat (i,j) € S @ (£, d), and that
0<¢<mand0 < d < k. By the definition of 5
weseethat (i,d) € 6°4({(i’,0)},w), and therefore (i, j) €
M (w; ¢, d). By Proposition 1, (i,d) € §°4({(i — £,0)}, w)
impliesthat D(P[i — ¢+ 1 : 4], w) < d. Hence |w| — d <
|Pli—£¢+1:4]| < |w|+d,andthen|w|—k < ¢ < |w|+k.
Thus we have

0°4(S,w) C | J(S & (¢,d)) N M(w; £, d).
0,d

On the other hand, let (i, j) € (S @ (¢,d)) N M (w; ¢, d)
for some ¢ and d such that max(0,|w| — k) < ¢ <
min(|w| + k,m) and 0 < d < k. We can provein asimilar
manner that (i, j) € §°4(S, w). |

Let M be the table which stores M (t.u; ¢, d) for the to-
kens ¢ in D, and the integers ¢, d such that max(1, |t.u| —
k) < ¢ < min(m,|t.u| + k) and 0 < d < k. The size
of M isO(k?||D||). The above lemmaimplies that, for any
S € 29 and any token ¢, we can obtain the value §°4(S, ¢.u)
in O(k?) time using the table /. We now consider the com-
putation of the table M.

Input. A text string represented as a pair of D and S = S[1 : n], and apattern P[1 : m].
Output. A boolean value that indicates whether there is an approximate occurrence of P with k errors or less.

begin
I* Preprocessing */

Build Jump and Output from the pattern P and the dictionary D;

[* Text scanning */

R :=I(e); I* I(w) isdefined in Section 5 */

for £ :=1ton dobegin
if Output(R, S[¢]) = truethen return true;
R := Jump(R, S[¢])

end;

return false

end.

Figure 2. Overview of our algorithm.

Lemma4 For a simple collage system, we can build the
table M in O(k?||D|| + km) timeusing O(k?|D||) space.

Proof. We can compute the table by the recurrence

(RQen)NQ, ift=d
0, otherwise

M(e;,d) = {
M(ua; £,d)=Q N (M(ua;€— 1,d— 1)@ (1,0)

UM(u:6—1,d —1) & (1,0)
UM (u;£,d — 1)

UM (u; € —1,d) & (1,0)) N G(a)),

)

M(au; 6,d) = Mau;—1,d—1)
UM (u; ¢ —1,d—1)
UM (u;£,d — 1)

UM (w € —1,d) N (G(a) ® (£ — 1,0)),

whereu € ¥*,a € ¥,and ¢ > 0and d > 0. (We assume,
for the sake of convenience, that M (w;i,5) = (for al
we Y ifi<0orj<o0.) |

Unfortunately, for aregular collage system, we have not
devised away of computing the table M. Thus our result is
only for simple collage systems.

Lemma5 For a simple collage system, we can build the

function Jump in O(k2||D|| + km) time using O(k?||D||)
space, so that it returnsits valuein O(k?) time.

Proof. It follows from Lemmas 3 and 4. |

5.2 Construction of function Output

Definition 6 For any S € 29 and any token ¢ in D, define
Output, and Output, by

Output, (t) = true
< thestring ¢.u contains an approximate occurrence
of P.
Output, (S, t) = true
& thereexistintegers/and jwith? >0, 0 <j <k
and a non-empty prefix w of ¢.« such that
(m—1t,5) e Sandj+ D(Pm —{+1:m],w) <k.

Definition 7 For any S € 29 and any token X in D, define
Occ* by

Occ* (X)) = true
& thereexisttokensY, Z with X =Y Z € D and
u,v € X* such that
w isa suffix of Y.u, v isa prefix of Z.u,
and D(uv, P) < k.

Let us consider the computation of Occ*. We build
the NFA for approximate pattern matching for the reversed
pattern P, which plays a key role in the computation of
Occ*. Figure 3 shows the NFA for P® = NOMEKOP
with & = 4. Note that the NFA in Fig. 3 is the same as
the one obtained by reversing the direction of the arcs of the
NFA in Fig. 1 except for the self-loop on the initial-state.
The precise discussion is as follows. Define the mapping
5l 1 Q x (BU{e}) — 2% by

54 ((i,4),e) = {(i—1,j—1)]0<i—1,0<j—1},

5¢d ((i,j),a) = {(i—1,5)|0<i—1,P[i]=a}
u{(i,j—1)|0<j—1}
U{(i—1,7-1)|0<i—1,0<75—1},

O
4errorsO:\P_Q‘\o

NE
3erors O D,

2errors

1error C

Figure 3. NFA for approximate string match-
ing of the reversed pattern P = NOMEKOP
with & = 4.

where (i,7) € Q and a € X. Define the mapping db2 :
Qx (ZU{e}) —2%by

6%{:(@7])?6) = 5$gv(<i,j>,5)7
SR ((i,5),a) = 64, ((i,5),a) U{(m, k) | i =m,j =k},

where (i,j) € Qanda € . Let Fiep, = {(0,7) |0 <5 <
k}. Obviously we have:

Proposition 3 The NFA specified by the quintuple
(Q,%,0% {(m,k)}, Frey) accepts the language
{w e X | D(PE,w) < k}.

Proposition 4 The NFA specified by the quintuple
(Q, %, 0P {(m,k)}, Frey) accepts the language
Y {w € X* | D(PE,w) < k}.

Lemma6 For anystringsu, v € ¥*, thestring uv contains
an approximate occurrence of P with at most & errorsif and
only if

I(u) N Lev (v) # 0,

where Lo, (w) = 627 ((m, k), w) for w € £*.

rev

Lemma?7 For a simple collage system, we can build in
O(K?||D|| + km) time using O(k?||D||) space the table
which stores the values Occ* (¢) for the tokenst in D.

Proof. All tokens X are defined in D as either X = a or
X =YZ,wherea € ¥ and Y, Z aretokens. When X = q,
Occ*(X) = 0 by the definition of Occ*. When X =Y Z,
Occ*(X) = true if and only if

I(Yu) N Ley ((Zu)®) # 0,

by Lemma 6. The proof is complete. |

Lemma8 For a simple collage system, we can build in
O(K?||D|| + km) time using O(k?||D||) space the table
which stores the values Output, (¢) for the tokens¢ in D.

Proof. When X = q, Output, (X) = true if and only if
D(P,a) <k.WhenX =Y Z,

Output, (X)) = Output, (Y") OR Output, (Z) orR Occ*(X),

where OR denotes the logical OR. The proof is complete.

Now we turn into the computation of Output,. The com-
putation can be done with the same idea used for that of
Output, . By the definition of Output,, it is not hard to see
that Output,, (.S, ¢) = true if and only if

SN Ley (tw)®) N {(i,j) € Q| i #m} # 0.
Thus we can prove the next lemma.

Lemma9 For a simple collage system, the function
Output, can be built in O(k?||D|| + km) time using
O(Kk?||D||) space, so that it returnsitsvaluein O(k?) time.

Since Output(.S, t) = Output, (¢) OROutput, (S, t), we have
the next result.

Lemma 10 For a simple collage system, the function
Output can be built in O(k?|D| + km) time using
O(K?||D||) space, sothat it returnsthe valuein O(k?) time.

Theorem 2 follows from Lemmas 5 and 10.
5.3 Bit-parallel implementation

In our implementation, we do not encode al of the au-
tomaton states in Q. We only encode the states in Qcore
into a machine word. We thus substitute Q.. for Q. The
discussion in Sections 5.1 and 5.2 is till true except for
the computation of the table A/ mentioned in the proof of
Lemma 4. For a correct computation of the table A/, we
need some modification based on the following fact.

Proposition 5 Let J beasubsetof {0,...,m},andlet.S =
{(i,7) € Q| i € J}. Let Score = S N Qcore- Then,

Qcorem(s@“-v 0>) = Qcorem<score@<]-a 0>UScore@<]-v 1>)

Now, we explain the details of our bit-parallel implemen-
tation. We use the (k(: — j — 1) + 4)th bit of a machine
word to indicate whether or not the state (i, j) € Qcore IS
active (see Fig. 4). The union and the intersection opera-
tions on the subsets of Q... can be evidently computed in
O(1) time by using the bitwise OR and AND, respectively.
Next we discuss the computation of the operation . For

k+1 k+1 k+1

olofofofoft]t]t]1]of1]1]1]o]0
(711)(6,3)(5,2)(4,1)(3,0)(6,3)(5,3)(4,2)(3,1)(2,0)(5,4)(4,3)(3,2)(2,1)(1,0)
— -

——
(m - k)k + 1) bits

Figure 4. Encoding of the example NFA, where
m=7 and k=4.

70 ——

60} .:::::I 7

50} .:::::I 7

30} .:EEEE‘ 7

50 60 70

Figure 5. Combinations of m and k satisfying
(m—k)(k+1) < 64.

a computation of S @ (¢,d), it suffices to move al of the
points (i, j) € S totheright by ¢ — d (to theleft by d — ¢,
if ¢ < d) and then move them down by d aong the diag-
onal. The translation seems to be done using bit-shift by
(k4 1)(£ —d) + d. However, thisis not enough because the
bits in the result which correspond to the points (i, j) with
0 < j < d should be (). To make these bits 0, we use mask
bits which depend on d and can be in advance built in O(k)
time and space. Therefore we can execute the operation &
inO(1) time.

Figure5 shows the combinations of m and k satisfying
(m—k)(k+1) < L,where L = 64.

6 Experimental results

To estimate the performance of our algorithm, we tested
the following two programs for LZW compressed texts.

e Decompression followed by a search based on the dy-
namic programing.
We embedded the approximate search routine based
on the modified dynamic programing[11], which runs
in O(kN) time on the average, into the decompres-
sion program. This method is abbreviated as uncom-
press+DP.

e Our algorithm.
Thisis abbreviated as Bit-parallel on LZW.

Our experiment was carried out on an AlphaStation
XP1000 with an Alpha21264 processor at 667MHz running
True4 UNIX operating system V4.0F. We used a subset
of the GenBank database as a text file, which is an anno-
tated collection of al publicly available DNA sequences.
However, all fields other than accession number and nu-
cleotide sequence were removed. Thefile sizeisabout 17.1
Mbyte originally, and the compression ratio by compressis
26.80%. The patterns are randomly selected text substrings
which we modified so that they have no approximate occur-
rences in the texts.

Table 1 shows the running times (in CPU time) for £ =
1 and m = 8 ~ 32, where the preprocessing times were
included. On the other hand, Table 2 shows the running
timesfork =1~ 5andm = 14.

Unfortunately, the results show that our algorithm is
slower than the decompression followed by the dynamic
programming. Although our agorithm runs in O(k%n)
time after preprocessing, the constant factor hidden is rather
large.

7 Conclusion

We have presented the first algorithm using bit-
parallelism for the problem of approximate string matching
on compressed text. The algorithm is intended to solve the
existence problem. Assuming that our problem fitsin asin-
gle machineword, the algorithm runsin O(k2(|| D||+|S|) +
km) time using O(k?||D||) space for a simple collage sys-
tem. For the LZW or the LZ78 compression, the time and
the space complexities are O(k?n + km) and O(k*n), re-
spectively, where n is the compressed text length. Thisis
a desirable property compared with the O(mkn) time and
space complexities of the algorithm due to Karkkainen et
a. [4], athough ours cannot cope with the all occurrence
problem.

Unfortunately, the result of our experiments on LZW
compressed text shows that the algorithm is in practice
slower than a decompression followed by a search with the
modified dynamic programming [11]. If we specidize the
implementation to the LZW compression, the performance
might be improved.

Table 1. CPU time comparison for k = 1.

m 8 12

16

20 24 28 32

uncompress+DP

2235 2243 2241 2241 2250 2240 2.235

Bit-parallel on LZW

5364 6.233 6475 6.633 6.829 7.021 7.269

Table 2. CPU time comparison for m = 14.

k 1

2

3 4 5

uncompress+DP 2.240

2.987

3684 4369 4.953

Bit-parallel on LZW

6.327 12909 21509 31500 43.033

A practical fast algorithm for approximate string match-
ing uses some filtering technique [7]. Although we have
not yet devised afiltering technique suitable for compressed
text searching, it will improve the performance of our algo-
rithm in practice.

Acknowledgement

We would like to thank Professor Apostolico for fruitful
discussions on this work. We would aso like to thank the
anonymous referees for suggestions which led to improve-
ments in the presentation of the results.

References

[1] A. Amir and G. Benson. Efficient two-dimensional
compressed matching. In Proc. Data Compression
Conference, page 279, 1992.

[2] R. Baeza-Yates and G. Navarro. Faster approximate
string matching. Algorithmica, 23:127-158, 1999.

[3] J. E. Hopcroft and J. D. Ullman. Introduction
to Automata Theory, Languages, and Computation.
Addison-Wesley, 1979.

[4] J. Kérkkainen, G. Navarro, and E. Ukkonen. Approx-
imate string matching over Ziv-Lempel compressed
text. In Proc. 11th Ann. Symp. on Combinatorial Pat-

tern Matching, pages 195-209. Springer-Verlag, 2000.

[5] T. Kida, Y. Shibata, M. Takeda, A. Shinohara, and
S. Arikawa. A unifying framework for compressed
pattern matching. In Proc. 6th International Symp.
on Sring Processing and Information Retrieval, pages

89-96. |EEE Computer Society, 1999.

[6] N.J. Larssonand A. Moffat. Offline dictionary-based
compression. In Proc. Data Compression Conference

’99, pages 296-305. | EEE Computer Society, 1999.

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

G. Navarro. A guided tour to approximate string
matching. Technical Report TR/DCC-99-5, Dept. of
Computer Science, Univ. of Chile, 1999.

G. Navarro and M. Raffinot. A general practical
approach to pattern matching over Ziv-Lempel com-
pressed text. In Proc. 10th Ann. Symp. on Combinato-
rial Pattern Matching, pages 14-36. Springer-Verlag,
1999.

C. G. Nevill-Manning, |. H. Witten, and D. L.
Maulsby. Compression by induction of hierarchical
grammars. In DCC94, pages 244-253. |EEE Press,
199%4.

P. Sellers. The theory and computation of evolution-
ary distances: pattern recognition. J. of Algorithms,
1:359-373, 1980.

E. Ukkonen. Finding approximate patterns in strings.
J. Algorithms, 6, 1985.

T. A. Welch. A technique for high performance data
compression. |EEE Comput., 17:8-19, June 1984.

S. Wu and U. Manber. Fast text searching allowing
errors. Comm. ACM, 35(10):83-91, October 1992.

J. Ziv and A. Lempel. A universal agorithm for se-
guential data compression. |EEE Trans. on Inform.
Theory, 1T-23(3):337-349, May 1977.

J. Ziv and A. Lempel. Compression of individual se-
guences via variable-rate coding. IEEE Trans. on In-
form. Theory, 24(5):530-536, Sep 1978.

