
Bit-Parallel Approach to Approximate String Matching in Compressed Texts

Tetsuya Matsumoto Takuya Kida Masayuki Takeda Ayumi Shinohara
Setsuo Arikawa

Department of Informatics, Kyushu University 33, Fukuoka 812-8581, Japan

{tetsuya, kida, takeda, ayumi, arikawa}@i.kyushu-u.ac.jp

Abstract

In this paper, we address the problem of approximate
string matching on compressed text. We consider this prob-
lem for a text string described in terms of collage system,
which is a formal system proposed by Kida et al. (1999)
that captures various dictionary-based compression meth-
ods. We present an algorithm that exploits bit-parallelism,
assuming that our problem fits in a single machine word,
e.g., (m − k)(k + 1) ≤ L, where m is the pattern length,
k is the number of allowed errors, and L is the length in
bits of the machine word. For a class of simple collage sys-
tems, the algorithm runs in O(k2(‖D‖ + |S|) + km) time
using O(k2‖D‖) space, where ‖D‖ is the size of dictionary
D and |S| is the number of tokens in S. The LZ78 and the
LZW compression methods are covered by this class. Since
we can regard n = ‖D‖ + |S| as the compressed length,
the time and the space complexities are O(k2n+ km) and
O(k2n), respectively. For general k and m, they become
O(k3mn/L+ km) and O(k3mn/L). Thus, our algorithm
is competitive to the algorithm proposed by Kärkkäinen,
et al. (2000) which runs in O(kmn) time using O(kmn)
space, when k = O(

√
L).

1 Introduction

The problem of approximate string matching is to find
the locations of approximate occurrences P ′ of a pattern P
in a text T such that the edit distance between P and P ′ is
≤ k, where the edit distance between two strings is the min-
imum number of edit operations (insertions, deletions, and
substitutions) required to convert one string into the other.
This problem has been studied extensively. See an excellent
survey paper by Navarro [7].

Baeza-Yates and Navarro [2] presented a very fast al-
gorithm for on-line approximate string matching, which is
based on the simulation of a nondeterministic finite automa-
ton (NFA) built from the pattern P and the number k of
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Figure 1. NFA for approximate string match-
ing for the pattern POKEMON with k = 4.

allowed errors. Figure 1 shows the NFA for the pattern
P = POKEMON with k = 4. The simulation algorithm
exploits bit-parallelism. The idea is essentially similar to
the work of Wu and Manber [13], but the search time is im-
proved by packing the automaton states differently. That is,
the algorithm simulates the NFA using diagonals instead of
rows. Since there are m−k+1 complete diagonals and the
others are not really necessary, we need only (m−k)(k+2)
bits for a pattern of length m. Thus the automaton states
can be packed into a machine word for a short pattern, and
the algorithm achieves an O(N) search time, where N is
the text length. Recall that the Wu-Manber algorithm uses
k + 1 machine words to encode the automaton states, and
requires O(kN) time.

On the other hand, the compressed pattern matching at-
tracts recently special concern where the goal is to perform
the exact string matching in a compressed text without de-
compressing it. The problem has been studied in 1990’s by
several researchers mainly for dictionary-based compres-
sion methods, such as the Ziv-Lempel family (e.g., LZ77
[14], LZ78 [15], LZW [12]). In [5], we introduced collage
systems, a formal system to represent a text string, that cap-
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tures various dictionary-based compressions. Within this
framework, we generalized the existing compressed pattern
matching algorithms and unified the concepts into a general
algorithm. Thus any compression method covered by the
framework has now a compressed pattern matching algo-
rithm as an instance.

However, the studies on the compressed pattern match-
ing have been undertaken only for the exact pattern match-
ing. The approximate string matching on compressed text
has been an open problem since advocated in [1]. The
first solution to this problem was very recently given by
Kärkkäinen et al. [4]. They addressed the LZ78 and the
LZW compression methods. The proposed algorithm runs
inO(mkn+r) time, where n is the compressed text length,
m is the pattern length, k is the number of allowed errors,
and r is the number of pattern occurrences with k errors
or less. For the existence problem it needs O(mkn) time
and space. The algorithm is based on the simulation of the
classical dynamic programming algorithm for approximate
string matching [10]. They also showed that the algorithm
can be adapted to run in O(k2n+ min(kmn,m2(m|Σ|)k))
time on the average. The experimental results reported in
[4] show that, for small k and moderate m, the algorithm
runs faster than the method of decompressing the text on
the fly and searching over it using the modified dynamic
programming method which runs inO(kN) time on the av-
erage [11], where N is the original text length.

In this paper, we take the NFA simulation approach using
bit-parallelism, instead of the dynamic programming ap-
proach. We present a new algorithm for approximate string
matching to solve the existence problem. Like the work
of Baeza-Yates and Navarro [2], we assume that our prob-
lem fits in a single machine word, i.e., (m − k)(k + 1) ≤
L, where L is the length in bits of the machine word.
Our algorithm runs on a simple collage system 〈D,S〉 in
O(k2(‖D‖ + |S|) + km) time using O(k2‖D‖) space. It
should be emphasized that our algorithm works for any
compression method that covered by the class of simple
collage systems. For example, this class covers the LZ78
and the LZW compression methods. Since we can regard
n = ‖D‖ + |S|, the time and the space complexities are
O(k2n+ km) and O(k2n), respectively. For general k and
m, they become O(k3mn/L + km) and O(k3mn/L), re-
spectively. Thus our algorithm is competitive to the one due
to Kärkkäinen et al., when k = O(

√
L) which is quite rea-

sonable.

2 Preliminaries

Let Σ be a finite alphabet. An element of Σ∗ is called a
string. Strings x, y, and z are said to be a prefix, factor, and
suffix of the string u = xyz, respectively. The length of a
string u is denoted by |u|. The empty string is denoted by ε,

that is, |ε| = 0. The ith symbol of a string u is denoted by
u[i] for 1 ≤ i ≤ |u|, and the factor of a string u that begins
at position i and ends at position j is denoted by u[i : j]
for 1 ≤ i ≤ j ≤ |u|. For convenience, let u[i : j] = ε
for j < i. Denote by uR the reversed string of a string
u. For a string u and a non-negative integer i, the string
obtained by removing the length i prefix (resp. suffix) from
u is denoted by [i]u (resp. u[i]). That is, [i]u = u[i+ 1 : |u|]
and u[i] = u[1 : |u|−i]. Denote byD(x, y) the edit distance
between two strings x and y.

3 Collage system

In a dictionary-based compression, a text string is de-
scribed by a pair of a dictionary and a sequence of tokens,
each of which represents a phrase defined in the dictionary.
Kida et al. [5] introduced a unifying framework, named col-
lage system, which abstracts various dictionary-based meth-
ods, such as the Lempel-Ziv family, the SEQUITUR [9],
the RE-PAIR [6], and static dictionary methods. In [5]
they presented a general compressed pattern matching algo-
rithm for the framework, which is based on the simulation
of the KMP automaton. This implies that any compression
method covered by the framework has a compressed pattern
matching algorithm as an instance.

A collage system is a pair 〈D,S〉 defined as follows:
D is a sequence of assignments X1 = expr1; X2 =
expr2; · · · ;X� = expr�, where each Xk is a token (or a
variable) and exprk is any of the form:

a for a ∈ Σ ∪ {ε}, (primitive assignment)
XiXj for i, j < k, (concatenation)
[j]Xi for i < k and an integer j, (prefix truncation)

X
[j]
i for i < k and an integer j, (suffix truncation)

(Xi)j for i < k and an integer j. (j times repetition)

Each token represents a string obtained by evaluating the
expression as it implies. The strings represented by tokens
are called phrases. As we want to distinguish a token from
the phrase it represents, we denote by X.u the phrase rep-
resented by a token X . The size of D is the number � of as-
signments and denoted by ‖D‖. Define the height of a token
X to be the height of the syntax tree whose root is X . The
height of D is defined by height(D) = max{height(X) |
X in D}. It expresses the maximum dependency of the to-
kens in D.

On the other hand, S = Xi1 , Xi2 , . . . , Xin is a se-
quence of tokens defined in D. We denote by |S| the num-
ber n of tokens in S. The collage system represents a
string obtained by concatenating the phrases represented by
Xi1 , Xi2 , . . . , Xin .

According to the framework, text strings compressed by
LZW and RE-PAIR can be represented as follows.
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LZW. S = Xi1 , Xi2 , . . . , Xin and D is as follows:

X1 = a1; X2 = a2; · · · ; Xq = aq;
Xq+1 = Xi1Xσ(i2); Xq+2 = Xi2Xσ(i3); · · · ;
Xq+n−1 = Xin−1Xσ(in),

where the alphabet is Σ = {a1, . . . , aq}, 1 ≤ i1 ≤ q, and
σ(�) denotes the integer k, 1 ≤ k ≤ q, such that ak is
the first symbol of the phrase X�.u. S is encoded as a se-
quence of integers i1, i2, . . . , in in which an integer ij is
represented in �log2(q + j)� bits, while D is not encoded
since it can be obtained from S.

RE-PAIR. S = Xi1 , Xi2 , . . . , Xin , and D is as follows:

X1 = a1; X2 = a2; · · · ; Xq = aq;
Xq+1 = X�(1)Xr(1); Xq+2 = X�(2)Xr(2); · · · ;
Xq+s = X�(s)Xr(s),

where Σ = {a1, · · · , aq}. D and S are encoded using some
appropriate encoding.

Theorem 1 (Kida et al. [5]) The problem of pat-
tern matching for a text 〈D,S〉 can be solved in
O(height(D)(‖D‖+|S|)+m2+r) time usingO(‖D‖+m2)
space, where r is the number of pattern occurrences. The
factor height(D) can be dropped if D contains no
truncation.

Since the factor ‖D‖ + |S| is considered to be the com-
pressed text length, the algorithm runs in linear time propor-
tional to the compressed text length if D contains no trunca-
tion. The result coincides with the observation by Navarro
and Raffinot [8] that LZ77 is not suitable for compressed
pattern matching compared with LZ78 compression.

The following definitions will be needed for Sections 4
and 5.

Definition 1 A collage system is said to be regular if it
contains neither repetition nor truncation. A regular col-
lage system is said to be simple if, for every assignment
X = Y Z , |Y.u| = 1 or |Z.u| = 1.

Note that the collage systems for the SEQUITUR and the
RE-PAIR are regular, and those for the LZW/LZ78 com-
pressions are simple.

4 Basic idea

We give an overview of our algorithm for approximate
string matching, which is based on the simulation of the
NFA. First we give a formal description of the NFA for ap-
proximate string matching of pattern P = P [1 : m] with k
errors. Denote by N the set of natural numbers 0, 1, . . ..

For any S ⊆ N × N and any 〈x, y〉 ∈ N × N , let
S ⊕ 〈x, y〉 = {〈i+ x, j + y〉 | 〈i, j〉 ∈ S}. Let

Q = {〈i, j〉 | 0 ≤ i ≤ m, 0 ≤ j ≤ k}.

Define the mapping δed : Q× (Σ ∪ {ε}) → 2Q by

δed(〈i, j〉, ε) = {〈i+ 1, j + 1〉 | i+ 1 ≤ m, j + 1 ≤ k},
δed(〈i, j〉, a) = {〈i+ 1, j〉 | i+ 1 ≤ m,P [i+ 1] = a}

∪{〈i, j + 1〉 | j + 1 ≤ k}
∪{〈i+ 1, j + 1〉 | i+ 1 ≤ m, j + 1 ≤ k},

where 〈i, j〉 ∈ Q and a ∈ Σ. Define the mapping δpm :
Q× (Σ ∪ {ε}) → 2Q by

δpm(〈i, j〉, ε) = δed(〈i, j〉, ε),
δpm(〈i, j〉, a) = δed(〈i, j〉, a) ∪ {〈0, 0〉 | i = j = 0},

where 〈i, j〉 ∈ Q and a ∈ Σ. Let F = {〈m, j〉 | 0 ≤ j ≤
k}.

Proposition 1 The NFA specified by the quintu-
ple (Q,Σ, δed, {〈0, 0〉}, F ) accepts the language
{w ∈ Σ∗ | D(P,w) ≤ k}.

Proposition 2 The NFA specified by the quintu-
ple (Q,Σ, δpm, {〈0, 0〉}, F ) accepts the language
Σ∗{w ∈ Σ∗ | D(P,w) ≤ k}.

Let δ̂ed and δ̂pm, respectively, be the functions δed and
δpm extended over the domain 2Q ×Σ∗ in the standard way
(see Section 2.4 of [3]).

Definition 2 Define the function Jump : 2Q ×D → 2Q by

Jump(S, t) = δ̂pm(S, t.u).

Define the function Output : 2Q ×D → {true, false} by

Output(S, t) = true
⇔ there exists a nonempty prefix w of t.u such that

δ̂pm(S,w) ∩ F �= ∅.

The basic idea of our algorithm is to simulate the NFA
in compressed text, by packing S ∈ 2Q in a machine word.
We need only (m−k+1)(k+1) states out of Q since there
are m − k + 1 complete diagonals and the others are not
necessary as pointed out by Baeza-Yates and Navarro [2].
That is, we need only the states in

Qcore = {〈i, j〉 ∈ Q | 0 ≤ i ≤ m− k + 1, 0 ≤ j ≤ k}.

Moreover, we know that the states on the first diagonal, i.e.,
the states 〈i, j〉 ∈ Qcore with i = j are always active, and
therefore we do not have to store them. Thus we need only
(m− k)(k + 1) bits to represent the NFA states.
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Assume that the given pattern P = P [1 : m] is small so
that (m − k)(k + 1) is not greater than the machine word
length in bits. Then the union, the intersection, and the ⊕
operations on the subsets ofQcore can be performed inO(1)
time. As shown later, we can build the functions Jump and
Output in O(k2‖D‖ + km) time using O(k2‖D‖) space,
so that they return their values in O(k2) time, for a simple
collage system 〈D,S〉. Figure 2 gives an overview of the
algorithm using the function Jump and Output.

We thus have the next result under the assumption that
(m− k)(k + 1) ≤ L, where L is the machine word length
in bits.

Theorem 2 Our algorithm runs inO(k2(‖D‖+|S|)+km)
time using O(k2‖D‖) space for a simple collage system
〈D,S〉.

5 Algorithm in detail

In this section, we discuss the construction of the two
functions Jump and Output. Throughout this section, we
assume that the union, the intersection, and the ⊕ operations
for the subsets of Q can be performed in O(1) time.

5.1 Construction of function Jump

Definition 3 Let I(w) = δ̂pm({〈0, 0〉}, w) for any string w
in Σ∗.

We can prove the following relation between the two tran-
sition functions δ̂pm and δ̂ed.

Lemma 1 For any S ∈ 2Q and any w ∈ Σ∗,

δ̂pm(S,w) =
{
δ̂ed(S,w) ∪ I(w), if 〈0, 0〉 ∈ S;
δ̂ed(S,w), otherwise.

Note that I(w) corresponds to the existence of the self-loop
on the initial state 〈0, 0〉. Note also that the lemma is for
general S in 2Q. In fact, we do not have to care the sets
S such that 〈0, 0〉 �∈ S, because the state 〈0, 0〉 of the NFA
(Q,Σ, δpm, {〈0, 0〉}, F ) is always active.

Definition 4 For any a ∈ Σ, let

G(a) = {〈i, j〉 ∈ Q | i �= 0, P [i] = a},
H(a) = {〈i, j〉 ∈ Q | P [i′] = a for some i′ with 1 ≤ i′ ≤ i}.

Because we need only the states in Qcore and encode
each of the sets G(a) ∩Qcore and H(a) ∩Qcore into a ma-
chine word, these tables can be built in O(|Σ| + km) time
using O(|Σ|) space in a simple way.

Lemma 2 For any a ∈ Σ and any u, v ∈ Σ∗,

I(a) =Q ∩
(
E ∪ (E ⊕ 〈0, 1〉) ∪ ((E ⊕ 〈1, 0〉) ∩H(a)

)
I(uv) = δ̂ed(I(u), v) ∪ I(v),
where E = {〈i, j〉 ∈ Q | i = j}.

Proof. Straightforward.

The above lemma implies that, for a regular collage sys-
tem, we can build the table which stores I(t.u) for the to-
kens t in D by calling the function δ̂ed O(‖D‖) times. Thus
we concentrate on how to compute the function δ̂ed.

Definition 5 For any w ∈ Σ∗ and any integers � and d
(0 ≤ � ≤ m and 0 ≤ d ≤ k), let

V (w; �, d) =
{
i

∣∣∣∣ 0 ≤ i ≤ m, 0 ≤ i− � ≤ m,

〈i, d〉 ∈ δ̂ed({〈i− �, 0〉}, w)

}
,

and let

M(w; �, d) =
{
〈i, j〉 ∈ Q

∣∣∣ i ∈ V (w; �, d)
}
.

Then we have the following lemma.

Lemma 3 For any S ∈ 2Q and any w ∈ Σ∗,

δ̂ed(S,w) =
⋃
�,d

(S ⊕ 〈�, d〉) ∩M(w; �, d),

where � and d satisfy max(0, |w| − k) ≤ � ≤ min(|w| +
k,m) and 0 ≤ d ≤ k.

Proof. Let 〈i, j〉 ∈ δ̂ed(S,w). There exists 〈i′, j′〉 ∈ S

such that 〈i, j〉 ∈ δ̂ed({〈i′, j′〉, w). Let � = i − i′ and d =
j − j′. It is easy to see that 〈i, j〉 ∈ S ⊕ 〈�, d〉, and that
0 ≤ � ≤ m and 0 ≤ d ≤ k. By the definition of δ̂ed

we see that 〈i, d〉 ∈ δ̂ed({〈i′, 0〉}, w), and therefore 〈i, j〉 ∈
M(w; �, d). By Proposition 1, 〈i, d〉 ∈ δ̂ed({〈i− �, 0〉}, w)
implies that D(P [i− �+ 1 : i], w) ≤ d. Hence |w| − d ≤
|P [i− �+1 : i]| ≤ |w|+d, and then |w|−k ≤ � ≤ |w|+k.
Thus we have

δ̂ed(S,w) ⊆
⋃
�,d

(S ⊕ 〈�, d〉) ∩M(w; �, d).

On the other hand, let 〈i, j〉 ∈ (S ⊕ 〈�, d〉) ∩M(w; �, d)
for some � and d such that max(0, |w| − k) ≤ � ≤
min(|w| + k,m) and 0 ≤ d ≤ k. We can prove in a similar
manner that 〈i, j〉 ∈ δ̂ed(S,w).

Let M̄ be the table which stores M(t.u; �, d) for the to-
kens t in D, and the integers �, d such that max(1, |t.u| −
k) ≤ � ≤ min(m, |t.u| + k) and 0 ≤ d ≤ k. The size
of M̄ is O(k2‖D‖). The above lemma implies that, for any
S ∈ 2Q and any token t, we can obtain the value δ̂ed(S, t.u)
inO(k2) time using the table M̄ . We now consider the com-
putation of the table M̄ .

4



Input. A text string represented as a pair of D and S = S[1 : n], and a pattern P [1 : m].
Output. A boolean value that indicates whether there is an approximate occurrence of P with k errors or less.
begin

/* Preprocessing */
Build Jump and Output from the pattern P and the dictionary D;

/* Text scanning */
R := I(ε); /* I(w) is defined in Section 5 */
for � := 1 to n do begin

if Output(R,S[�]) = true then return true;
R := Jump(R,S[�])

end;
return false

end.

Figure 2. Overview of our algorithm.

Lemma 4 For a simple collage system, we can build the
table M̄ in O(k2‖D‖ + km) time using O(k2‖D‖) space.

Proof. We can compute the table by the recurrence

M(ε; �, d) =
{

(Q⊕ 〈�, �〉) ∩Q, if � = d
∅, otherwise

M(ua; �, d) =Q ∩
(
M(ua; �− 1, d− 1) ⊕ 〈1, 0〉

∪M(u; �− 1, d− 1) ⊕ 〈1, 0〉
∪M(u; �, d− 1)
∪(M(u; �− 1, d) ⊕ 〈1, 0〉) ∩G(a)

)
,

M(au; �, d) = M(au; �− 1, d− 1)
∪M(u; �− 1, d− 1)
∪M(u; �, d− 1)
∪(M(u; �− 1, d) ∩ (G(a) ⊕ 〈�− 1, 0〉),

where u ∈ Σ∗, a ∈ Σ, and � ≥ 0 and d ≥ 0. (We assume,
for the sake of convenience, that M(w; i, j) = ∅ for all
w ∈ Σ∗ if i < 0 or j < 0.)

Unfortunately, for a regular collage system, we have not
devised a way of computing the table M̄ . Thus our result is
only for simple collage systems.

Lemma 5 For a simple collage system, we can build the
function Jump in O(k2‖D‖ + km) time using O(k2‖D‖)
space, so that it returns its value in O(k2) time.

Proof. It follows from Lemmas 3 and 4.

5.2 Construction of function Output

Definition 6 For any S ∈ 2Q and any token t in D, define
Output1 and Output2 by

Output1(t) = true
⇔ the string t.u contains an approximate occurrence

of P .
Output2(S, t) = true
⇔ there exist integers � and j with � > 0, 0 ≤ j ≤ k

and a non-empty prefix w of t.u such that
〈m− �, j〉 ∈ S and j +D(P [m− �+ 1 : m], w) ≤ k.

Definition 7 For any S ∈ 2Q and any token X in D, define
Occ� by

Occ�(X) = true
⇔ there exist tokens Y, Z with X = Y Z ∈ D and

u, v ∈ Σ∗ such that
u is a suffix of Y.u, v is a prefix of Z.u,
and D(uv, P ) ≤ k.

Let us consider the computation of Occ�. We build
the NFA for approximate pattern matching for the reversed
pattern P , which plays a key role in the computation of
Occ�. Figure 3 shows the NFA for PR = NOMEKOP
with k = 4. Note that the NFA in Fig. 3 is the same as
the one obtained by reversing the direction of the arcs of the
NFA in Fig. 1 except for the self-loop on the initial-state.
The precise discussion is as follows. Define the mapping
δedrev : Q× (Σ ∪ {ε}) → 2Q by

δedrev(〈i, j〉, ε) = {〈i− 1, j − 1〉 | 0 ≤ i− 1, 0 ≤ j − 1},
δedrev(〈i, j〉, a) = {〈i− 1, j〉 | 0 ≤ i− 1, P [i] = a}

∪{〈i, j − 1〉 | 0 ≤ j − 1}
∪{〈i− 1, j − 1〉 | 0 ≤ i− 1, 0 ≤ j − 1},
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Figure 3. NFA for approximate string match-
ing of the reversed pattern PR = NOMEKOP
with k = 4.

where 〈i, j〉 ∈ Q and a ∈ Σ. Define the mapping δpm
rev :

Q× (Σ ∪ {ε}) → 2Q by

δpm
rev(〈i, j〉, ε) = δedrev(〈i, j〉, ε),
δpm
rev(〈i, j〉, a) = δedrev(〈i, j〉, a) ∪ {〈m, k〉 | i = m, j = k},

where 〈i, j〉 ∈ Q and a ∈ Σ. Let Frev = {〈0, j〉 | 0 ≤ j ≤
k}. Obviously we have:

Proposition 3 The NFA specified by the quintuple
(Q,Σ, δedrev, {〈m, k〉}, Frev) accepts the language
{w ∈ Σ∗ | D(PR, w) ≤ k}.

Proposition 4 The NFA specified by the quintuple
(Q,Σ, δpm

rev , {〈m, k〉}, Frev) accepts the language
Σ∗{w ∈ Σ∗ | D(PR, w) ≤ k}.

Lemma 6 For any strings u, v ∈ Σ∗, the string uv contains
an approximate occurrence of P with at most k errors if and
only if

I(u) ∩ Irev(vR) �= ∅,
where Irev(w) = δ̂pm

rev(〈m,k〉, w) for w ∈ Σ∗.

Lemma 7 For a simple collage system, we can build in
O(k2‖D‖ + km) time using O(k2‖D‖) space the table
which stores the values Occ�(t) for the tokens t in D.

Proof. All tokens X are defined in D as either X = a or
X = Y Z , where a ∈ Σ and Y, Z are tokens. When X = a,
Occ�(X) = ∅ by the definition of Occ�. When X = Y Z ,
Occ�(X) = true if and only if

I(Y.u) ∩ Irev((Z.u)R) �= ∅,

by Lemma 6. The proof is complete.

Lemma 8 For a simple collage system, we can build in
O(k2‖D‖ + km) time using O(k2‖D‖) space the table
which stores the values Output1(t) for the tokens t in D.

Proof. When X = a, Output1(X) = true if and only if
D(P, a) ≤ k. When X = Y Z ,

Output1(X) = Output1(Y ) OR Output1(Z) OR Occ�(X),

where OR denotes the logical OR. The proof is complete.

Now we turn into the computation of Output2. The com-
putation can be done with the same idea used for that of
Output1. By the definition of Output2, it is not hard to see
that Output2(S, t) = true if and only if

S ∩ Irev((t.u)R) ∩ {〈i, j〉 ∈ Q | i �= m} �= ∅.

Thus we can prove the next lemma.

Lemma 9 For a simple collage system, the function
Output2 can be built in O(k2‖D‖ + km) time using
O(k2‖D‖) space, so that it returns its value in O(k2) time.

Since Output(S, t) = Output1(t) OR Output2(S, t), we have
the next result.

Lemma 10 For a simple collage system, the function
Output can be built in O(k2‖D‖ + km) time using
O(k2‖D‖) space, so that it returns the value in O(k2) time.

Theorem 2 follows from Lemmas 5 and 10.

5.3 Bit-parallel implementation

In our implementation, we do not encode all of the au-
tomaton states in Q. We only encode the states in Qcore

into a machine word. We thus substitute Qcore for Q. The
discussion in Sections 5.1 and 5.2 is still true except for
the computation of the table M̄ mentioned in the proof of
Lemma 4. For a correct computation of the table M̄ , we
need some modification based on the following fact.

Proposition 5 Let J be a subset of {0, . . . ,m}, and let S =
{〈i, j〉 ∈ Q | i ∈ J}. Let Score = S ∩Qcore. Then,

Qcore∩(S⊕〈1, 0〉) = Qcore∩
(
Score⊕〈1, 0〉∪Score⊕〈1, 1〉

)
.

Now, we explain the details of our bit-parallel implemen-
tation. We use the (k(i − j − 1) + i)th bit of a machine
word to indicate whether or not the state 〈i, j〉 ∈ Qcore is
active (see Fig. 4). The union and the intersection opera-
tions on the subsets of Qcore can be evidently computed in
O(1) time by using the bitwise OR and AND, respectively.
Next we discuss the computation of the operation ⊕. For
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Figure 4. Encoding of the example NFA, where
m=7 and k=4.

.

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

k

m

Figure 5. Combinations of m and k satisfying
(m− k)(k + 1) ≤ 64.

.

a computation of S ⊕ 〈�, d〉, it suffices to move all of the
points 〈i, j〉 ∈ S to the right by � − d (to the left by d − �,
if � < d) and then move them down by d along the diag-
onal. The translation seems to be done using bit-shift by
(k+1)(�−d)+d. However, this is not enough because the
bits in the result which correspond to the points 〈i, j〉 with
0 ≤ j < d should be ∅. To make these bits 0, we use mask
bits which depend on d and can be in advance built in O(k)
time and space. Therefore we can execute the operation ⊕
in O(1) time.

Figure5 shows the combinations of m and k satisfying
(m− k)(k + 1) ≤ L, where L = 64.

6 Experimental results

To estimate the performance of our algorithm, we tested
the following two programs for LZW compressed texts.

• Decompression followed by a search based on the dy-
namic programing.
We embedded the approximate search routine based
on the modified dynamic programing[11], which runs
in O(kN) time on the average, into the decompres-
sion program. This method is abbreviated as uncom-
press+DP.

• Our algorithm.
This is abbreviated as Bit-parallel on LZW.

Our experiment was carried out on an AlphaStation
XP1000 with an Alpha21264 processor at 667MHz running
Tru64 UNIX operating system V4.0F. We used a subset
of the GenBank database as a text file, which is an anno-
tated collection of all publicly available DNA sequences.
However, all fields other than accession number and nu-
cleotide sequence were removed. The file size is about 17.1
Mbyte originally, and the compression ratio by compress is
26.80%. The patterns are randomly selected text substrings
which we modified so that they have no approximate occur-
rences in the texts.

Table 1 shows the running times (in CPU time) for k =
1 and m = 8 ∼ 32, where the preprocessing times were
included. On the other hand, Table 2 shows the running
times for k = 1 ∼ 5 and m = 14.

Unfortunately, the results show that our algorithm is
slower than the decompression followed by the dynamic
programming. Although our algorithm runs in O(k2n)
time after preprocessing, the constant factor hidden is rather
large.

7 Conclusion

We have presented the first algorithm using bit-
parallelism for the problem of approximate string matching
on compressed text. The algorithm is intended to solve the
existence problem. Assuming that our problem fits in a sin-
gle machine word, the algorithm runs inO(k2(‖D‖+|S|)+
km) time using O(k2‖D‖) space for a simple collage sys-
tem. For the LZW or the LZ78 compression, the time and
the space complexities are O(k2n + km) and O(k2n), re-
spectively, where n is the compressed text length. This is
a desirable property compared with the O(mkn) time and
space complexities of the algorithm due to Kärkkäinen et
al. [4], although ours cannot cope with the all occurrence
problem.

Unfortunately, the result of our experiments on LZW
compressed text shows that the algorithm is in practice
slower than a decompression followed by a search with the
modified dynamic programming [11]. If we specialize the
implementation to the LZW compression, the performance
might be improved.
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Table 1. CPU time comparison for k = 1.
m 8 12 16 20 24 28 32

uncompress+DP 2.235 2.243 2.241 2.241 2.250 2.240 2.235
Bit-parallel on LZW 5.364 6.233 6.475 6.633 6.829 7.021 7.269

Table 2. CPU time comparison for m = 14.
k 1 2 3 4 5

uncompress+DP 2.240 2.987 3.684 4.369 4.953
Bit-parallel on LZW 6.327 12.909 21.509 31.500 43.033

A practical fast algorithm for approximate string match-
ing uses some filtering technique [7]. Although we have
not yet devised a filtering technique suitable for compressed
text searching, it will improve the performance of our algo-
rithm in practice.
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