
Online Construction of Subsequence Automata for Multiple Texts

Hiromasa Hoshino Ayumi Shinohara Masayuki Takeda Setsuo Arikawa
Department of Informatics, Kyushu University 33,

Fukuoka 812-8581, Japan

{ hoshino, ayumi, takeda, arikawa } @i.kyushu-u.ac.jp

Abstract

We consider a deterministic finite automaton which ac-
cepts all subsequences of a set of texts, called subsequence
automaton. We show an online algorithm for construct-
ing subsequence automaton for a set of texts. It runs in
O(|Σ|(m+ k) +N) time using O(|Σ|m) space, where |Σ|
is the size of alphabet, m is the size of the resulting subse-
quence automaton, k is the number of texts, and N is the
total length of texts. It can be used to preprocess a given set
S of texts in such a way that for any query w ∈ Σ∗, returns
in O(|w|) time the number of texts in S which contain w as
a subsequence. We also show an upper bound of the size of
automaton compared to the minimum automaton.

1 Introduction

A string s is called a subsequence of a string t if s can
be obtained from t by deleting zero or more symbols. The
basic problem is to determine whether a string s is a sub-
sequence of a string t or not. It is almost trivial to show
that the problem can be solved in O(|s| + |t|). When s is
fixed, we can solve it in O(|t|) time by constructing a finite
automaton which accepts all strings of which s is a subse-
quence [14].

For the case that t is fixed, Baeza-Yates [1] introduced
the directed acyclic subsequence graph (DASG) of a single
text t as the smallest deterministic partial finite automaton
that recognizes all possible subsequences of t. By using
DASG of t, we can determine whether a string s is a subse-
quence of a string t inO(|s|) time. He showed a right-to-left
algorithm for building the DASG for a single text. On the
other hand, Tronı́ček and Melichar [15] showed a left-to-
right algorithm building the DASG for a single text.

We now turn our attention to the case of multiple texts. A
string s is called a common subsequence of a set S of texts
if s is a subsequence of t for any t ∈ S. Finding a common
subsequence of a set of texts is one of the most basic task
to characterize the set. The longest common subsequence

problem is NP-complete if the number k of strings is not
fixed in advance [7].

In machine learning, given positive and negative exam-
ples, a learning algorithm tries to find a general rule which
explains the examples correctly. When we use a subse-
quence as a rule to distinguish positive strings from nega-
tive strings, the main task is to find a consistent subsequence
with given examples. Here, we call a subsequence s is con-
sistent with positive strings Pos and negative strings Neg if
s is a subsequence for any w ∈ Pos and s is not a subse-
quence for any w ∈ Neg. The computational complexity
related to this problem was studied in [6, 9, 10]. It is shown
that finding a consistent subsequence with given positive
and negative examples is NP-complete.

In some application area, finding a subsequence that is
maximally consistent with given examples is more impor-
tant, because there might be no consistent subsequence in
real data due to noises or inconsistency of the data itself.
The measure to be maximized depends on application do-
mains, including the information gain due to Quinlan [11],
χ2-value, and so on [4, 13].

Among these various situations, a common basic opera-
tion is to count the number of texts which contain a given
string as a subsequence. When a set S of texts is fixed, it is
worth considering to construct a data structure that returns
the number for a query stringw in linear time with respect to
|w|, not to the total length of the strings in S. A straightfor-
ward approach is to build DASGs for each text in S. Given
a query string w, we have only to traverse all DASGs simul-
taneously, and return the total number of DASGs that accept
w. It clearly runs in O(k|w|) time, where k is the number
of texts in S. When the running time is more critical, we
can build a product of k DASGs so that the running time
becomes O(|w|) time, at the cost of preprocessing time and
space requirement. This is the DASG for multiple texts. We
remark that the preprocessing time is also critical in such
situations that the set S of texts are dynamically changed,
typically in machine learning applications [4, 13]. More-
over, an online algorithm is preferred in some applications.

Baeza-Yates presented a right-to-left algorithm for build-

ing the DASG for multiple texts also [1]. More-
over, Tronı́ček and Melichar [15], and Crochemore and
Tronı́ček [2] showed left-to-right algorithms for building
the DASG for a set of texts. Unfortunately, none of these
algorithms is online.

In this paper, we consider a subsequence automaton as
a deterministic complete finite automaton that recognizes
all possible subsequences of multiple texts, that is essen-
tially the same as DASG. We note that our automaton is
also acyclic except the single ‘error’ state. We show an
online construction of subsequence automaton for multiple
texts. Our algorithm runs in O(|Σ|(m+k)+N) time using
O(|Σ|m) space, where |Σ| is the size of alphabet, m is the
size of the resulting subsequence automaton, and N is the
total length of texts.

For k texts of length n, since the number m of states can
be bounded by O(nk), our algorithm runs in O(|Σ|(nk +
k) + kn) time using O(|Σ|nk) space. The running time is
superior to the offline algorithm proposed by Crochemore
and Tronı́ček [2], that requires O(k|Σ|nk) time.

Moreover, we prove that the size of the subsequence
automaton M constructed by our algorithm is at most
k! · mmin, where mmin is the size of minimum automaton
equivalent to M . We also show our experimental results on
the expected size of a subsequence automaton M over ran-
domly generated texts, and the expected ratio of the size of
M to that of minimum automaton equivalent to M . Finally,
we consider the trade off between construction time and the
response time.

2 Preliminaries

Let Σ be a finite alphabet, and let ε be the empty string.
For a string w ∈ Σ∗, we denote by |w| the length of w, We
denote by w[i] the i-th character of w, and by w[i : j] the
substring of w starting at i and ending at j, that is, w[i :
j] = w[i] · · ·w[j]. If i > j, we define w[i : j] = ε. We
abbreviate w[i : |w|] to w[i :]. For a set S, we denote by |S|
the cardinality of S.

A subsequence of a string w is any string obtained by
deleting zero or more symbols from w. For a tuple t =
[p1, p2, . . . , pk], we denote the i-th element by t[i] = pi.
Let N be the set of all natural numbers, and let N (m) =
{i ∈ N | 0 ≤ i ≤ m} ∪ {∞} for m ∈ N .

3 Subsequence Automata

In this section, we define a subsequence automaton (SA)
for a single text, and for multiple texts. We follow the stan-
dard notation of finite automata [5]. A finite automaton is
a 5-tuple (Q,Σ, δ, q0, F), where Q is a finite set of states,
Σ is an input alphabet, δ : Q × Σ → Q is a transition

0 1 2 3 4a b b a

b a

a

a

b

b

a

b

Figure 1. Subsequence automaton for string
abba, where Σ = {a, b}.

function, q0 ∈ Q is the initial state, and F ⊆ Q is the set
of final states. We denote by q∞ the ‘error’ state such that
q∞ �∈ F and δ(q∞, c) = q∞ for all c ∈ Σ. The size of a
finite automaton refers to the number of states.

Definition 1 (Subsequence automaton for a single text)
Let T be a string of length n in Σ∗. A subsequence
automaton for T is a tuple M = (Q,Σ, δ, q0, F), where

− Q = N (n),

− q0 = 0,

− δ(q, c) = min({j | q < j ≤ n and T [j] = c} ∪ {∞}),
− F = Q− {q∞}, where q∞ = ∞.

Example 1 The subsequence automaton for string abba is
shown in Fig. 1, where Σ = {a, b}.

We can easily verify that the following theorem holds.

Theorem 1 Let T be a string and M be the subsequence
automaton for T . Then M accepts all subsequences of T .

Definition 2 (Subsequence automaton for multiple texts)
Let S = {T1, T2, . . . , Tk} ⊆ Σ∗ be a finite set of strings,
and let ni = |Ti| for each i = 1, 2, . . . , k. A subsequence
automaton for S is a tuple M = (Q,Σ, δ, q0, F), where

− Q = N (n1) ×N (n2) × · · · × N (nk),

− q0 = [0, 0, . . . , 0],

− δ([q1, q2, . . . , qk], c) = [δT1(q1, c), δT2(q2, c), . . . ,
δTk

(qk, c)], where each δTi is the transition function of
the subsequence automaton for Ti, that is, δTi(qi, c) =
min({j | qi < j ≤ ni and Ti[j] = c} ∪ {∞}),

− F = Q− {q∞}, where q∞ = [∞,∞, . . . ,∞].

Example 2 The subsequence automaton for strings aa and
abb is shown in Fig. 2, where Σ = {a, b}. For clarity, we
draw reachable states only.

The next theorem is immediate from the definition.

[0,0] [1,1] [,2] [,3]

[2,] [,]

a b b

b

a a

a

b

a b
a

b

Figure 2. Subsequence automaton for strings
aa and abb, where Σ = {a, b}.

SA sa
while (c = getchar()) != EOF

if c == LF
sa.extendDimension()

else
sa.appendChar(c)

Figure 3. Online construction of subsequence
automaton.

Theorem 2 Let M be the subsequence automaton for S ⊆
Σ∗. Then M accepts all subsequences of any text T ∈ S.

Remark that for each state q = [q1, q2, . . . , qk], the car-
dinality of the set {qi | qi �= ∞} corresponds to the number
of texts in S that contains a string leading to this state as a
subsequence. Therefore we associate the number with each
state, and we refer to it as a function Match : Q → N .

In the sequel, we extend the domain of the transition
function δ to Q× Σ∗ in the standard way; δ(q, ε) = q, and
δ(q, cw) = δ(δ(q, c), w) for q ∈ Q, c ∈ Σ, and w ∈ Σ∗.

4 Construction of Subsequence Automata

This section shows an online algorithm which constructs
a subsequence automaton for a set of texts. We introduce
two procedures extendDimension and appendChar as mem-
ber functions of the class SA. By these two procedures, the
whole construction algorithm will be described in Fig. 3.
Here, we assume that each text is separated by the character
“LF” , and the input stream ends by the character “EOF”.

We first explain the basic idea of the algorithm. Let us
remind the subsequence automaton for strings aa and abb
in Fig. 2. Suppose that we append a character a to the sec-
ond text abb. The resulting subsequence automaton should
be changed as in Fig. 5. The difference between these

class SA

SA::SA(void) /* constructor of SA */
create the initial state q0 and the error state q∞
for each a ∈ Σ

D[q0][a] = D[q∞][a] = q∞
NonSolidArcList[q∞][a] = {q0}
targetStates[a] = {q∞}

Match[q0] = 1 ; Match[q∞] = 0

void SA::extendDimension(void)
for each a ∈ Σ

/* delete NonSolidArcList */
for each i ∈ targetStates[a]

NonSolidArcList[i][a] = φ
r = D[q0][a]
NonSolidArcList[r][a] = {q0}
targetStates[a] = {r}

Match[q0] ++

void SA::appendChar(char c)
lastTargetStates = targetStates[c]
targetStates[c] = φ
for each i ∈ lastTargetStates /* copy NonSolidArcList */

lastNonSolidArcs[i] = NonSolidArcList[i][c]
NonSolidArcList[i][c] = φ

for each i ∈ lastTargetStates
create a new state p /* copy the state i */
for each a ∈ Σ

r = D[i][a] ; D[p][a] = r
NonSolidArcList[r][a] = NonSolidArcList[r][a]∪{p}
targetStates[a] = targetStates[a]∪{r}

Match[p] = Match[i] + 1
for each j ∈ lastNonSolidArcs[i]

D[j][c] = p
lastNonSolidArcs[i] = φ

int SA::query(string s)
q = q0

for each character c in s
q = D[q][c]

return Match[q]

Figure 4. Member functions in the class SA to
construct and reply.

[0,0] [1,1] [,2] [,3]

[2,4]

a b b

b

a a

[,]

a

b

[,4]a

a

b

b a b

Figure 5. Subsequence automaton for strings
aa and abba, where Σ = {a, b}.

[u, j]

[p, k]

[v,] [r,]
[q,]

non-solid arcs
non-solid arc[u, j]

[p, k]

[q,]
[v,] [r,]

[v, l]

copy

Figure 6. Main operation. A character is ap-
pended to Ti at position �.

two automata is caused by the following three transitions
in Fig. 2: δ([1, 1], a) = [2,∞], δ([∞, 2], a) = [∞,∞], and
δ([∞, 3], a) = [∞,∞]. Remark that the second component
of the state will be changed from a natural number into ∞
by any of these transitions. We formalize this concept as
follows.

Definition 3 For a transition δ(q, c) = r, we call a triple
〈q, c, r〉 an arc, and r is the target state of the arc. We define
that an arc 〈u, c, v〉 is non-solid with respect to c iff u[i] �=
∞ and v[i] = ∞, where i is the index of the text to which a
new character is to be appended. We say that an arc is solid
iff the arc is not non-solid.

Let 〈u, c, v〉 be a non-solid arc with respect to c, and let
u[i] = j. The fact v[i] = ∞ implies that the character c
does not appear after the j-th position of the text Ti at this
moment. Therefore, when appending the character c to the
text Ti, we have to copy the state v and change that v[i] = �,
where � is the position of the character appended in Ti (see
Fig. 6). Here, for a tuple t = [p1, p2, . . . , pk], we define
[t, pk+1] = [p1, p2, . . . , pk, pk+1].

In the algorithm shown in Fig. 4, the array “Match” cor-
responds to the function Match and the array “D” does to
the transition function δ.

Extend dimension We show the procedure extendDi-
mension in Fig. 4, which is called when the input charac-

ter is “LF”. By the definition of a non-solid arc, all arcs
from the initial state are non-solid in this case. Thus we add
them to the array “NonSolidArcList” of non-solid arcs, and
do target states of them to the array “targetStates” of target
states. Since the empty string ε is also a subsequence of any
string, we add one to Match[q0].

Append a character Fig. 4 shows the procedure append-
Char that appends a character. The most important point is
that all the non-solid arcs which share the same target state
should keep sharing the copy of it, after modifying the arcs
(see Fig. 6 again). The array “targetStates” does the job.
Since all arcs from a new state are non-solid, we add them
to “NonSolidArcList”, and do target states to “targetStates”.

Reply to the query In Fig. 4, we show the procedure
query, which returns the number of strings that contain the
given string s as a subsequence. It is obvious since the num-
ber equals to Match(δ(q0, s)).

We remark that our algorithm often creates unreachable
states. A state will be unreachable if all arcs which point
them are non-solid with respect to a single character c, and
c is appended. By introducing the reference number of a
state, that is the number of arcs which point the state, we
can maintain that all states are always reachable: when ap-
pending a character, if the reference number of a state is
equal to the number of non-solid arcs which point the state,
we treat the state as a new one instead of creating another
one. We verified that this modification is very effective to
reduce the size of subsequence automaton in practice.

4.1 Complexity

We show that the algorithm runs in O(|Σ|(m + k) +
N) time using O(|Σ|m) space, where k is the number of
texts, N is the total length of texts, and m is the size of the
subsequence automaton constructed by it.

First, we analyze the total amount of time consuming by
the main routine. We estimate the time complexity of ex-
tendDimension and appendChar separately. It takes O(N)
time to read texts.

Next, we consider the time consuming by extendDimen-
sion. The cost of deleting the NonSolidArcList is the same
that of creating it. So, we charge the cost of deleting to
appending. The procedure requires O(|Σ|) time. Since
the procedure operates k times, the total amount of time
is O(|Σ|k) time.

Finally, we estimate the time of appendChar by charging
each cost of operations either to a state or to an arc. We
charge the costs of copying to states. When a state is copied,
it takes O(|Σ|) time to set transition functions, to register a
copied state in the NonSolidArcList, and to register a new

target state in the targetStates for each character in Σ. Since
there are m states, the total amount of time to copy states is
O(|Σ|m).

On the other hand, we charge the cost of modifying non-
solid arcs to themselves. It is noticed that the total number
of arcs is |Σ|m, and each arc which becomes solid once
never changes to be non-solid, except for arcs from the ini-
tial state. Since the modification can be done in O(1) time
for each non-solid arc, the total amount of time to modify is
O(|Σ|m).

Thus, the total amount of the time of the whole con-
struction is O(|Σ|(m + k) + N). The space complexity
is O(|Σ|m), since the total number of arcs is O(|Σ|m).

For the sake of comparison with the algorithm proposed
by Crochemore and Tronı́ček [2], assume that we have k
texts of length n. Since the number m of states can be
bounded by O(nk), our algorithm runs in O(|Σ|(nk + k) +
kn) time using O(|Σ|nk) space. The running time is supe-
rior to the offline algorithm proposed by Crochemore and
Tronı́ček, that requires O(k|Σ|nk) time.

4.2 Upper bound of the size of SA

The subsequence automaton built by our algorithm is not
always minimum since it may contain equivalent states. We
can minimize it by standard method. In fact, we can do it in
linear time with respect to the size of automaton by applying
the algorithm in [12], since our automaton is acyclic except
the single error state.

In this section, we show that the size of automaton M
constructed by our algorithm is at most k! · mmin, where
mmin is the size of minimum automaton equivalent to M .

Definition 4 We say that a state q ∈ Q is equivalent to
q′ ∈ Q (with respect to the number of matched texts) iff
Match(δ(q, w)) = Match(δ(q′, w)) for all w ∈ Σ∗. We
denote by q ≡ q′ that q is equivalent to q′.

In the sequel, we often denote a state [q1, q2, . . . , qk] ∈
Q by [p1, p2, . . . , pk]r such that pi = ni − qi, where ni is
the length of Ti. Note that pi = −∞ if qi = ∞. Let δTi

be the transition function of the subsequence automaton for
each text Ti. The next lemma can be verified easily.

Lemma 1 For any two components pi and pj (i �= j) of a
state [p1, p2, . . . , pk]r ∈ Q, the following statement holds.

If either pi > pj , or pi = pj and Ti[ni − pi + 1 :] �=
Tj[nj − pj + 1 :] then

δTi(ni − pi, Ti[ni − pi + 1 :]) = ni, and
δTj (nj − pj , Ti[ni − pi + 1 :]) = ∞.

Lemma 2 If [p1, p2, . . . , pk]r ≡ [p′1, p′2, . . . , p′k]r, then a
sequence (p′1, p

′
2, . . . , p

′
k) is the permutation of a sequence

(p1, p2, . . . , pk).

Proof. We show that if (p′1, p
′
2, . . . , p

′
k) is not a per-

mutation of (p1, p2, . . . , pk), then [p1, p2, . . . , pk]r �≡
[p′1, p

′
2, . . . , p

′
k]r. We consider an one to one function f

over {1, 2,k} such that f maximizes the cardinality
of the set {i | pi = p′f(i) and Ti[ni − pi + 1 :] =
Tf(i)[nf(i) − p′f(i) + 1 :]}. Let Df = {i | Ti[ni − pi + 1 :
] �= Tf(i)[nf(i) − p′f(i) + 1 :]}, D′

f = {f (i) | i ∈ Df},
Ef = {i | Ti[ni − pi + 1 :] = Tf(i)[nf(i) − p′f(i) + 1 :]},
and E′

f = {f (i) | i ∈ Ef}. Since (p′1, p
′
2, . . . , p

′
k) is not

a permutation of (p1, p2, . . . , pk), there is an index i such
that pi �= p′f(i), Df �= φ, and D′

f �= φ. For a string
w ∈ Σ∗, let d = |{i ∈ Df | δTi(ni − pi, w) = ∞}|,
d′ = |{i ∈ D′

f | δTi(ni − p′i, w) = ∞}|, e = |{i ∈
Ef | δTi(ni − pi, w) = ∞}|, and e′ = |{i ∈ E′

f |
δTi(ni − p′i, w) = ∞}|. Clearly, e = e′ for any string
w. Match(δ([p1, p2, . . . , pk]r, w)) = k − (d + e), and
Match(δ([p′1, p′2, . . . , p′k]r, w)) = k − (d′ + e′). Let p̂ be
the largest element in {pi, p

′
f(i) | i ∈ Df} and let imax

be its index. Note that imax is not necessarily unique. Let
w = Timax [nimax − p̂+ 1 :].

Case 1: p̂ = pimax . Clearly, δTimax
(nimax − p̂, w) =

nimax �= ∞. There is no i ∈ D′
f such that w =

Ti[ni − p′i + 1 :] by the definition of f . Since p̂ is the
largest element in {pi, p

′
f(i) | i ∈ Df}, we have d > d′

by Lemma 1. Thus, Match(δ([p1, p2, . . . , pk]r, w)) �=
Match(δ([p′1, p

′
2, . . . , p

′
k]r, w)).

Case 2: p̂ = p′imax
. In the same way as Case 1, we have

d < d′, that implies Match(δ([p1, p2, . . . , pk]r, w)) �=
Match(δ([p′1, p

′
2, . . . , p

′
k]r, w)).

In both cases, we have [p1, p2, . . . , pk]r �≡ [p′1, p
′
2, . . . ,

p′k]r.

The following theorem is immediate from Lemma 2.

Theorem 3 Let M be a subsequence automaton con-
structed by our algorithm for a set of k texts. The num-
ber of equivalent states in M with respect to the number of
matched text is at most k!.

Therefore, the size of the automaton M is at most k! ·mmin.

4.3 Experimental results on the size of SA

We now consider the size of subsequence automata for
k texts of length n. The trivial upper bound is O(nk).
The lower bound for k > 2 texts is not known, while
Crochemore and Tronı́ček [2] showed that Ω(n2) states are
required for k = 2 at the worst case.

In this section, we show our experimental results on the
size of subsequence automata when the texts are randomly
generated for |Σ| = 2. Fig. 7 shows the minimum, max-
imum and average size during ten trials. Remark that the

0

5000

10000

15000

20000

25000

30000

35000

0 10 20 30 40 50
length of texts

number of states

k = 4

k = 3

k = 2

Figure 7. The size of subsequence automata.

size is exactly equal to the length of the text plus two when
k = 1. Fig. 8 shows the ratios of the size of subsequence
automata to that of minimized them. We can see that the
ratios are much less than the theoretical upper bound k! in
practice, and they become close to one as the length of texts
increases. The result shows that there is not large difference
in the size between our automaton and minimum automaton
equivalent to it.

5 Trade off between constructing time and
response time

For a set S of strings, once the subsequence automa-
ton for S is constructed, the response for queries is very
fast. However, in some applications, the construction time
is also critical. For example, in our recent paper [4], we are
developing a system to find a subsequence that maximally
separates given positive set Spos of strings from negative
set Sneg of strings. For each Spos and Sneg, we use subse-
quence automata to count the number of matched strings for
each candidate subsequence. It would be useless if the con-
struction of subsequence automata M requires more time
than the sum of reduced time to answer queries by using M .
In this sense, there is a trade off between the constructing
time and the sum of response time. Naturally, it depends on
the number of queries. In order to strike a balance, we take
the following approach. For a specified parameter � > 0,
we partition the set S into d = k/� subsets S1,S2, . . . ,Sd

of at most � strings, and construct d subsequence automata
for each Si. When asking a query, we have only to traverse
all automata similutaneously, and return the sum of the an-

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

0 10 20 30 40 50

k = 2 k = 3 k = 4

length of texts

ratio

Figure 8. The ratios of the size of subse-
quence automata compared to that of mini-
mum automata.

swers. If � = 0, we do not use subsequence automata.
We empirically estimated the performance as follows.

The inputs are two sets Spos and Sneg of amino acid se-
quences taken from the PIR database, that are converted into
strings over binary alphabet Σ = {0, 1}, according to the al-
phabet indexing discovered by BONSAI [13]. The average
length of the strings is approximately 30, and |Spos| = 70
and |Sneg| = 100. The query set consists of all strings of
length at most 13 over Σ. That is, we asked 16383 queries.
The experiment was carried out on an AlphaServer DS20
with an Alpha 21264 processor at 500MHz.

Fig. 9 shows the results. We can see that the construction
time increases with �, as we expected, since the total size
of the automata increases. On the other hand, the sum of
response time decreases with �. In this case, � = 3 yields
the minimum running time.

6 Concluding Remarks

We gave an online algorithm to construct a determinis-
tic finite automaton, called subsequence automaton, which
accepts all subsequence of a set of texts. It can be used to
preprocess a given set S of texts in such a way that for any
query w, returns the number of texts in S which contains w
as a subsequence in O(|w|) time. We also show an upper
bound of the size of automaton compared to the minimum
automaton.

It will be a challenging problem to extend our algorithm

0.0

5.0

10.0

15.0

20.0

25.0

0 1 2 3 4 5 6 7 8 9 10

construction time sum of response time

l

time (sec)

Figure 9. Trade off between construction time
and response time.

so that we can treat an episode matching [3, 8], where the
total length of the matched subsequence is bounded.

Acknowledgements

We gratefully acknowledge Prof. Alberto Apostolico for
his helpful suggestions.

References

[1] R. A. Baeza-Yates. Searching subsequences. Theoretical
Computer Science, 78(2):363–376, Jan. 1991.

[2] M. Crochemore and Z. Tronı́ček. Directed acyclic subse-
quence graph for multiple texts. Technical Report IGM-99-
13, Institut Gaspard-Monge, June 1999.

[3] G. Das, R. Fleischer, L. Gasieniek, D. Gunopulos, and
J. Kärkkäinen. Episode matching. In A. Apostolico and
J. Hein, editors, Proc. of the 8th Annual Symposium on Com-
binatorial Pattern Matching, volume 1264 of Lecture Notes
in Computer Science, pages 12–27. Springer-Verlag, 1997.

[4] M. Hirao, H. Hoshino, A. Shinohara, M. Takeda, and
S. Arikawa. A practical algorithm to find best subsequence
patterns. Technical Report DOI-TR-CS-175, Department of
Informatics, Kyushu University, June 2000.

[5] J. E. Hopcroft and J. D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley,
1979.

[6] T. Jiang and M. Li. On the complexity of learning strings
and sequences. In Proc. of 4th ACM Conf. Computational
Learning Theory, pages 367–371, 1991.

[7] D. Maier. The complexity of some problems on subse-
quences and supersequences. J. ACM, 25:322–336, Apr.
1978.

[8] H. Mannila, H. Toivonen, and A. I. Vercamo. Discovering
frequent episode in sequences. In Proc. of the 1st Interna-
tional Conference on Knowledge Discovery and Data Min-
ing, pages 210–215. AAAI Press, Aug. 1995.

[9] S. Matsumoto and A. Shinohara. Learning subsequence lan-
guages. In H. Kangassalo et al., editor, Information Model-
ing and Knowledge Bases, VIII, pages 335–344. IOS Press,
1997.

[10] S. Miyano, A. Shinohara, and T. Shinohara. Which classes of
elementary formal systems are polynomial-time learnable?
In Proc. of 2nd Workshop on Algorithmic Learning Theory,
pages 139–150, 1991.

[11] J. R. Quinlan. Induction of decision trees. Machine Learn-
ing, 1:81–106, 1986.

[12] D. Revuz. Minimization of acyclic deterministic automata in
linear time. Theoretical Computer Science, 92(1):181–189,
Jan. 1992.

[13] S. Shimozono, A. Shinohara, T. Shinohara, S. Miyano,
S. Kuhara, and S. Arikawa. Knowledge acquisition from
amino acid sequences by machine learning system BONSAI.
Transactions of Information Processing Society of Japan,
35(10):2009–2018, Oct. 1994.

[14] Z. Tronı́ček. Problems related to subsequences and superse-
quences. In Proc. of 6th International Symposium on String
Processing and Information Retrieval, pages 199–205. IEEE
Computer Society, 1999.

[15] Z. Tronı́ček and B. Melichar. Directed acyclic subsequence
graph. In Proc. of the Prague Stringology Club Workshop
’98, pages 107–118, Sept. 1998.

