
Fast Bit-Vector Algorithms for Approximate
String Matching Under Indel Distance

Heikki Hyyrö1, Yoan Pinzon2,�, and Ayumi Shinohara1,3

1 PRESTO, Japan Science and Technology Agency (JST), Japan
helmu@cs.uta.fi

2 Department of Computer Science, King’s College, London, UK
pinzon@dcs.kcl.ac.uk

3 Department of Informatics, Kyushu University 33, Fukuoka 812-8581, Japan
ayumi@i.kyushu-u.ac.jp

Abstract. The approximate string matching problem is to find all lo-
cations at which a query p of length m matches a substring of a text t of
length n with at most k differences (insertions, deletions, substitutions).
The fastest solutions in practice for this problem are the bit-parallel NFA
simulation algorithms of Wu & Manber [4] and Baeza-Yates & Navarro
[1], and the bit-parallel dynamic programming algorithm of Myers [3]. In
this paper we present modified versions of these algorithms to deal with
the restricted case where only insertions and deletions (called indel for
short) are permitted. We also show test results with the algorithms.

1 IndelMYE Algorithm

The bit-parallel approximate string matching algorithm of Myers [3], MYE, is
based on the classical dynamic programming approach where a (m+1)× (n+1)
matrix D is computed using the well-known recurrence Di,j = min {Di−1,j−1 +
δ(pi, tj), Di−1,j , Di,j−1}, subject to the boundary condition D0,j = 0 and Di,0 =
i, where δ(pi, tj) = 0 iff pi = tj , and 1 otherwise. The solution to the approximate
string matching problem is all the locations j where Dm,j ≤ k. MYE is based
on the observation that the vertical and horizontal differences between adjacent
cells in D (i.e. Di,j − Di−1,j and Di,j − Di,j−1) have the value -1, 0, or 1, and
the diagonal differences (i.e. Di,j −Di−1,j−1) have the value 0 or 1. This enables
the algorithm, as presented in [2], to use the following length-m bit-vectors to
represent the vertical, horizontal and diagonal differences:

— Pvi = 1 iff Di,j − Di−1,j = 1, Nvi = 1 iff Di,j − Di−1,j = −1
— Phi = 1 iff Di,j − Di,j−1 = 1, Nhi = 1 iff Di,j − Di,j−1 = −1
— Zdi = 1 iff Di,j = Di−1,j−1

The values of Pv and Nv are known for the initial case j = 0. The steps of
the algorithm at text position j are as follows. First the new diagonal vector Zd′

� Part of this work was done while visiting Kyushu University. Supported by PRESTO,
Japan Science and Technology Agency (JST).

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 380–384, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

mailto:helmu@cs.uta.fi
mailto:pinzon@dcs.kcl.ac.uk
mailto:ayumi@i.kyushu-u.ac.jp

Fast Bit-Vector Algorithms 381

is computed by using Pv, Nv and M(tj), where for each character λ, M(λ) is
a precomputed length-m match vector where M(λ)i = 1 iff pi = λ. Then the
new horizontal vectors Ph′ and Nh′ are computed by using Zd′, Pv and Nv.
Finally the new vertical vectors Pv′ and Nv′ are computed by using Zd′, Nh′

and Ph′. The value of the dynamic programming cell Dm,j is maintained during
the process by using the horizontal delta vectors (the initial value is Dm,0 = m).
A match of the pattern with at most k errors is found whenever Dm,j ≤ k.

The dynamic programming recurrence for indel distance is Di,j = (if pi =
tj then Di−1,j−1 else min{Di−1,j , Di,j−1}), which makes also the case Di,j −
Di−1,j−1 = 2 possible. To help deal with this complication, we will use the
following additional vertical and horizontal zero vectors.

— Zvi = 1 iff Di,j − Di−1,j = 0, Zhi = 1 iff Di,j − Di,j−1 = 0
Naturally Zv = ∼ (Pv | Nv) and Zh = ∼ (Ph | Nh), where ∼ is the bit-wise
complement operation. In the following we describe the steps of our algorithm
for updating the bit-vectors at text position j, where 1 ≤ i ≤ m and 1 ≤ j ≤ n.

i.) The new diagonal vector Zd′ is computed exactly as in MYE. That is,
Zd′=(((M(tj) & Pv) + Pv) ∧ Pv) | M(tj) | Nh.
ii.) The new horizontal zero vector Zh′ is computed by using Pv, Zv and Zd′.
By inspecting the possible difference combinations, we get the formula Zh′

i =
(Zh′

i−1 & Pvi & (∼ Zd′
i)) | (Zvi & Zd′

i). We use a superscript to denote bit rep-
etition (e.g. 001011 = 021012 = 0(01)21). The self-reference of Zh′ implies that
each set bit Zh′

i=1 in Zh′ can be assigned into a distinct region Zh′
a..b=1b−a+1,

where 1 ≤ a ≤ i ≤ b ≤ m, Zva & Zd′
a=1 or a=1, Zh′

r−1 & Pvr & (∼ Zd′
r)=1

for r ∈ a + 1 . . . b, and Zh′
b+1 & Pvb+1 & (∼ Zd′

b+1)=0. We also notice that the
conditions Zva & Zd′

a=1 and Pvr & (∼ Zd′
r)=1 for r ∈ a + 1 . . . b imply that

Zh′
r=1 for r ∈ a . . . b. If we shift the region a + 1 . . . b of set bits one step right

to overlap the region a . . . b − 1 and perform an arithmetic addition with a set
bit into position a, then the bits in the range a . . . b − 1 will change from 1 to
0 and the bit b from 0 to 1. These changed bits can be set to 1 by performing
XOR. From this we derive the final formula: Zh′=(((Zv & Zd′) | ((Pv & (∼
Zd′)) & 0m−11)) + ((Pv & (∼ Zd′)) >> 1)) ∧ ((Pv & (∼ Zd′)) >> 1).
iii.) The new horizontal vector Nh′ is computed as in MYE by setting Nh′ =
Pv & Zd′, after which we can also compute Ph′= ∼ (Zh′ | Nh′).
iv.) The new vertical vector Zv′ is computed by using Zh′, Ph′, Zd′ and Zv. We
notice that Di,j=Di−1,j iff either Di−1,j=Di−1,j−1=Di,j , or Di,j−1=Di−1,j−1
and Di−1,j=Di−1,j−1 + 1. In terms of the delta vectors this means that Zv′

i=1
iff Zh′

i−1 & Zd′
i=1 or Ph′

i−1 & Zvi & (∼ Zd′
i)=1. From this we get the formula

Zv′=(((Zh′ << 1) | 0m−11) & Zd′) | ((Ph′ << 1) & Zv & (∼ Zd′).
v.) The new vertical vector Nv′ is computed as in MYE by setting Nv′=(Ph′ <<
1) & Zd′, after which we can also compute Pv′= ∼ (Zv′ | Nv′).

Fig. 1 (upper left) shows a high-level template for the bit-parallel algorithms, and
Fig. 1 (lower left) shows the complete formula for computing the new difference

382 H. Hyyrö, Y. Pinzon, and A. Shinohara

Fig. 1. Bit-parallel approximate string matching under indel distance: a template (up-
per left), indelMYE (lower left), indelWM (upper right), and indelBYN (lower right)

vectors at text position j. The running time of indelMYE is O(�m/w�n) as a
vector of length m may be simulated in O(�m/w�) time using O(�m/w�) bit-
vectors of length w. The cost of preprocessing is O(σ�m/w� + m).

2 Bit-Parallel NFA Simulation Algorithms: IndelWM
and IndelBYN

The bit-parallel approximate string matching algorithms of Wu & Manber [4]
(WM) and Baeza-Yates & Navarro [1] (BYN) simulate a non-deterministic finite
automaton (NFA), R, by using bit-vectors. R has (k + 1) rows, numbered from
0 to k, and each row contains m states. Let Rd,i denote the ith state on row d
of R. Rd,i is active after processing the jth text character iff Di,j ≤ d in the cor-
responding dynamic programming matrix D, and so an approximate occurrence
of the pattern is found when the state Rk,m is active.

WM uses (k + 1)�m/w� and BYN �(k + 2)(m − k)/w� bit-vectors of length
w to encode R. Both perform a constant number of operations per bit-vector
at text position j. For reasons of space, we do not discuss here further de-
tails of these algorithms. We just note that the bit-vector update formulas for

Fast Bit-Vector Algorithms 383

 0.2

 0.4

 0.6

tim
e

(s
ec

)
DNA
m = 8

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9 DNA

m = 16

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2 DNA
m = 32

 0

 0.2

 0.4

 0.6

tim
e

(s
ec

)

WSJ
m = 8

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9 WSJ

m = 16

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8 WSJ

m = 32

 0

 0.2

 0.4

 0.6

 1 2 3 4 5 6

tim
e

(s
ec

)

k

Random,
m = 8

σ= 120

indelWM

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 1 3 5 7 9 11 13

k

Random,
m = 16

σ = 120

indelBYN

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 1 5 9 13 17 21 25 29

k

Random,
m = 32

σ = 120

indelMYE

Fig. 2. The average time for searching in a ≈ 20 MB text. The first row is for DNA (a
duplicated yeast genome), the second row for a sample of Wall Street Journal articles
from TREC-collection, and the third row for random text with alphabet size σ = 120

both correspond to the dynamic programming recurrence, where each edit op-
eration has a distinct part in the formula. Hence the modification for indel
distance is straightforward: we only need to remove the part for substitution.
Fig. 1 (upper right) shows indelWM and Fig. 1 (lower right) shows indelBYN:
our versions of WM and BYN, respectively, that are modified for indel distance.
The running time of indelWM is O(k�m/w�n), and its time for preprocessing
is O(σ�m/w� + m). The running time of indelBYN is O(�(k + 2)(m − k)/w�n),
and its time for preprocessing is O(σ�(k + 2)(m − k)/w� + m).

3 Experiments

We implemented and tested the three bit-parallel variants for approximate string
matching under indel distance. IndelWM and IndelMYE were implemented fully
by us, and IndelBYN was modified from a code by Baeza-Yates & Navarro. The
computer was a 3.2Ghz AMD Athlon64 with word size w=32, 1.5 GB RAM,
Windows XP, and MS Visual C++ 6.0 compiler using high optimization. The
patterns were selected randomly from the text, and for each (m, k) we recorded
the average time over searching 100 patterns. Fig. 2 shows the results.

384 H. Hyyrö, Y. Pinzon, and A. Shinohara

References

1. R. Baeza-Yates and G. Navarro. Faster approximate string matching. Algorithmica,
23(2):127–158, 1999.

2. H. Hyyrö. Explaining and extending the bit-parallel approximate string matching
algorithm of Myers. Technical Report A-2001-10, University of Tampere, 2001.

3. G. Myers. A fast bit-vector algorithm for approximate string matching based on
dynamic progamming. Journal of the ACM, 46(3):395–415, 1999.

4. S. Wu and U. Manber. Fast text searching allowing errors. Comm. of the ACM,
35(10):83–91, October 1992.

	IndelMYE Algorithm
	Bit-Parallel NFA Simulation Algorithms: IndelWM and IndelBYN
	Experiments

