Nordic Journal of Computing 4(1997), 172-186.

AN EFFICIENT PATTERN-MATCHING ALGORITHM
FOR STRINGS WITH SHORT DESCRIPTIONS

MAREK KARPINSKI WOJCIECH RYTTER
Department of Computer Science, Institute of Informatics,
University of Bonn, Warsaw University,
53117 Bonn, Germany ul. Banacha 2,
marek@cs.uni-bonn.de 02-097 Warszawa, Poland

rytter@mimuw.edu.pl

AYUMI SHINOHARA
Department of Informatics,
Kyushu University 33,
Fukuoka 812-81, Japan
ayumi@i.kyushu-u.ac. jp

Abstract. We investigate the time complexity of the pattern matching problem for
strings which are succinctly described in terms of straight-line programs, in which
the constants are symbols and the only operation is the concatenation. Most strings
of descriptive size n are of exponential length with respect to n. A complicated

algorithm for the equality-test (testing if two succinctly described strings are the. - »

same) in O(n?) time was constructed by Plandowski. Our main aim is to extend

this result and we show that a much stronger problem of the pattern-matching for

succinctly described strings can be solved with similar complexity: in O(n*logn)

time. However, Plandowski’s algorithm is not used in this paper, and our algorithm

gives independent constructive proof. The crucial point in our algorithm is the

succinct representation of all periods of a (possibly long) string described in this
manner. We also show a (rather straightforward) result that a very simple extension

of the pattern-matching problem for shortly described strings is NP-complete.

CR Classification: FE.4, F.2.2

Key words: pattern matching, text search, compression, straight-line program

1. Introduction

The pattern-matching problem is the central algorithmic problem related to
texts [see Crochemore and Rytter 1994]. Recently the problem was con-
sidered in a compressed setting [see Farach and Thorup 1995]. We use a
simpler type of compression in terms of straight-line programs (grammars,
or recurrences), in which the constants are symbols and the only operation
is the concatenation. Examples of typical words described in this way are
Fibonacci words and Thue-Morse words. Such a déscription (compression)
is sufficiently powerful that several interesting strings can be described suc-
cinctly; at the same time, it turns out to be sufficiently simple that basic

Received July 1995. Revised October 1996.

COMPRESSED PATTERN MATCHING 173

queries such as equality testing and (as we show here) pattern matching can
be answered efficiently.

Our main aim is to extend the result of Plandowski [1994] from the
equality-testing problem to the pattern-matching problem. However, we
do not use Plandowski’s algorithm in the paper, and our algorithm gives
independent constructive proof of the result obtained by Plandowski.

The main difference between our results and the results of Farach and
Thorup [1995] is that in the latter paper patterns are assumed to have
explicit representations, while we allow patterns to be given implicitly by a
short description, so our results are rather incomparable.

A straight-line program R is a sequence of assignment statements:

X1 = expry; Xo = expry;...; X, = expr,,

where X; are variables and expr; are expressions of the form:
o expr; is a symbol of a given alphabet X, or

o expr; = X;- Xy, for some j,k < i, where - denotes the concatenation
of X; and Xj.

Denote by R the string which is the value of the last variable X,, after the
execution of the program R. The size |R| of the program R is the number
n, it is also called the descriptive size of the generated string R. We identify
variables with their values in the sequel. R is called a string with short
description, since most |R| is very long (exponentially) with respect to its
descriptive size |R|. For a string w denote by wli..j] the subword of w
starting at ¢ and ending at j.

Denote by P and T the descriptions of a pattern P and a text 7. We
say that P occurs in T at position i if T[i..i + |P| — 1] = P. The pattern
matching problem for strings with short descriptions is, given P and T,
check if P occurs in 7', if “yes” then find any occurrence i. The size n of the
problem is the size |7 of the description of the text T'. Assume |P| = m < n.

Our main result is the following theorem.

THEOREM 1. The pattern-matching problem for strings with short descrip-
tions can be solved in O(n*logn) time. .

EXAMPLE 1. Let us consider the following straight-line programs 7 and P.
The program 7 describes the 8th Fibonacci word, [see Lothaire 1983].

T: Xi=h; P: Y =n0;
X2 = a; Ys = a;
X3 = Xo-X1; Y; =Ys-Yy;
Xy = X3-Xo; Y, =Y5-Y3;
X5 = X4-X3; Ys = Y3-Yo;
Xe = X5-Xy; Yo =Y, Yy
X7 = X6 Xs; Y7 =Ys-Y5.

Xg = X7-Xe,

174 M. KARPINSKI, W. RYTTER, A.SHINOHARA

§ Xo /\ Xe
XA& XA X\

X4 X4

X3 Xz X3 X3 X3 X3
ANNANVANRVAN /\ /\ /\ VANRVAN
X2 X1 X2 X2 X1 Xz X1 Xz Xz X1 Xz X2 Xl X2 Xl X2 X2 Xl X2 Xl XZ

T e O R T e O B A
T:- a b a a b a b aab aab abaabdab a

P: aabaababa

[
3’2Y2Y11/§1@Y11’5Y1Y2

VRV
YGJ

Y7

Fig. 1: The evaluation trees for the text T' (top) and the pattern P (reverse at bottom),
there is an occurrence of the pattern P starting at position 8 of T'.

We can see that

T Xg = abaababaabaababaababa,
P = Y; = aabaababa,

as shown in Fig. 1. An occurrence ¢ = 8 of P in T is a solution to this
instance. As we show in the subsequent sections, we can find such an oc-
currence without expanding the strings explicitly. Remark that the problem
we deal with is not simply the classical tree matching problem, although the
text and the pattern have a natural representation as trees. In fact, the eval-
uation tree for the pattern P does not match any subtree of the evaluation
tree for the text T in Fig. 1.

A preliminary version of this paper was presented at Karpinski et al. [1995].

2. The basic idea of the algorithm

For two strings x and y, we define the set of overlaps between z and y by

Overlaps(z,y) = {k >0 : z[|z| — k+ 1..|z|] = y[1..k]}.

COMPRESSED PATTERN MATCHING 175

aabaaba

Fig. 2: Overlaps(“aabaaba”, “abaababb”) > 3

For example, Overlaps(“aabaaba”, “abaababb”) = {1, 3,6}, see Fig. 2. For
two sets U and V' of integers, we define UV ={i+j|i €U, jeV}

Without loss of generality, we assume that the given straight-line programs
P and T contain no redundant assignment X; = ezpr; (1 < i < n) that is
never referred, since such a redundant assignment can be deleted in linear
time.

Both algorithms in this paper and in Karpinski et al. [1995] are based on
the following observation (see Fig. 3):

_— Xi\XT

AN

Fig. 3: P appears in X;

OBSERVATION 1.

P occurs in T if and only if 7 contains an assignment statement X; = X;- X,
such that for some t, P[1..t] is a suffix of X; and P[t + 1..|P|] is a prefix of
X,; that is, |P| € Overlaps(X;, P) @ Overlaps(P, X,.).

The algorithm scheme consists of the following two phases:

Preprocess: For each variable X; in T,
compute Overlaps(X;, P) and Overlaps(P, X;).

Pattern detection: Find X; such that X; = X;- X, and
|P| € Overlaps(X;, P) & Overlaps(P, X.).

The difficulty we must overcome is that the size of the set Overlaps(X;, P)
(and Owverlaps(P, X;) also) grows exponentially with respect to the size

176 M. KARPINSKI, W. RYTTER, A.SHINOHARA

n = |T| of an instance. We need to develop some good representation
of the set in order to construct a polynomial-time algorithm for the pattern
matching problem. In this paper, we represent the set Overlaps(X;, P) by
O(n) arithmetic progressions by clever use of periodicities in strings. Using
this data structure, the pattern detection phase can be done in O(n*) time,
as we will show in Section 4. According to the preprocess phase, Karpin-
ski et al. [1995] shows an O(n”) time algorithm which repeatedly calls the
equality testing procedure due to Plandowski [1994]. In this paper, we real-
ize O(n*logn) time algorithm for the preprocess, which dominates the total
time complexity, by computing Overlaps(X,Y) for each pair of variables in
T and P in bottom-up manner.

3. Preprocess

In the preprocess phase, we compute Overlaps(X,Y’) for all pairs X and YV
of variables appeared in given straight-line programs 7 or P, and memorize
all of them using only O(n3) space. In this section, we introduce the overlap
table and associated procedures.

3.1 Periodicity and succinct representation

First we state some facts about periodicities useful in the construction of
the succinct representation.

A nonnegative integer p is a period of a nonempty string w if w[i] = w[i—p],
whenever both sides are defined. Periods(w) denotes the set of all periods
of w. For example, Periods(“aabaabaabaa”) = {0, 3,6,9,10,11}.

LEMMA 1. (SEE CROCHEMORE AND RYTTER 1994, PP. 29) If w has two
periods p and q such that p+ q < |w| then ged(p, q) s a period of w, where
gcd means the “greatest common divisor”.

We say that a set of nonnegative integers from {0, 1, ..., N} is succinct with
respect to IV if it can be decomposed into at most |log, N | + 1 arithmetic
progressions. For example, the set Periods(“aba”) = {0,2,3} consists of
|logy 3] +1 = 2 arithmetic progressions. The following fact is a consequence
of Lemma 1.

LEMMA 2. The set Periods(w) is succinct with respect to |w|.

ProoF. The proof is by induction with respect to j = |logy(|w|)|. The
case j = 0 is trivial, one-letter string (|w| = 1) has periods 0 and 1 (forming
a single progression), hence we have precisely |log,(Jw|)| + 1 progressions.

Let k = I'l%’—l] It follows directly from Lemma 1 that all periods in U =
Periods(w) N{0,1,...k} form a single arithmetic progression, whose step is
the greatest common divisor of all of them. Let ¢ be the smallest period
larger than k. Then it is easy to see that

Periods(w) =U U ({q} ® Periods(w[q + 1..|wl])).

COMPRESSED PATTERN MATCHING 177

X1 Xz X3 X4 X5 XG X7 XS
X, |[{i}[0 | 0| 0]]] 0
Xo || 0\ {1} | {1} | {1} | {1} {1} {1} {1}
X | {1p | 0 {2} {2} | {2} {2} {2} {2}

Xa |l 0 | {1} | {1} | {1,3} | {1,3} | {1,3} | {1,3} {1,3}
Xs {1} 0 {2} {2} {2> 5} {275} {2, 5} {2)5}
Xe || 0 {1} | {1} | {13} | {1,3} | {1,3,8} | {1,8,8} | {1,3,8}
Xz {1} | 0 | {2} | {2} |{2,5}| {2,5} |{25,13} | {2,5,13}
Xs 9 {1} {1} {173} {173} {11378} {173a8} {13378721}

TABLE I: The overlap table of the straight-line program 7 in Example 1.

Now the claim follows from by inductive assumption, since |log,(|w|—q)| < j
and U is a single progression. O

3.2 Compressed overlap table

For a straight-line program R of length n, we define an overlap table for R
as the n x n array, where the content at column X; and row X; is the set
Overlaps(X;, X;). Remark that the cardinality of the set Overlaps(X;, X;)
might be Q(27).

EXAMPLE 2. Let us consider the straight-line program 7 for the 8th Fi-
bonacci word in Example 1. Table I shows its overlap table.

The overlap query is the question of the form: “k € Owverlaps(X,Y) 77,
for an integer k and variables X and Y. We now develop a data structure
compressed overlap table of a straight-line program R, which requires only
O(n®) space to represent all (potentially exponentially many) overlaps be-
tween variables of R, and allows to answer each overlap query in O(logn)
time.

A compressed overlap table OV is an overlap table where each content
of the set Overlaps(X,Y’) is succinctly represented using O(n) arithmetic
progressions as follows.

First of all, remark that the set Overlaps(X,Y’) can be expressed by the
pair omax = max{i : i € Overlaps(X,Y)} and Periods(Y[l..0max]), since
Overlaps(X,Y) = {omax — @ : @ € Periods(Y[1..omax])} — {0}. According
to Lemma 2, the set Periods(Y[1..0max|) consists of at most n arithmetic
progressions. Actually, we store the set of periods as follows (see Fig. 4):
Let a; be the smallest period, that is always zero. Let d; be the difference
between a; and the next period in increasing order. For ¢ > 1, let a; be the
first period which is not in the set Uz;lo{ak +j-di : j >0}, and d; is the
difference between a; and the previous period. Each pair (a;, d;) represents
the segment {a; + jd; : 0 < j and a; + jd; < a;41} of the periods. We keep

178 M. KARPINSKI, W. RYTTER, A. SHINOHARA

dl d2 d3
Periods(X) é- e e N NI
ai az as

Fig. 4: The set Periods(X) is stored as the pairs (a1, d1), (az,d2), ..., where dots e denote
the periods of X.

these segments {(a;,d;)} in a sorted order with respect to a;’s so that any
overlap query can be answered in short time.

LEMMA 3. If the set of all overlaps between two variables X and Y is com-
puted and represented using compressed overlap table then each overlap query
between X and Y can be answered in O(logn) time.

Proor. First, we find the segment to which given value may belong, by
using binary search with respect to a;’s. It takes O(logn) time, since there
are at most n segments. Then we can determine whether the value is in the
progression or not in constant time by simple arithmetic operations. O

3.8 Operation Compress

Assume we have a (possibly redundant) representation of the set V of all
overlaps between two variables X; and X in terms of of progressions corre-
sponding to periods of Periods(X[1..k]) for some k. Such a situation arises
when we tries to construct V' by merging two sets, which will be explained in
Section 3.5. Then for each pair of progressions we check if one is contained
in the other and whenever this happens we remove a redundant progression.
It takes O(n?) time. The resulting set is denoted by Compress(V).

3.4 First mismatch and period continuation

Assume R is a given straight-line program, whose variables are Xj, ...,
Xn. We say that X; precedes X; if ¢« < j. Assume |Y| > k. Define
FirstMismatch(X,Y, k) as the first mismatch (from left) which is a witness
to the fact that k ¢ Overlaps(X,Y’). More formally,

FirstMismatch(X,Y, k) = min{i > 0 : X[|X|—k+1] # Y[},

for 0 < k < |X|. If there is no such ¢, the value of FirstMismatch(X,Y,k)
is 0.

THEOREM 2. Assume A and B are two variables of a given straight-line
program of length n. Then the value of FirstMismatch(A, B,k) can be com-
puted with O(n) overlap queries between variables which precede A or B.

ProoF. Consider the evaluation trees for variables A and B. The internal
nodes can be identified with corresponding variables. We use a kind of binary

COMPRESSED PATTERN MATCHING 179

°“ AN

B

B

Fig. 5: Looking for the first mismatch in Overlaps(A, B).

function FirstMis(variable X, X;; int k) : integer /*0 < k < |X;| */
if (X; is a terminal) then
if (X; is a terminal) then
if (X; = X;) then return 0 else return 1
else /* Assume X; = X1 - Xr */
if (k € Overlaps(X;,X.)) then return 0 else return 1
else begin /* Assume X; = X; - X, */
if (|X:| — k > |Xi|) then return FirstMis(X,, X;, k)
else if (k — |X;| > | X+|) then return FirstMis(X;, X;,k — | X-|)
else if (k — | X,| & Overlaps(X;, X;)) then return FirstMis(X;, X;,k — | X.|)
else begin
mis := FirstMis(X;, Xr, | X;| + | X-| — k);
if (mis=0) then return 0 else return (k — | X,| + mis)
end
end

Fig. 6: A pseudo-code which computes the FirstMismatch.

search going down alternatively in the first or the second tree. Assume we
are to compute the first mismatch in the overlap between A and B, see
Fig. 5. By calculating the length of each variable, we go down the tree with
root A to find the first node C such that its left subtree makes an overlap
with B, see Fig. 5 (on the left). Then we make an overlap query between B
and D. If the answer is “no”, then the first mismatch should be in this part,
and we search recursively for a mismatch in the overlap between D and B.
Otherwise, we go down (up on the figure) from the root in the tree rooted
at B to find the first node F' whose sons G and H overlap the tree rooted
at E/. Then we make an overlap query between G and E. If the answer is
“no” then we search recursively for a mismatch in this overlap. Otherwise
we search recursively in the overlap between H and E.

In this way after a constant number of overlap queries we go down (towards
the leaves) in one of the trees. The height of the trees is O(n), hence the
number of queries is O(n). This completes the proof. A pseudo-code which
computes the FirstMismatch is given in Fig. 6. O

180 M. KARPINSKI, W. RYTTER, A. SHINOHARA

i FirstMismatch(C, C, |C| — p) C
FirstMismatch(B, CKC

Fig. 7: We know that in A there is the period p in the part B. The first mismatch to
the continuation of this periodicity in C is found by two applications of searching first
mismatches in overlaps.

N

THEOREM 3. Assume the compressed overlap table of all variables preceding
A is constructed, and there is a period p in the B part of A, where A = B-C.
Then the first mismatch to the continuation of the period p in C can be
computed in O(nlogn) time.

Proor. We refer to Fig. 7. First we search for the mismatch in the overlap
between B and C, using the algorithm FirstMismatch(B, C,p) in Theorem 2.
Then, if there was no mismatch, we search in the overlap between C and C
by FirstMismatch(C,C,|C|—p). By Lemma 3 and Theorem 2, the running
time is O(nlogn). O

3.5 Computing the compressed overlap table of P and T

Let R be the concatenation of straight-line programs P and 7 together.
We show how to compute efficiently the compressed overlap table for all
variables in R. Assume the variables are X1,...,X,. The computation is
bottom-up. For each pair of terminal variables X and Y, the algorithm first
computes OV[X,Y] in a naive way, Then it computes the elements of the
table OV according to the order presented in Fig. 8. The basic auxiliary
operation is the prefiz extension. Assume that U C {1,..., N}. Define

PrefExt(U,A,B) ={k+|B| : ke U, A[l.k] B is a prefix of A}.

The algorithm is based on the following obvious fact:

COMPRESSED PATTERN MATCHING 181

the table representing
the overlap structure

Fig. 8: The order of processing elements of the table OV

Y

A

Fig. 9: k+ |B| € PrefExt(U, A, B) if and only if the common parts of A and B agree.

OBSERVATION 2. Assume that X; = X;- X, and U := OV[X}, X;] and
W := OV[X,, X,]. Then

OV [X;, X;] :== Compress(PrefExt(U, X;, X,) UW).

ALGORITHM Compute Overlap Table ;
compute OV[X;, X;] for each pair of terminal variables;
for (¢,7) in the order shown in Fig. 8 do

begin

/* Assume X; = X;- X, */

/* computation of OV[X“X 1 */

U = OV[X, X;];

U := PrefEzt(U, X;, X,);

W .= OV[X,, X;];

OV[X;, X;] := Compress(U UW);
end

182 M. KARPINSKI, W. RYTTER, A. SHINOHARA

The next lemma says that the operations PrefExt is efficient for a single
progression.

LEMMA 4. Assume A and B are variables and the compressed overlap table
for variables which precede A or B is computed. Let S = {to,t1,...,ts} C
{1,...,k} be an arithmetic progression given by its succinct representation,
where to = k < |A| and strings x; = A[l..t;], 0 < i < s, are suffizes of
A[l..k]. Then the representation of PrefExt(S, A, B) can be computed in
O(nlogn) time.

PROOF. Assume the sequence tg,t1,...,ts is decreasing. We need to
compute all possible continuation of z;’s in A which match B, see Fig. 9.
Denote y; = A[l..|z;| +|B|] and Z = A[1..k] - B. Hence our aim is to find all
i’s such that y; is a suffix of Z, (0 < ¢ < s). We call such i’s good indices.
Let p = t; —to be the step of the linear set S. Then p is the period of A[l..k].
We can compute the first mismatch to the continuation of periodicity p in
Z and in yo using the algorithm from Lemma 3. There are four basic cases:
Case A: there is no mismatch in Z but there is a mismatch for the period-
icity p in yg.
Then good indices are all ¢ > 7, where r is the first index such that y,
contains no mismatch at all. We have r = 4 in Fig. 10 (case A).

Case B: there is a mismatch in Z and a mismatch in yo.
The good index, if any, could only be 4 such that the first mismatch in
Yy; is exactly over the first mismatch in Z. See Fig. 10 (case B), where
the only good index is i = 2. We can easily calculate such 3.

Case C: there is no mismatch in Z or yp.
Then all indices 7 are good.

Case D: there is a mismatch in Z but not in yg.

Then none of indices 7 is good.
In this way we compute the set of good indices. Observe that it consists of a
subset of consecutive indices from the set S. So the corresponding set (the
required output) of integers {|y;| : ¢ is a good index } forms an arithmetic
progression. This completes the proof. O

The set U in the algorithm Compute Overlap Table consists of O(n)
arithmetic progressions. Hence for each pair (X;, X;) we perform O(n) op-
erations PrefFxt applied to an arithmetic progressions. Altogether we do
O(n?) such operations, hence the total time is O(n*logn). This implies the
main result of this section:

THEOREM 4. The compressed overlap table for a given straight-line program
R can be computed in O(n*logn) time.

As a side effect of Theorem 4 we can compute the set of all periods for
strings with short descriptions.

COROLLARY 1. Assume T is a string given by its description T of size n.

Then we can compute in O(n*logn) time a linear size representation of the
set Periods(T).

COMPRESSED PATTERN MATCHING 183

us : :

: YT T YT

Case A oYLy '
Yy T Y T YT YT Yy Yy Yy Y
y3rﬂ*\rﬂ YO A R

V—~—"v
r—~""~"v
v

2T Y

Case B

- A[L..K] : B -

Fig. 10: Two cases: Z = A[l..k] - B has (has no) mismatch, y; = A[l..|2;| + |B]].

4. The Pattern-Matching Algorithm

Denote ArithProg(i,p, k) = {i,i+p,i+2p,...,i+kp}, so it is an arithmetic
progression of length £+ 1. Its description is given by numbers 1, p, k written
in binary. The size of the description, is the total number of bits in 7, p, k. For
two sets U and V of integers and an integer p, we denote by Solution(p, U, W)
any position ¢ € U such that i + j = p for some 5 € W. If there is no such
position 4 then Solution(p, U, W) = 0.

LEMMA 5.
Assume that two arithmetic progressions UW C {1,...,N} are given by
their descriptions. Then for a given number c € {1,..., N} we can compute

Solution(c,U, W) in O(n?) time, where n = log N.

PROOF. The problem can be easily reduced to the problem:

for given nonnegative integers a, b, c, A, B find any integer solu-
tion (z,y) to the following equation with constraints

ar+by=c, (1<z<A 1<y<B). (1)

184 M. KARPINSKI, W. RYTTER, A.SHINOHARA

/Xk\
X; X;

the set Uy the set Ug
(Y Y Y \ m

the length of the pattern

Fig. 11: U, = OV[X;, P] and U; = OV[P, X}], the algorithm find positions in these sets
whose difference is the length of the pattern.

It is enough to compute a solution in O(n?) time with respect to the number
of bits of the input constants.

We can assume that a,b are relatively prime, otherwise we can divide
the equation by their greatest common divisor. As a side effect of Euclid
algorithm applied to a,b we obtain integers (not necessarily positive, but
with not too many bits) xf,yo such that az(+ byy = 1. Let zp = cx},

—_ / . .
Yo = cyp. Then all solutions to the equation (1) are of the form

(@,y) = (@0 + kb, yo — ka), where k is an integer parameter.

This defines a line, and we have to find any integer point in the rectangle
{(#,5) + 1 <i< A, 1< j < B} which is hit by this line. This can be
done in O(n?) time using operations div and mod on integers. We refer for
details to Knuth [1981] (see page 325 and Exercise 14 on page 327). O

ALGORITHM Pattern_Matching ;
Compute_ Overlap_Table; /* preprocessing */
for i =1tondo
/* assume X; = X;- X, forl,r <i */
pos := Solution(|P|, OV[X;, P], OV[P, X,]);
if pos # 0 then report an occurrence and STOP

THEOREM 5. The algorithm Pattern_Matching works in O(n*logn) time.

ProOF. First we show that Solution(|P|, OV[X;, P], OV[P, X;]) is per-
formed by at most 2n applications of this operation Solution(|P|,U,V),
where both U and V are single arithmetic progressions. Remember that the
set OV[X;, P| is expressed by at most k(< n) segments Uy, Us,...,U; in

COMPRESSED PATTERN MATCHING 185

a sorted order, where each Uj is a single arithmetic progression. The same
thing can be said for OV[P, X;] by the segments Wy, Wa,..., W, (I < n).
In order to compute Solution(|P|, OV[X;, P], OV[P, X}]), we have only to
perform the operation Solution(|P|,U;, V) for all pairs of U; and V; such
that min(U; © V;) < |P| < max(U; ® V;). It is not hard to verify that
the number of such pairs is at most k + [< 2n, and we can enumerate
all such pairs in O(n) time, since the segments are sorted. Since each op-
eration Solution(|P|,U;,V;) can be done in O(n?) time by Lemma 5, the
operation Solution(|P|, OV[X;, P], OV[P, X;]) runs in O(n®) time. The al-
gorithm Pattern_Matching makes O(n) such operations, hence the total
complexity for all these operations is O(n*). By Theorem 4, the compressed
overlap table can be constructed in O(n*logn) time, so the whole algorithm
Pattern_ Matching works in asymptotically the same time. This completes
the proof of this theorem (and also of our main result: Theorem 1). O

5. An NP-Complete Version of Pattern-Matching

Let Var be a set of variables in some straight-line program of length n over
an alphabet 3, and P be a pattern (given by a straight-line program P
of length m < n). For a regular expression W, let L(W) be the language
defined by W. We consider the regular-ezpression-matching problem for
shortly described strings defined as follows:

given a regular expression W over Var of size O(n)

test if P € v(W),

where v(W) C ¥* is the language obtained from L(W) by expanding the
values of variables in Var.

THEOREM 6. The regular-expression-matching problem for shortly described
strings 1s NP-complete, even if the expressions are x-free and contain no
empty string and the alphabet ¥ (for strings which are values of variables)
18 unary.

PRrROOF. The proof is a reduction from the SUBSET SUM problem defined

as follows:

Input instance: Finite set A = {aj,as,...,a,} of integers and an inte-
ger K. The size of the input is the number of bits needed for the
description.

Question: Is there a subset A’ C A such that the sum of the elements in
A’ is exactly K?

The problem SUBSET SUM is NP-complete, see Karp [1972], and Garey
and Johnson [1979], pp. 223. We can construct easily a straight-line program
such that the value of Xj is 1% and P = 1% where & = {1}. Then the
SUBSET SUM problem is reduced to the membership:

Pev((X1Ue)- (XaUe)-- (XnUe)).

186 M. KARPINSKI, W. RYTTER, A. SHINOHARA

The empty string € can be easily eliminated by rescaling numbers and re-
placing € by a single letter 1. This completes the proof. O

References

CROCHEMORE, M. AND RYTTER, W. 1994. Text Algorithms. Oxford University Press,
New York.

FARAcH, M. AND THORUP, M. 1995. String-matching in Lempel-Ziv compressed strings.
In 27th ACM STOC, 703-713.

GAREY, M.R. AND JOHNSON, D.S. 1979. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman.

Karp, R.M. 1972. Reducibility among combinatorial problems. In Complexity of Com-
puter Computations, Miller, R.E. and Thatcher, J.W., Editors. Plemum Press, New
York, 85-103.

KARPINSKI, M., RYTTER, W., AND SHINOHARA, A. 1995. Pattern-matching for strings
with short descriptions. In Proc. Combinatorial Pattern Matching, Volume 637 of
Lecture Notes in Computer Science. Springer-Verlag, 205-214.

KnutH, D. 1981. The Art of Computing Vol. II: Seminumerical Algorithms. Second
edition. Addison-Wesley.

LoTHAIRE, M. 1983. Combinatorics on Words. Addison-Wesley.

PrLANDOWSKI, W. 1994. Testing equivalence of morphisms on context-free languages. In
ESA’94, Volume 855 of Lecture Notes in Computer Science. Springer-Verlag, 460—
470.

