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Abstract. Atallah er al. introduced a randomized algorithm for string matching with
mismatches, which utilized fast Fourier transformation (FFT) to compute convolution. It
estimates the score vector of matches between text string and a pattern string, that is. the
vector obtained when the pattern is slid along the text and the number of matches is counted
for each position. In this paper, we simplify the algorithm and give an exact analysis of the
variance of the estimator.

ACM CCS Categories and Subject Descriptors: F.2 [Analysis of Algorithms and Prob-
lem Complexity]
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1. Introduction

String matching problem is to find all occurrences of a pattern string in a text string.
Let T = t;---t, be a text string and P = p; - p,, be a pattern string over an
alphabet X. Approximate string matching problem is to find all occurrences of
small variations of the original pattern P in the text 7. Substitution, insertion, and
deletion operations are often allowed to introduce the variations. In this paper, we
allow the substitution operation only. The derived problem is usually called string
matching with mismatches. Refer the textbooks [3, 6, 8] to know the history and
various results. The string matching with mismatches is essentially regarded as a
problem to compute the score vector C(T, P) = (c1,...,Cp-m+1) between T and P,
where each ¢; counts the number of matches between the substring #; - - - ;4,1 Of
the text T and the pattern P. If ¢; = m, the pattern exactly occurs at position i in
the text. Fig. 1 shows an example of the score vector.

Although the naive algorithm which solves this problem needs O(mn), it can be
computed in O(nlogm) time by utilizing the fast Fourier transformation (FFT).
This approach was essentially developed by Fischer and Paterson [7], and other
related work is found in [1, 3, 4, 9]. An algorithm on this approach is described
simply in [8], which compares two strings over {0, 1} converted from T and P for
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i 1 2 3 45 6 7 8 9 10
text a ¢ b a b b a c c b
pattern a b b a c
a b b a c
a b b a c
a b b ac
a b b a c
a b b a c
¢ 31 15 2 0

Fig. 1: Score vector between the text acbabbaccb and the pattern abbac.

the arithmetic operation. However, the time complexity of a straightforward appli-
cation of this method depends on the cardinality of . For example, the algorithm
in [8] repeats the O(n log m) operation [Z| times to compute the score vector exactly.

Recently, Atallah et al. [2] introduced a randomized algorithm of Monte-Carlo
type which returns an estimation of the score vector C(7T, P). The estimation is per-
tormed by averaging independent equally distributed estimates, which is yielded
by mapping the characters into a complex plane uniformly. Let £ be the number
of randomly sampled estimations, then the time complexity is O(knlog m). They
showed that the expected value of the estimation is equal to the score vector, and
that the variance is bounded by (m — c)? k.

In this paper, we give a slight simplification of their algorithm. Concretely, char-
acters are converted to {—1, 1} instead of complex numbers of size |Z|. Moreover,
we analyze the variance of the estimator exactly.

2. Preliminaries

Let N be the set of non-negative integers. Let X be a finite alphabet. An element

of " is called a string. The length of a string w is denoted by [w|. The empty string

is denoted by &, that is, |¢| = 0. We denote the cardinality of a set S by [S] or #§.
We define a function 6 from £ x X to {0, 1} by

1 ifa=b,

8la.b) = {0 ifa+b

For a text string 7 = 1| - - - 1, and a pattern string P = p| - - - pp,, the score vector of
matches between T and P is defined as

C(T7 P) = (Cva27 et CI’[*WH“I)a

where
m

¢ = Z O(tivj-1.p)).
=
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That is, ¢; is the number of matches between the text and the pattern when the first
character of the pattern in positioned at the ith character of the string.

3. Deterministic algorithm

In this section, we introduce a deterministic algorithm to compute the score vector
for given text T and pattern P. Although it might not be practical for large alphabet,
it will be a base for the randomized algorithm explored in the next section.

3.1 Binary alphabet case

We first consider a binary alphabet £ = {a, b}. We define a functiony : ¥ — {-1, 1}
by ¥(a) = 1 and ¥(b) = —1. By using ¥, we convert the strings 7 and P into the
sequences of integers as follows.

WT) = Yt (i) W(ty),
WPy = Y(pow(p2)-v(pw).
Let A%T.P) = (a].d}.....d"_ ) wherea! = ¥ W(tij-1) - (p)).

J=1
LEmma 1. Forany ]l <i<n-m+1,¢; = (a;./’ +m)/2.

ProOF.  Since ¢; = #{j | tirj-1 = pj. | < j < m), we have @’ = #{j | i1 =
pi- V< j<m=#jltiy; 1 #pj. 1 <j<ml=ci—(m~-c) =2 —m. Thus
ci = (a:.// +m)/2. O

The above lemma implies that we have only to compute A%(T, P) to get the score
vector C(T, P). Since the sequence A”(T, P) is the convolution of y(T) with the
reverse of y/(P), we can calculate all the @;’s simultaneously by the use of FFT in
O(nlogm) time as follows. As is stated in [2], we additionally apply the standard
technique [5] of partitioning the text into overlapping chunks of size (1 + a)m each,
and then processing each chunk separately. Processing one chunk gives us am
components of C. Since we have n/(am) chunks and each chunk can be computed
in O((1 + a)mlog((l + a)m)) by FFT, the total time complexity is (YL -O((1 +

a)ymlog((1 + a)ym)) = 0(¥nlog((l +a/)m)) = O(nlogm) by choosing o =
O(m).

TueoreM 1. For a binary alphabet, the score vector C can be exactly computed in
O(nlog m) time.

3.2 General case

We now consider general case |X| > 2. Let Wy be the set of all mappings from X
to {—1, 1}. Remark that |¥s| = 2*I. We abbreviate W5 with ¥ when X is clear from
the context. The next lemma is obvious.
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Lemma 2. For any ¢ € Wy and any a, b € %,

if (a) = y(b),

1
way-uby = {1 )

LemmA 3. Forany a,b € %,

]

g1 2 @) ) = 5(a.b).

pe¥

Proor. Incase of a = b, then ¥/(a) = y(b) for any ¢ € . Therefore y(a)-y(b) = 1
for any by Lemma 2, and the sum },cy ¥(a) - ¥(b) equals to the cardinality of
W. Thus, the left side of the equation is unity.

To prove the lemma in case of a # b, we show a more general proposition:

Dwd) ) ub) = 0 ifdy # b, dy # b (02 0).

we¥

By the assumption that b is distinct from dy, - - -, d,,

D wtd) - gy )

=D D) T Y ) by - (=)

W(b)=1eV¥ W(h)y=—1 eV
= 0.
Thus, by the proposition for n = 1, the left side of the equation is zero. o

THEOREM 2. Forany 1l <i<m—n+ 1,

N N
¢ = |W|Zai. @))

ey

Proor. By the definition of a;/' and Lemma 3, the right side of the equation can be
written as follows.

ITL_I Za‘f = ﬁ Z il//([iﬂ—l)"//(pf)

eV vel j=1

i |—‘17| Z Utivj1) - (pj)
J=

yew
m
Z O(ti j-1.Pj)-
=

Since the last formula is the definition of ¢;, the theorem is proved. o
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THeoreM 3. C(T, P) can be exactly computed in 02"y log m) time.

Proor. By Theorem 2, each c; is the mean of a?” for every ¢ € Wy, therefore
C(T, P) is obtained by computing all A¥(T, P). Since each AY(T, P) can be com-
puted in O(n log m) time, we can calculate C(T, P) in 0(2‘2% log m) time. O

We note that if the alphabet X is infinite, by splitting the text in chunks of length
O(m) to be dealt with independently ensures it will work with an alphabet size
O(m), C(T, P) can be exactly computed in 0(20('”’;1 log m).

4. Randomized algorithm

A shortcoming of the deterministic algorithm in the last section is that the running
time 1is exponential with respect to the size of alphabet. It is not practical for large
alphabet. In this section, we propose a randomized algorithm which was inspired
by Atallah et al. [2].

Let us noticed that Theorem 2 can be interpreted as follows. Each ¢; is the mean

of random variable X; = T:l Wty j-1) - ¥(p;), assuming that ¢ is drawn uni-
formly randomly from ¥. The observation leads us to the following randomized
algorithm. Instead of computing all vectors A, (T, P) = (alf. ag ..... af_mﬂ) where
af’ = Z’}Izl W(tiyj—1) - ¥(p;) to average them, we compute only k samples of them
for randomly chosen i1, ...,y € ¥. Since the expected value of X; equals to ¢;, it

will give a good estimation for large enough k. We will give a formal proof of it,
and exactly analyze the variance of X; in the sequel. Fig. 2 illustrates the core part
of the algorithm for the basic case n = (1 + a)m.

Procedure ESTIMATESCORE
Input: atext T =] - f{|+o)m and a pattern P = py - -- p,, in £%;
Output: an estimate for the score vector C(T, P).
for £ := 1 to k do begin
randomly and uniformly select a ¢, from Ws;
let Ty = ¢(T);
{Note that T is a sequence over {—1, |} of length (1 + a)m.}
let P; be the concatenation of ,(P) with trailing am zeros;
compute the vector (; as the convolution of Ty with the reverse of Fr by FFT;
end
k

A ]
compute the vector C =

=1

C and output it as an estimate of C(7, P).
=1

Fig. 2: Randomized algorithm.
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We now analyze the mean and the variance of the estimator ¢;. Since all the
random variable ¢; are defined in a similar way, we generically consider the random

variable
m

k
S22 3wt -uip)
(=1

J=1

Il

=1

where the 7;’s and the p;’s are fixed and mapping ¢’s are independently and
uniformly selected from Ws. The definition implies that § is the mean of k ran-
dom variables which are drawn from independent and identical distribution.
The random variable can be defined by

m

s =D W) - v(p)),
i=1

J
and the mean E(5) and variance V(S§) are
V o
E($) = E(s) and V(s§) = %

The number ¢ of matches between 7 =t ---t,, and P = p;--- py, 1S

m
C = Z 5(1], pj).
j=1

LEmMA 4. The mean of § is equal to c.

Proor. By Lemma 3,

E(3) = E(s)

1
P
= |—\L| > iwm) U(p))

ve¥ j=1

m l
= Z | Z W(tj) - w(p))
j=1 ye¥

m

2,8 p)).
=

Thus, the mean of §isc. O

In order to analyze the variance of s accurately, we introduce the following func-
tion prp : L x X — N depending on text T = ¢} - - - t,, and pattern P = py - pp.,
which give a statistics of 7 and P.

prpea,b)y=#{jltj=aand p; =D, 1 < j < m}



8 BABA ET AL.

For example, if 7 = aabac and P = abbba, then prp(a,b) = 2, prp(a,a) =
pr.p(b,b) = prp(c,a) = 1, and the others are zero. We omit the subscription T, P
of pr p in the sequel. In addition, we use the following expression.

T(a, b) = pla,b) + p(b, a).

The next lemma is obvious from the definition.
1
LEmMMA 5. Z pla,b) = 2 Z T(a,b) =
(a.b)eXxX (a.b)eX XX
The next lemma gives the exact variance of §, in terms of p.
Lemma 6. The variance of § is
o | 2
V(§) = Z Z (p(a, b) + p(a, b) ~p(b,a)) .
a#b
Proor. Since the mean of s equals to ¢ by Lemma 4,

1 11
V(§) = —wo (s —c).
k |\p| eV

By the definition of p,

s = Z w<a>-w<b>-p<a,b>
(a.b)e

Zp(a b) + Zw ) - y(b) - pla, ), and

a#b
Zp(a, D).

a=b

Therefore,

L!Z s—c)2
v

2
= |\]J| Z [Zp(a b) + Zl,l/(a) w(b) - p(a, b] Zp(a,/?)]

vew a#b a=b
= Z [Z W(a) - w(b) - pla, b)]
|w6‘¥‘ a#b
|
- TZZZW) w(b) - pla,b) - y(d) - (') - p(d’ . b)
e a#b o' #b

;[p<a,b)- > [p(a by me(a) (b - w(a) - (b’ ))]

a’ #b yeV
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Let us take a(a, b,a’.b’) = |‘L_| Z w(a) - y(b) - y(a’y - y(b"), and show that
eV

1 ifeithera=a"andb=¥F,0ora=>4 anda = b,

ala,b,a’.b’) = {0 otherwise,

by the case analysis whether there exists a distinct character from the others in
a,b,a’,b’. 1If there exists such a character, then a(a,b,a’,b’) = 0 by the proof
of Lemma 3. If there does not exist such a character, then we have either a = @’
and b = b’, ora = b’ and b = a’ by the assumption that both @ # b and @’ # b'.
Then, by Lemma 3 and the fact that y(a)’> = | for any € ¥ and any a € X since
Yla) € (=1, 1},

ala,b,a’,b’) = |]?| Z LI/(CI)2 . lﬁ(b)z =1

we¥

Thus,

I
V@) = o ; p(a,b) (pla, b) + p(b, a))

= % Z (p(a, b)2 + pla, b) - p(b, a)) .0

a#b

Moreover, by the definition of 7, we have

Z (,O(aq by + pla.b) - p(b.a))

a#b

= % Z (p(a,b)2 +2p(a. by - p(b,a) +p(b,a)2)

a+b

]
= 32, pla.b)+ptb.a)y

a#b

= % Z (a, b)2

a+b

= Z (a, b)z.

a<b

Therefore, the variance can be exactly restated in term of 7 as follows, which might
be more intuitive.

THEOREM 4. The variance of § is

N 2
V) = o Z (a. b)2.

a<h
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Remind that 7(a, b) represented the number of positions j = 1,...,m in T and
P, such that (1}, p;) is either (a, b) or (b,a). If T exactly matches P, then V(§) = 0,
which implies that the estimation is always m, without any error. On the other hand,
since 3, T(a, b) = m — ¢, the variance V(§) is maximized for inputs which have
no match and are constructed by only two characters, for example, T = aaaaaa,
P = bbbbbb, and T = aaabba, P = bbbaab.

We now state the bound of the variance of § in terms of m and ¢, that exactly fits
to the one proved by Atallah et al. [2].

LemMma 7. The variance of § is bounded as follows.

2
V(s < M

Proor. By Lemma 5,

m-—c Z pla,b) — Zp(a, b)

(a.hYeXXX a=b

= Zp(a,b)

azb

= % Z (a, b)

a#b

= Z 7(a, b).

a<b

Therefore, by Theorem 4,

2
mecP L) ! z
T -V = k[ZT(u,b)) kZT(a,b)

a<b a<b
1
= % Z [T(a, b)- Z ', b)) - 1a, b)z]
a<b a’<b’
I SIS
= ZZ[T(‘Z’[’)' Z T(a,b)),
a<b a’<b’

.
where Z T(d’,b") expresses the sum of t(a’,b’) except for the two cases a’ =

a’'<b’

a,b’ =band a’ = b,b" = a. Since t(a, b) > 0 for any a and b, the last formula is
not less than zero. o

We now have the main theorem.
THEOREM 5. Algorithm ESTIMATESCORE runs in O(knlogm) time. The mean of the

estimation equals to the score vector C, and the variance of each entry is bounded
by (m = ¢;)* k.
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5. Conclusion

We gave a randomized algorithm for string matching with mismatches, which can
be regarded as a slight simplification of the one due to Atallah et al. [2]. For
comparison, we give a brief description of their algorithm. It treats the set ¥’ of all

mappings from Z to {0, 1, ..., |Z| — 1}, and the basic equation is
1 m
", — Ut j-1)=w(p))
AR PIPDITE *
eV j=1

where w is a primitive |Z|th root of unity. When [Z] = 2, we know w = —1, and that
Eq. (2) directly corresponds to Eq. (1) in ours. The difference is how to treat gen-
eral alphabet [Z| > 2. In our algorithm, the converted sequence (7T) is simply over
{=1, 1}, while in their algorithm y/(T) is over {1, w, w?, . .., w*~'} that are complex
numbers. When computing the convolution by FFT, the computation of the former
will be much simpler (and possibly faster) than the latter. From the view point of
the precision of the numerical calculations, the former might be preferable to the
latter, although we have not yet studied explicitly. Moreover, this simplification en-
abled us to reach the exact estimation of the variance (Theorem 4), by fairly prim-
itive discussion. An interesting point is that the variance is still independent from
the size of alphabet, although we map X into {—1, 1}, instead of {0, 1,...,|Z| - 1}.

In the situation that the cardinality of X is not large, the deterministic algorithm
in [8] mentioned in Section 1 can compute the score vector exactly in practical
time. By modifying the definition of ¢ as

1 ifa=ux,
Vla) = {0 ifa+x

then we have
m

= 20 Weltis o) Ulp))

xexr j=1

forany | < i <n—m+ 1. This implies that the score vector C(T, P) can be exactly
computed in O(|X|nlogm) time. Since an estimation for ¢, counts matches with
respect to a certain character x, the expected value is not equal to the score vector.
Hence the randomized algorithm cannot be applied to this algorithm.
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