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Abstract An elementary formal system (EFS) is a logic program con-
sisting of definite clauses whose arguments have patterns instead of first-order
terms. We investigate EFSs for polynomial-time PAC-learnability. A definite

“clause of an EFS is hereditary if every pattern in the body is a subword of a
pattern in the head. With this new notion, we show that H-EFS(m, k, t,r) is
polynomial-time learnable, which is the class of languages definable by EFSs
consisting of at most m hereditary definite clauses with predicate symbols
of arity at most r, where k and ¢t bound the number of variable occurrences
in the head and the number of atoms in the body, respectively. The class
defined by all finite unions of EFSs in H-EFS(m, k,t,r) is also polynomial-
time learnable. We also show an interesting series of NC-learnable classes of
EFSs. As hardness results, the class of regular pattern languages is shown not
polynomial-time learnable unless RP=NP. Furthermore, the related problem
of deciding whether there is a common subsequence which is consistent with
given positive and negative examples is shown NP-complete.

Keywords:  Elementary Formal System (EFS), Polynomial-time PAC-learning,
NC-learnable, Pattern Languages, Common Subsequence.
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§1 Introduction

An elementary formal system (EFS for short),, which was introduced by
Smullyan,*® can be considered as a logic program such as a Prolog program.*" In
EFSs, word concatenation is the only function symbol except constant symbols.
Thus, terms in EFSs are words consisting of constant symbols and variables.
Such terms are called patterns. Arikawa et al. proposed EFSs as a unifying
framework for language learning.®

For example, the following set " of definite clauses is an EFS:

p(z1%223) «— q(21, T2, T3)
I'= q(a7 ba C) )

q(azx1, b2, cx3) — q(1, 72, 3)
where 1, z2,x3 are variables, a,b,c are constant symbols taken from a finite
alphabet ¥, and p, q are predicate symbols. We use two inference rules: substi-
tution of nonempty patterns for variables and modus ponens. A clause C is said
to be provable from an EFS I when C can be obtained from I" by finitely many
applications of the inference rules. We define a formal language by specifying
an EFS T" and a unary predicate symbol p as follows:

L(T,p) = {w € =% | p(w) is provable from T'}

By the EFS I' above we have L(T',p) = {a"b"c" | n > 1}. Pattern
languages introduced by Angluin® can also be defined by using the simplest

EFSs. The language L(7) of a pattern 7 is defined by an EFS with a single unit
clause “p(7).”

Since the proposal by Arikawa et al., studies on learning EFSs have been
developed focusing mainly on traditional inductive inference.'®*****® In this pa-
per we discuss the learnability of EFSs in the sense of Valiant’s PAC-learning.*®
In contrast with traditional inductive inference based on “identification in the

limit” due to Gold'® or “learning from minimally adequate teacher (MAT)”due
to Angluin,® PAC (probably approximately correct) learning is to find an ap-

proximation of the target from random sampling, and therefore it has attracted
much attention even from the viewpoint of practice. However, it seems that the
contributions of studies on theory of PAC-learning are mainly on negative results
derived from the theory of computational complexity. The main purpose of the
present study is to find learnable classes of languages as general as possible using
the framework of EFSs.

Shinohara® showed that the class of languages defined by length-bounded
EFSs with at most n clauses is identifiable in the limit from positive data for any
positive integer n. A clause C = A « A;,--- , A; is called length-bounded if for
any substitution 6, the total length of patterns in A;6,--- , A0 does not exceed
the total length of patterns in Af. An EFS is called length-bounded if it consists
of length-bounded clauses. The EFS I in the first example is length-bounded. A
language is context-sensitive if and only if it is defined by a length-bounded EFS.
One of the most important properties of length-bounded EFSs is that, for any
finite set S of words, there exist only finitely many inequivalent length-bounded
EFSs that are reduced with respect to S. An EFS I is said to be reduced
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with respect to a set S if S C L(T',p) but S € L(I",p) for any IV C T. In other
words, a reduced EFS has no redundant clauses to cover a set. By counting more
precisely the number of these reduced length-bounded EFSs we can show the
Vapnik-Chervonenkis dimension (VC-dimension for short)® of the class of lan-
guages defined by length-bounded EFSs with at most n clauses is of polynomial
order. Therefore, the class is PAC-learnable, if we do not care about comput-
ing time. Unfortunately we do not know whether this class is polynomial-time
PAC-learnable or not. Nevertheless this fact motivates us enough to study the
PAC-learnability of languages using the framework of EFSs. Some of the classes
of EFSs, which we deal with in this paper, are a natural extension of context-
free grammars. Abe discussed some related topics on context-free grammars and
ranked node rewriting grammars. "

First, we consider the class of pattern languages, which is considered as a
class of the simplest EFS languages. Ko and Tzeng'® showed that the consis-
tency problem for pattern languages is Ab-complete. The consistency problem
for a class is to decide whether there exists a language in the class consistent with
given positive and negative examples. If the consistency problem is NP-hard,
then the class is not polynomial-time PAC-learnable under the assumption RP
# NP. Therefore, we cannot expect any efficient learning for pattern languages.
Furthermore, Schapire®? showed a stronger negative result. Such negative re-
sults seem to be quite natural, because even the membership problem for pattern
languages is NP-complete.” Therefore, we should consider subclasses of pattern
languages for which at least the membership problem is computable in polyno-
mial time.

A pattern 7 is called regular if every variable of m appears just once in 7.
For example, a pattern “zy” is regular, but “zz” is not. For any regular pattern 7
and any word w, whether w € L(r) or not is decidable in O(|7|+|w]|) time, where

| - | is the length function. The class of regular pattern languages is efficiently
inferable from positive data.?®> However, as we will see later, the consistency

problem is NP-complete for regular pattern languages. Also we will show the
similar negative results for extended regular pattern languages, introduced by
Shinohara,** where substitutions of the empty word for variables are allowed,
as well as for common sequence languages. The latter result is independently
shown by Jiang and Li.'® From these results we know that even for regular
pattern languages polynomial-time PAC-learning algorithms cannot be realized
without any additional conditions.

To get another subclass of pattern languages for which the membership
problem is computable in polynomial time, we restrict the total number of vari-
able occurrences in patterns. When a pattern 7 defines a language containing a
word w, |7| < |w| and every subword in 7 without variables is a subword of w.
This property that every constant word appearing in a pattern = whose language
contains a word w is a subword of w is called “heredity”. Therefore, the number
of inequivalent languages that are defined by patterns with at most n variable
occurrences and contain w is of polynomial order in |w|, if we fix n arbitrarily.
Thus we can show the polynomial-time PAC-learnability of this subclass.
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From the observation above we get two important facts:

e Even for regular pattern languages, polynomial-time PAC-learning is so
hard to realize.

e Once we restrict the number of variable occurrences in patterns, the subclass
of pattern languages is polynomial-time PAC-learnable.

Here we should note that the subclass of pattern languages with the restriction
on the number of variable occurrences consists of infinitely many languages.
Taking these facts as a starting point, we approach to more general classes of
languages in the framework of EFSs.

We introduce “hereditary” EFSs that preserve the heredity of pattern
languages. A clause C = A «— Aj,--- , A; is said to be hereditary, if any pattern
in the body part Ay,---, A; is a subword of some pattern in the head A. The
EFS I in the first example is hereditary. Given a hereditary EFS I', a unary
predicate symbol p, and a word w, whether w € L(T',p) or not is decidable in
polynomial time with respect to |w|, when we consider the size of I' as a constant.

In this paper, we consider the following four parameters concerning the size of
EFSs:

: the number of clauses
the number of variable occurrences in the head
the number of atoms in the body
the arity of predicate symbols

3 w3

The main positive result of this paper is that the class H-EFS(m, k, ¢, 1)
of languages defined by hereditary EFSs with parameters bounded by some
constants m, k,t,r, respectively is polynomial-time PAC-learnable. We have
only partial reasons for the restrictions on all the parameters. When we put no
restriction on the number of clauses in EFSs, any finite languages can be defined,
and therefore the VC-dimension of the class naturally becomes exponential. It
seems reasonable to bound the number of clauses by some constant. However,
it will turn out that this restriction does not always derive the polynomial VC-
dimension of the class. For example, for the most general class of EFSs, called
variable-bounded EFSs, by which any recursively enumerable language can be
defined, the VC-dimension still remains in exponential order after bounding
all the four parameters by constants. Even for hereditary EFSs with bounded
number of clauses, when some of the other three parameters are not restricted
by constants, the class is also of exponential VC-dimension. As for the number
of variable occurrences, when we do not restrict it, we have the negative results
for pattern languages.

§2  Preliminaries
In this section, we introduce some notations and definitions, and summa-
rize basic lemmas.
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2.1 Patterns and Elementary Formal Systems

Let ¥ be a finite alphabet and X = {z1,%2,...,y1,¥2,.--} be a set of
variables. We assume that ¥ N X = (). For an alphabet A, let A* denote the set
of all words over A, A" the set of all nonempty words, A™ the set of all words
of length n, and Al the set of all words of length n or less for n > 0.

A pattern is a word in (2 U X)T. A pattern 7 is called regular if each

variable in 7 occurs exactly once in 7. For instance, az;bzza is a regular pattern,
but az1bzia is not, where a and b are in ¥. An atom is an expression of the
form p(mi,...,m), where p is a predicate symbol with arity r and m,... 7,
are patterns. A definite clause is a clause of the form

A<—A1,... ,At,

where A, A1,...,A; are atoms and t > 0. The atom A is called the head and the
part Ay, ..., A; the body of the definite clause. In case t = 0, we denote simply
A instead of A «—. An elementary formal system (EFS for short) is a finite set of
definite clauses.

A substitution 0 is a homomorphism from patterns to patterns such that
6(a) = a for each a € X. A substitution which maps some variables to the empty
word is called an e-substitution. In this paper, we do not allow any e-substitutions
without extra notice. For a pattern m and a substitution 8, we denote by 76 the
image of m by #. For an atom A = p(my,...,7,) and a definite clause C = A «
Ai,...,As, we define AQ = p(m0,... ,7,.0) and CO = Af — A;0,..., Af.

A definite clause C is provable from an EFS I, denoted by I' - C, if C
is obtained from I' by finitely many applications of substitutions and modus
ponens. That is, the relation I' F C is defined inductively as follows:

(1) HT'>C, thenT - C.
(2) T+ C, then I' - C6 for any substitution 6.
(3) If].—‘i_A<—A1, ,At,At+1 and].-"”At+1, thenFF—A<—A1,... ,At.

For a predicate p with arity one, we define L(T,p) = {w € &1 | T+ p(w)}.
A language L C XV is definable by EFS if there is an EFS T" with a predicate
symbol p with L = L(T, p). .

For a pattern m, the pattern language L() is the set {w € =1 | w = 70
for some substitution 6}.” It should be noticed that a pattern language L(r) is

also defined by an EFST = {p(n)}.

Example 2.1
Consider the following EFS with £ = {a, b}:

p(z172)  q(21), 7(22)

q(az1b) < q(z1)

q(ab)

r(z121)
The language defined by T is L(T',p) = {a"b"ww | n > 1,w € {a,b}"}. In the
definite clause p(z;x2) « g(z1),7(z2), the head is the atom p(z;z2) and the
atoms q(z1),7(z2) form the body. A substitution is denoted as a collection of
assignments {z; := 71,... ,Zp := T }. We can see aabbaa € L(T',p) as follows:
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Cy =7r(z171) ( axiom )
Cy =r(aa) (Ci{z1:=a})
Cs = g(az1b) — q(z1) ( axiom )
Cy = q(aabb) — g(ab) ( Cs{z1 :=ab})
Cs = g(ab) ( axiom )
06 = g(aabb) (Cs & C5)

= p(z122) < q(z1),7(22) ( axiom )
Cg = p(aabbaa) — g(aabb), r(aa) ( C7{z1 := aabb, z3 := aa} )
Cy = p(aabbaa) — g(aabb) (C2 & Cy)
C]o = (aabbaa) ( Cs & Cg )

Example 2.2

The languages {a™b" | n > 1} and {a"b"c™ | n > 1} are defined by the following
EFSs I'; and Tz, respectively.

T, = { zgzz)lb) — p(z1) }

P(fﬂlzzfﬂs) — Q(xl,wz,xs)
Iy =< qlaxy, bz, cx3) «— q(z1,22,23) .

q(a, b, c)

2.2 Polynomial-time Learnability

This section briefly reviews some necessary notions for PAC-learnability
due to Valiant.*®

We call a subset ¢ of ¥* a concept. A concept ¢ can be regarded as a
function ¢ : ¥* — {0,1}, where c(w) = 1 if wis in the concept and c(w) = 0
otherwise. A concept class is a nonempty set C C 2% of concepts. We use a
finite alphabet A for representing concepts. A representation for a concept class
C is a function R : C — 2" such that R(c ) is a nonempty subset of A* for any
cin C and R(c1) N R(cz) = @ for any distinct concepts ¢; and ¢ in C. For each
¢ € C, R(c) is the set of names for c. The length of a name v € R(c) is the word
length |v| of v. We denote the length of the shortest name for ¢ by lmin(c, R).

An example is an element (w,a) in £* x {0,1}. An example for a concept
¢ is a pair (w,c(w)) for w € £*. For a set S C X" x {0,1} of examples, we
define Sy = {w | (w,1) € S} and S_ = {w | (w,0) € S}. We call a word
in S; a positive example and a word in S_ a negative example, respectively. For
two sets Y and N with Y N N = 0, we say that a concept c is consistent with

positive examples in Y and negative examples in N if ¢c(w) = 1forall w € Y
and c(w’) = 0 for all w' € N. A concept ¢ € C is consistent with a set S of

examples if ¢ is consistent with positive examples in S; and negative examples
in S_. For a set S of examples, (S, R) is the length of the shortest name in
R of any concept in C which is consistent with S.

Definition 2.1
A concept class C is polynomial-time learnable in a representation R if there
exist an algorithm A and a polynomial poly(-,-,-,-) which satisfy the following
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conditions for any concept ¢ in C, any real numbers ¢, § (0 < €,§ < 1), any
integers n > 0, s > 1, and any probability distribution P on sl

(a) Atakese, d, n, and s. The real numbers € and ¢ are called the accuracy and
confidence, respectively. The integers n and s are called the length parameter
and the concept complexity, respectively.

(b) A may call EXAMPLE, which generates examples for the concept c € C,
randomly according to the probability distribution P on s,

(c) A outputs a name v € R(h) for some concept h € C satisfying P(cUh —cN
h) < € with probability at least 1 — &, when lpnin(c, R) < s is satisfied.

(d) The running time of A is bounded by poly(1/e,1/4,n, s).

When R is clear from the context, we simply say that a concept class C is
polynomial-time learnable.

Remark 2.1

In the textbook due to Natarajan,'® the input to the learning algorithm does
not include the parameter s of concept complexity. This yields slightly different

learnability. See the paper'® for the equivalence and difference among these
definitions of learnabilities.

Definition 2.2 (Blumer et al.?))

Let C be a concept class. We say that C shatters a set S C " if the set {cNS | c €
C} coincides with the set of all subsets of S. The Vapnik-Chervonenkis dimension
(VC-dimension for short) of C, denoted by Dy ¢C, is the greatest integer d such
that there exists a set of cardinality d that is shattered by C. For an integer
n > 0, we define CM = {cNE™ | ¢ € C}. We say that C is of polynomial
dimension if there exists a polynomial d(n) such that Dycct™ < d(n) for all
n > 0.

Definition 2.3
A representation R for a concept class C is polynomial-time computable if there
exist a deterministic algorithm B and a polynomial poly satisfying (a) and (b):

(a) B takes as input a pair (w,v) of words w € £* and v € A*.
(b) If v € R(c) for some c € C, then B halts in time poly(|w| + |v|) and outputs
c(w).

" Definition 2.4 (Natarajan'®)
Let C be a concept class with representation R, and S C X* x {0,1} be a finite
set of examples. A deterministic algorithm is said to be a fitting for C in R if

it takes as input S and outputs a name v € R(c) of a concept ¢ € C which is
consistent with S if any. A fitting is said to be a polynomial-time fitting if it runs
in time polynomial in the length of its input and I, (S, R). A randomized fitting
for C in R is a randomized algorithm which takes as input S and outputs a name
v € R(c) of a concept ¢ € C which is consistent with S, if any, with probability
greater than 1/2. A fitting is an Occam fitting if there exist a polynomial poly
and a real number 0 < a < 1 such that for every input S, the output is of length
at most poly(n, lmin(S, R))|S|*, where |S| is the number of examples in S and
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n = max{|w| | (w,a) € S}.
Polynomial-time learnability is characterized as follows:

Lemma 2.1 (Blumer et al..” Haussler et al.,'” Natarajan'"'®)
Let C be a concept class and R be a polynomial-time computable representation

for C.

(1) C is polynomial-time learnable in R if C is of polynomial dimension and
there exists a polynomial-time fitting for C in R.

(2) C is polynomial-time learnable in R if there exists a polynomial-time Occam
fitting for C in R.

(3) C is polynomial-time learnable in R only if there exists a randomized
polynomial-time fitting for C in R.

§3 Regular Patterns Are Hard to Learn
For a concept class C with a representation R, we consider the following
problem:

Consistency Problem for C in R
Instance: A set of examples S C * x {0,1} with Sy NS_ =0.

Question: Is there a name v € R(h) of a concept h € C which is consistent
with S7

If the consistency problem for C in R is shown NP-complete, we can say
that C is not polynomial-time learnable in R under the assumption of RP#NP,
since there is no randomized polynomial-time fitting for C in R by Lemma 2.1
(3).

In this section, we deal with only regular patterns and abbreviate variables
Z1,Z2,... by the same symbol z for simplicity.

Theorem 3.1
The consistency problem for the class of regular pattern languages is NP-complete.

Proof ‘

Obviously the problem is in NP. We give a polynomial-time reduction from
3SAT to the problem. Let F' = Cj - - - Cy, be a formula in 3-CNF with variables
U1, U2, ... ,Un. Without loss of generality, we can assume that C; does not
contain both u; and g for any 1 < k < n. We define Y of positive examples
and N of negative examples so that F is satisfiable if and only if there is a
regular pattern 7 consistent with ¥ and N.

First, we use n+1 positive examples so, . .. , S, and n+1 negative examples
to,... ,tn over ¥ = {0,1} so that any consistent regular pattern 7 must be of
the form m = 7472 - - - T, Where 7; = Oz or 0 (1 < ¢ < n). We define

so = (00)™;

si = (00)""1010(00)" ¢ for 1 < i < m;
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tO — 02n—'1; '
t; = (00)*"111(00)"* for 1 < i < n.

From the positive example s with |so| = 2n and the negative example ¢y with
[to] = 2n — 1, we see that any pattern 7 consistent with so and #o satisfies
7 € {0,2}* and |7| = 2n. Thus we can denote 7 = 0102 - - - 02, With o € {0,z}
for1 <k <2n.

For 1 < i < n, since |s;| = 2n + 1 and e-substitutions are not allowed,
the (2i)th character 1 of s; must match with either o2;—1 or og; of pattern m,
i.e., either g9;_1 or og; is . On the other hand, both of them are not z since
t; ¢ L(m). Therefore each 7; = 02;_102; is Oz or z0 for 1 <i < n.

For Cy,...,Cy, of F, we use additional negative examples di, ... ,dn to
forbid that all of the three literals in C; are assigned to false for 1 <i < m. For
1 < ¢ < m, we define

01 if literal ug appears in C;
d;i =riry...7Tn, where rp = { 10 if literal Uy appears in C;
00 otherwise.

Since we have assumed that uy and T do not both appear in any C;, the above d;
is well-defined. ThenletY = {sq,51,...,8n} and N = {to,t1,... ,tn, d1,...dm}.

Assume that F is satisfiable under a truth assignment 4, ... ,%,. Then
we define a regular pattern m = 71 ---7, by putting 7; = z0 if 4; = true and
7; = Oz if 4; = false for 1 < i < n. It is easy to see from the definitions of Y’
and N that 7 is consistent with Y and N. In fact, it is clear that s; € L(m)
and t; ¢ L(n) for 0 < ¢ < n. Since F is satisfiable by the assumption, each C;
contains either uy with 4 = true or U with 4y = false for some k. In the former
case, Ty = x0 and ry = 01 guarantee d; ¢ L(m). In the latter case, 7x = Oz and
ry = 10 witness d; ¢ L(n) similarly.

Conversely, we assume that there exists a regular pattern 7 consistent
with Y and N. Then 7 must be of the form 7175 ---7,, where 7 € {0z, z0},
since 7 is consistent with s;’s and ¢;’s for 0 < ¢ < n. We define the truth
assignment 4; = true if 7, = 0 and 4; = false if , =0x for 1 <i<m. For each
C;, at least one literal must be assigned to true since L(7) does not contain the
negative example d;. ]

Example 3.1

For an instance F = (uj + %3 +us) - (U1 +us+u4) of 3SAT, we construct five pos-
itive examples { 00000000, 010000000, 000100000, 000001000, 000000010} and
seven negative examples { 0000000, 11000000, 00110000, 00001100, 00000011,
01100100, 10000101}. A regular pattern consistent with these examples, say
m = z0x00xz0, corresponds to the truth assignment 4; = true, iy = true,
Qi3 = false, 14 = true, which satisfies the formula F'.

Theorem 3.2
Let m > 1 be an integer. The consistency problem for the class

{L(m1) U---U L(my,) | m;’s are regular patterns}
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is NP-complete for any m > 1.

Proof

The case of m = 1 is Theorem 3.1. For m > 2, we will reduce the problem to
the case of m = 1. Let Y and N be the sets of positive examples and negative

examples given in the proof of Theorem 3.1. Then we define as follows:
Y=Yu{l'|1<i<m-1},
N' =NuU{1™}.
We will show that the following two statements are equivalent:

1) There is a set M consisting of m regular patterns such that UﬂreML ) is
g
consistent with YI and N/.

(2) There is a regular pattern 7 such that L(m) is consistent with ¥ and N.

We show that (1) implies (2). For each i =1,... ,m — 1, the set M contains a
regular pattern 7 with 1* € L(r) since 1* is a positive example. Then 7 is in
{1, a:}[’]. However, if a variable occurs in 7, the negative example 1™ is also in

L(m). Therefore, 7 = 1°. Thus M contains m — 1 patterns 1, 11, ..., 1™"!
without any variables. Therefore M must contain a regular pattern 7y such that
L(mp) is consistent with Y and N. The converse is almost clear. ]

An extended regular pattern language i(w)"“ is defined by allowing e-
substitutions to a regular pattern w. The e-substitutions might change the be-
havior entirely since the length of the possible patterns can not be bounded.
However, any extended regular pattern language can be defined by a regular
pattern in canonical form m = WeTWIZT -+ TWyp_1TW, With we,w, € ¥* and
w; € T for 1 < ¢ < n — 1, since two consecutive variables are reduced to a
single variable.?®

Theorem 3.3

Let m > 1 be an integer. The consistency problem for the class
{L(m) U---U L(my,) | m’s are regular patterns}

is NP-complete.

Proof

We will show only the case of m = 1. For m > 2, we can reduce the problem to
the case of m =1 in the same way as the proof of Theorem 3.2.

The basic idea of the proof is similar to that of Theorem 3.1. For an
instance F' = Cj ---C,, of 3SAT with variables uy,us,... ,u,, we give the fol-
lowing two positive examples over ¥ = {0, 1, #}:

81 = 0#0+# - - - #0 with |s1] = 2n — 1,
sg = 00#00# - - - #00 with |sg| = 3n — 1.
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We also use 2n — 1 negative examples #;’s and t;’s:
t; : the word obtained by deleting the ith # of s;,
(1<i<n-1),
t; : the word obtained by replacing the ith 0 of s; with 101,
(1<i<n).

It can be noticed that a regular pattern in canonical form which is consistent
with positive examples s1, s2, and negative examples ;,...t,—1,%1,... ,t, must

be of the form:
T = T1#To#t ... #7n, where 7; € {0z, 20} for 1 <i < n.
Then for each C; of F', we define the following additional negative examples :
d; = ri#ro#t .. Hfra,
01 if literal uy appears in C;
where 7, = ¢ 10 if literal wx appears in C;
0 otherwise.

We can verify that there is a regular pattern 7 such that L(r) is consistent with
these examples if and only if F is satisfiable in the same way. |

The common subsequence problem has been dealt with from independent
viewpoints, such as text processing, data compression, or DNA sequences.'**
It is known that the longest common subsequence problem is NP-complete. '
The problem of finding a sequence a; - - - a, which is common to all positive
examples but not common to any negative examples is equivalent to finding
a regular pattern m = zaiz---za,x such that the extended regular pattern
language L() is consistent with the positive and negative examples. Thus we
call a regular pattern of the form 7 = za;zasz---za,z witha; e Zfor1 <i<n
a common subsequence.

Theorem 3.4

The consistency problem for the class of common subsequence languages is NP-
complete.

Proof

Since the basic idea is also similar, details are omitted. T'wo positive examples
s1 = 01#01# ...#01 with |s1] =3n -1,
$o = 104104 ... #10 with |s2| =3n —1

and 2n — 1 negative examples
t; : the word obtained by deleting the ith # of s;,
(1<i<n-1),
t; : the word obtained by deleting the ith 01 of s,
(1<i<n),
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make a consistent common subsequence restricted to the form:
T = a1#Faz# . .. #an, where a; € {0,1} for 1 <i < n.
Additional m negative examples

d; = ri#roff .. #rn,
0  if literal ux appears in C;
where r, = < 1  if literal Ty appears in C;
01 otherwise,

guarantee the equivalence between the existence of a consistent common subse-
quence and the satisfiability of a given 3-CNF formula. [ ]

§4 VC-dimension of EFSs
Consider a definite clause

qo(nd,... ,71'20) —q(n},... ,W:l),... cqe(mh, ... wk).

An EFS is defined as a finite collection of such clauses. In order to get polynomial-
time learnable classes of EFSs, in this section, we investigate the VC-dimensions
of EFSs. If a class C is of polynomial dimension, then a polynomial-time fit-
ting for C suffices. Otherwise, we need to devise a polynomial-time Occam
fitting. Although exponential VC-dimension does not imply the impossibility
of polynomial-time learning, it seems reasonable to restrict EFSs to avoid the

exponential VC-dimension. We focus our attention on the following features of
EFSs.

(1) the relationship between patterns in the head and patterns in the body.
(2) m: the number of clauses in the EFS.

(3) k: the number of variable occurrences in the head.

(4) t: the number of atoms in the body.

(5) r: the arity of a predicate.

It has been shown in Arikawa et al.® that any recursively enumerable
set is definable by a variable-bounded EFS whose clauses do not contain any
internal variables, i.e., in each clause all variables in the body also appear in the
head. The class of variable-bounded EFSs seems too large to realize efficient
learning algorithms. In fact, we can show any finite language can be defined by
a variable-bounded EFS with parameters m, k,t,r bounded by constants.

Definition 4.1

For m,k,t,r > 0, VB-EFS(m, k,t,r) is the class of languages definable by
variable-bounded EFSs with at most m definite clauses each of which satisfies
the following conditions:

(a) The number of variable occurrences in the head is at most k.
(b) The number of atoms in the body is at most ¢.
(c) The arity of each predicate symbol is at most 7.
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To measure dimensions of EFSs, we use the the following lemma:

Lemma 4.1 (Natarajan'™)
A concept class C is of polynomial dimension if and only if there exists a poly-

nomial poly(n) such that log, |C!™] < poly(n) for all n > 0.

We say that a concept class C is of exponential dimension if C is not of
polynomial dimension. First, we show that the VC-dimension of the class of
languages definable by variable-bounded EFSs is exponential, even if all the
parameters m, k,t,r are bounded by constants. Hereafter we assume that the
alphabet ¥ contains two or more constant symbols, because any class of lan-
guages over a singleton alphabet is always of polynomial dimension.

Theorem 4.1
VB-EFS(m, k, t,7) is of exponential dimension if m > 9,k >2,t>2,andr > 1.

Proof
We assume that the alphabet ¥ contains at least two symbols.0 and 1. If a
class C contains any language Y C {0, l}l” for any n > 0, then C™ = {cNn s |
ceC}2{cn{0,1}" | c € ¢} = 21®1" and therefore |c)] > 22" shows the
exponential dimension of C.

Let Y = {w1,...,w;} C {0,1}" be any set of words of length n. Consider
the following variable-bounded EFS T':
[ a1(07) )
q1(z122) < q1(z221)
q1(121) + q1(0z1)
Q2(w1 . wi)
L=< g(r172) < q1(z2),g2(2271) ¢ -
g3(x1) + g2(=1)
g3(z1) + g3(210)
g3(z1) < g3(z11)
| p(z1) < g3(21), q1(z1) )
In the above EFS, we define three auxiliary predicates g1, g2, g3 such that

1. TFq(u) <= ue{0,1}",

2. Tk go(u) <= u=wj; - ww; - wj_ for some 1 < j <4, and
3. Tk g3(u) <= T+ g2(v) and u is a prefix of v.

Thus we have L(I',p) = Y. Note that only two clauses ¢;(0™) and
g2(wy ---w;) in T depend on n and Y. The number of clauses in I' is 9, the
number of variable occurrences is at most 2, the number of atoms in the bodies
is at most 2, and all the predicate symbols are of arity 1. Therefore, if m > 9,
k> 2 t>2 and r > 1, the VC-dimension of the class VB-EFS(m, k,t,r) is
exponential. ]

By strengthening the view on the relationship between patterns in the
head and patterns in the body of variable-bounded clauses, we define the follow-
ing notion that is the key to finding polynomial-time learnable classes.
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Definition 4.2
We say that a definite clause is hereditary if each pattern in the body is a subword
of some pattern in the head. An EFS T is hereditary if each definite clause in T’
is hereditary.

Example 4.1
The definite clauses p(az1bc) « q(az1),r(z1b) and p(az1, bze, cx3) « q(z1, T2, T3)
are hereditary. But the definite clause p(az1) « q(bz1) is not hereditary.

Definition 4.3

For m, k,t,r > 0, H-EFS(m, k,t,r) is the class of languages definable by hered-
itary EFSs with at most m definite clauses each of which satisfies the following
conditions:

(a) The number of variable occurrences in the head is at most k.
(b) The number of atoms in the body is at most ¢.
(c) The arity of each predicate symbol is at most .

We define H-EFS(m, x,t,r) = |_J H-EFS(m, k,t,7) for m,r,t > 0. That
k>1
is, H-EFS(m, *, t,7) is the class of languages defined by hereditary EFSs that al-
low an arbitrary number of variable occurrences in heads in their definite clauses
while other restrictions are kept as they are. We also define other classes such
as H-EFS(m, %, *,r) in a similar way.

Since any finite language {w1,...,w;} is definable by a hereditary EFS
{p(w1),...,p(w;)}, the class H-EFS(x, k, t, ) is of exponential dimension. There-
fore we need to restrict the number of definite clauses in EFSs to get a concept
class of polynomial dimension. However, the restriction of the number of clauses
does not immediately mean polynomial dimension. In reality, if we can use as
many variables in a pattern as we want and predicate symbols of large arity, the
dimension of languages definable by hereditary EFSs still remains exponential.

Theorem 4.2
H-EFS(m, *,t, %) is of exponential dimension, if m > 10, ¢ > 1.

Proof
We show that for every set Y = {w;,... ,w;} of words over £ = {0,1} of length
n, the language L = {0lw | w € Y} is definable by a hereditary EFS I consisting
of ten definite clauses with at most one atom in the body.

For simplicity we fix the length n to be 3. First, consider the following
EFS:
(- (1) ¢1(01,01,0,0,0) )
(2) g2(01,01, 21, 72, 73) « ¢1(01,01, 21, T2, x3)

(3) q1 (011 Ty, T2,I3, 1) — 42(01, Tr1,T2,T3, O)

Fo=4 (4) ¢2(01,0,1,72,73) < q2(01, 21,22, 23,1)
(5) q1 (01, 01, x1,x2, .’173) — Q2(01, Z1,%2,I3, 01)
(6) ¢1(01, 21, T2, 73, T4) « 1 (01, 24,21, T2, T3)
( (7) p(01z12273) « ¢1(01,01, 1,22, 23)

W

B

e
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The first argument “01” in ¢; and g5 is just for keeping clauses hereditary.
The arguments from the second to the last are used to simulate a circular working
tape of a Turing machine that increments a number in binary code, where “01”
represents the end marker and the left of the second argument is connected
with the last. Using (2) once corresponds to incrementing a number by one.
(6) is used to rotate the arguments from the second to the last. From these
observations, we can show that

Lo F p(w) <= w=01v and v € Z".

To get an EFS that defines L = {0lw | w € Y}, we use 2" additional arguments.
By the following EFS T', we define L in case Y = {010, 011,101}. In this case,
words in Y correspond to integers 2, 3, 5, respectively, when they are considered
as binary numbers. We rewrite (1) as

(1) QI(Ola 011 01 Oa 0, Oa 0, 17 ]-a 0, 17 07 0),

where the i-th argument in the additional part is set to 1 if and only if the number
i-is represented by a word in Y. In (2) we rotate the additional arguments to
the left. ;

(2) q2(01a 017 T1,22,T3,Y1y--- , Y7, yO) — (I1(01, 01, Z1,%2,%3,Y0,Y1y-- - 7y7)

In (3) to (6) the additional arguments are passed as they are.

(3) Q1(01, x1,T2,T3, 1, Yo, -+ y7) — q?(O]', x1,T2,T3, Oa Yo,--- y7)

(4) q2(01’ Oa Z1,X2,T3,Y0,- - - ay7) — Q2(01» xr1,T2,T3, 17 Yo, - - - ay7)

(5) q1(017015x17x25x37y0a ce 73/7) — Q2(01,$1,$2»$3,01ay07 e 7y7)
(6) QI(OL Z1,X2,%3,T4,Y0,-- - 7y7) — (11(01, T4,%1,T2,T3,Y0y-- - ay7)

In (7), we define another predicate g3 as

(7) Q3(011:11721737 Yi,--- ’y710) “—q (017 Olv x1,x2,T3, la Yiy--- ay7)a

where we should note that the first additional argument in the body should be
1. At this point, we can see that

T+ g3(01b1b2bs, /0, . ,b/7) <> bibob3 €Y,

where b;,b}; € {0,1}, because the additional arguments are rotated exactly as

often as the number is incremented. To extract the first argument “01b1b2b3,”
we clear all the additional arguments by “0.”

(8) (I3(015€1,y17- .. ay770) — q3(011;170ay1a oo 1y7)
(9) q3(01x1, Yiy--- 7y770) — (13(01931,1ay1, e 1y7)

After clearing all the additional arguments, the target word is passed to the
predicate p.

(10) p(01lz;) < ¢3(01z4,0,0,0,0,0,0,0,0)
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From Theorem 4.1 and Theorem 4.2, at least in some sense, we need to
restrict EFSs to get a class of polynomial dimension. Although we have not
fully investigated the necessity of restrictions on the parameters m, k,t,r, we
can show that H-EFS(m, %, *,7) is of polynomial dimension. Here we should
note that there are infinitely many languages definable by hereditary EFSs even
if all the parameters m, k,t,r are bounded by small constants. To measure the
dimension of H-EFS(m, , ,7), we may consider only these EFSs without any
redundancy, called reduced EFSs.

Definition 4.4
A pair ([,p) of an EFS T and a predicate symbol p is said to be reduced with
respect to a set Y of words if Y C L([',p) and Y € L(IV,p) for any I'" C T

Moreover, hereditary EFSs have the following property that is very well
suited for learning from examples. The proof is obvious from the definition.

Lemma 4.2

Let Y be a nonempty set of words in ¥ and let (', p) be a pair of a hereditary
EFS and its predicate symbol of arity one. If (T',p) is reduced with respect to
Y, then for each definite clause

qo(rd,...,m0) —q(ni,..., 7). a@(n, .. wE)

in T, there exists a substitution 8 such that all 77 §’s are subwords of some w € Y.

Theorem 4.3
H-EFS(m, *, *,7) is of polynomial dimension for any m,r > 0.

Proof
Let H-EFS(m, , %,7)" = {LNEM | L € H-EFS(m, %, *,7)} for n > 0. We eval-
uate the cardinality of H-EFS(m, *, *, r)["]. Let (T, p) be a pair of a hereditary
EFS I and its predicate symbol p of arity one. Since the number of definite
clauses is bounded by m, we need to consider only m predicate symbols each of
whose arity is at most r. Let C = go(n%,...,7m0) « (i, .. mp), e qe(ml,
) be a definite clause in I'. We may consider only hereditary EFSs that
are reduced with respect to some nonempty set ¥ C x*. Therefore, from
Lemma 4.2 we have only to consider definite clauses whose heads contain pat-
terns of length at most n. Since the arity of the predicate symbol of the head is
bounded by r, we see that the number of possible heads is at most m(|X|+nr)"".
Each pattern in the body of a hereditary clause is a subword of some
pattern in the head. The number of all the subwords taken from the head is at

most ru. Therefore the number of possible atoms in the body is at most

n(n —1)
2

of possible bodies with the head is at most 2™("

-possible definite clauses is bounded by m(|X| 4 nr)

number of such hereditary EFSs is at most (m (|| + nr)™ 2™

)". Since we can ignore the order of atoms in the body, the number

n(n 1)\r
) Thus3 the number of
'"2'"(7 )", Hence, the

(n 1) )r)m. Thus,
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we see that log, |[H-EFS(m, *, *, r)["]| is O(n?"). By Lemmad4.1, H-EFS(m, *, *, 1)
is of polynomial dimension. ]

85 Polynomial-time Learnable Classes of EFSs

In this section, we show a series of polynomial-time learnable classes of
EFS languages. In Section 4, we show that the class H-EFS(m, *,*,7) is of
polynomial dimension, where m and r are the bounds of the number of clauses
and the arity of predicate symbols, respectively. To show a polynomial-time
fitting for a class, a polynomial-time algorithm for membership is very useful.

First we investigate the membership problem for hereditary EFS lan-
guages. An atom or clause is called ground if it contains no variable.

Lemma 5.1

Given a hereditary EFS I" and a word w, whether w € L(T',p) is decidable in
O(m?|w|**1rt) time, where I consists of m clauses, in each of which the number
of variable occurrences in the head, the number of atoms in the body, and the
arity of predicate symbols are less than or equal to k, ¢, and r, respectively.

Proof

We apply a bottom-up algorithm for deciding whether a given word w is in
L(T, p). To derive the provability of p(w) from I, we can take a ground clause C6
by a substitution § before applying modus ponens whenever we use a clause C' €
T, because p(w) is ground and T is variable-bounded. Furthermore, the hered-
itariness guarantees that only substitutions that maps every variable to some
subword of w are sufficient to derive p(w). Therefore, we construct the family
G(w) of all ground clauses obtained from I' by such substitutions. Since the num-
lw(lw| —1) lwi(jw] — 1)\

substitutions that map all patterns to subwords of w for each clause. T%erefore,

|G(w)]| < m(M-:i))k. For a clause C' and an atom A, we can compute

the clause obtaineg from C and A by modus ponens in O(|C| + |A|) time. The
length of any atom in G(w) is at most |w|r. The length of any clause in G(w)
is at most |w|r(1 + t). If there is an atom A in G(w), then we delete all the
occurrences of A in the bodies of the clauses in G(w). This step is done in
O(IG(w)|(Jwlr + |w|r(1 41t))) = O(m|w|***rt) time. We repeat this process un-
til the atom p(w) is obtained or no new atom is obtained. Since at most |G(w)|
steps are sufficient, the total computing time is O(m?|w|***1rt). u

ber of subwords of w is at most , there are at most (

Note that the time complexity of the membership problem for all the
hereditary EFS languages is NP-complete, because the membership problem
for pattern languages is NP-complete. From the above upper bound of the
time complexity, we can see that among the four parameters m,k,t,r of the
hereditary EFSs, only the bound & on the number of variable occurrences in the
head concerns the hardness of the membership problem. Thus, if we consider
k as a constant, the hereditary EFSs as a representation is polynomial-time
computable.
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Lemma 5.2
There exists a polynomial-time fitting for H-EFS(m, k, t, 7) for any m, k,t,r > 0.

Proof
Let S be a finite set of examples for some concept ¢ € H-EFS(m, k,t,r). If
S, is empty, we choose a word w € £ not in S_ and take a hereditary EFS
I’ = {p(w)}. Then obviously L(T', p) is consistent with S. Therefore, we assume
that S is not empty.

Let G(m, k,t,r,S+) be the set of all pairs (I', p) which satisfies the follow-
ing conditions (1)-(3):

(1) T contains at most m hereditary definite clauses such that in each clause
the head has at most k variable occurrences, the body has at most ¢ atoms,
and each predicate is arity at most r.

(2) For each pattern 7 in each definite clause in I, there is a substitution 8 such
that 70 is a subword of some positive example in S.

(3) Variables are from {z1,...,zx} and predicate symbols are from {p,pl, ey
Pm—1}. The arity of p is fixed to be one, but we do not fix in advance the
arity of p; for i = 1,... ,m — 1. Hence the arity of p; may differ from one
EFS to another.

Claim 1

There exists a pair (I',p) € G(m,k,t,r,S+) such that the concept L(T,p) is
consistent with S.

Proof

Since S is the set of examples for some concept ¢ in H-EFS(m, k,t,r), there
exists a pair (T'g, p) with L(I'g, p) = ¢ which satisfies the condition (1). Without
loss of generality, we can assume that I'g is reduced with respect to S;. Then
Ty satisfies the condition (2) by Lemma4.2. Since I'g is reduced and has at most
m clauses, there are at most m distinct predicate symbols in I'g. Therefore we
can rename the variables and predicate symbols in I'g so that they satisfy the
condition (3). [ |

Claim 2

|G(m, k,t,7,5;)| is bounded by some polynomial in |S; | and n = max{|w| | w €
St}

Proof

Let II(k,S4+) be the set of patterns m such that 7 contains at most k vari-
able occurrences which are from {z1,...,zx}, and 76 is a subword of some

-1
w € S, for some substitution . Then |II(k,S+)| < Z ((&lw;——))k“k!).
weSL

Therefore |TI(k,S;)| is O(|Sy|n?**2k!). The number of possible heads is at
most m]HSk,S.,.)]". The number of possible atoms in the body is at most

n(n—1
m(—(—-——r)T, because every pattern in the body is a subword of some pat-

tern in the head. Thus, |G(m, k,t,7,84)| is O((m(]S4|n***2k!)" (m(nr)")")™)
= O((m!*Y|S " n2hr+2r+2rigrt (k1)T)™). When we consider m, k, t, and T as
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constants, |G(m, k,t,7,S;)| is bounded by a polynomial with respect to |Sy| and
n. ]

The polynomial-time algorithm for finding the required hereditary EFS

runs as follows: The algorithm enumerates pairs (1" p) in G(m, k, t, T S4). Then
it checks whether w € L(T',p) for w € Sy and w' ¢ L(T,p) for w' € S_. By

Lemma 5.1 this check is polynomial-time computable. If such a pair is found,
the algorithm outputs it as a hypothesis. [ ]

Theorem 5.1
H-EFS(m, k,t,r) is polynomial-time learnable for any m, k,¢,r > 0.

Proof

From Theorem 4.3, H-EFS(m, k, t,r) is of polynomial dimension. From Lemma
5.2, there exists a polynomial-time fitting for H-EFS(m, k,¢,7). Therefore, by
Lemma 2.1 (1), H-EFS(m, k,t,r) is polynomial-time learnable. [ ]

For a concept class C, Blumer et al.® discussed the polynomial-time learn-
ability of the finite union class of C that is defined as

FUC) ={c1UcaU---Ucy | ¢; €C,u > 1}

Though the concept class FU(H-EFS(m, k,t,7)) is not of polynomial di-
mension, we can prove the following theorem by showing a polynomial-time
Occam fitting for this class. The idea of the proof is mostly due to Blumer et
al..®

From Lemma5.1, the representation for the concept class H-EFS(m, k, ¢, r)
is polynomial-time computable if we use a conventional representation for EFSs.
We can also see that the representation for FU(H-EFS(m, k,t, 7)) is polynomial-
time computable. In Lemma 5.3, we show that there is a polynomial-time Occam
fitting for FU(H-EFS(m, k,t,7)). Then Lemma 2.1 (2) yields polynomial-time
learnability.

We use the weighted set cover problem and its approximation algorithm
GreedyWSC due to Chvatal.” The weighted set cover problem is, given a col-
lection of finite sets T3, ..., T, with positive real weights Wy,... ,W,, to find
J*CI=1{1,...,n} with U T, = LJT2 such that 'weight(J* Z W, is

ieJ* icl i€
minimized. The algorithm GreedyWSC is described in Figure 1:

Lemma 5.3 (Chvatal®)

For the weighted set cover problem, algorithm GreedyWSC runs in polynomial
time and produces a set cover J C I with weight(J) < weight(J*)-log|I|, where
J* is a minimal weighted set cover.

Theorem 5.2
FU(H-EFS(m, k,t,r)) is polynomial-time learnable for any m, k,t,r > 0.

Proof
The basic idea is due to Blumer et al..® By Lemma 2.1 (2), we have only to
show a polynomial-time Occam fitting for FU(H-EFS(m, k,t,r)). For a set S of



236 S. Miyano, A. Shinohara and T. Shinohara

procedure GreedyWSC ( {(3, Ti, W;) }ier : set of triples ) : subset of I

begin
UnCover := U T; ;
iel
J:=0;
while UnCover # 0 do
begin
Find k € I which minimizes the ratio Wi /|Tk| ;
J:=JuU{k};
UnCover := Uncover — Ty ;
foreach ¢ € I do
T :=T; — T
end
return J
end

Fig.1 Algorithm GreedyWSC

procedure Occam ( S : set of examples ) : pair of hereditary EFS and predicate
begin
J :=0; /* instance of the weighted set cover problem */
foreach (I",p) € G(m, k,t,r,S})
if L(T,p) N S_ = 0 then
J = J U{(, L(T,p) NS4, size(T"))}
G := GreedyWSC(J) ;

= U r;
reg
return (T, p)
end

Fig.2 Occam Fitting for FU(H-EFS(m, k,t,7))

examples, the algorithm Occam in Figure 2 finds in polynomial time a hypothesis
which is consistent with S.

Recall that we can generate all pairs in G(m, k, t, 7, S+) in polynomial time
with respect to |S+| and max{|w| | w € S;+}. Moreover, by Lemma 5.3, the size
of the output T is at most log|.S| times the size of the minimum hereditary EFS
which is consistent with S. Therefore the algorithm Occam is a polynomial-time
Occam fitting for FU(H-EFS(m, k,t,7)). [ |

§6 NC-learnability
The notion of NC-learnability is introduced by Vitter and Lin.*> By using

NC algorithms instead of polynomial-time algorithms, we can develop the same

argument as that in Section 2 and obtain a similar result for NC-learnability.

The purpose of this section is to show a series of NC2-learnable subclasses
of hereditary EFSs. It is shown in® that a P-complete set can be described with
a hereditary EFS. Therefore, at least, we cannot expect any NC-computable
representation for H-EFS(m, k,t,7). Hence we are required to get into a new
class of EFSs.

Let |7| denote the length of a pattern w. For an atom p(rmy,...,m,), we
define ||p(71,. .. ,ma)|| = |m1| + -+ |m0l. A definite clause A «— Aj,...,A; is
called length-bounded if ||A8|| > ||A10|| + -+ + ||A40]| for any substitution 6.”
An EFS T is length-bounded if all definite clauses in ' are length-bounded. For
a length-bounded definite clause, we can easily see that, for each variable z; in
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the clause, the number of occurrences of z; in the head is not less than that in
the body. ’

Example 6.1

The definite clause p(az;) < g(bz1) is length-bounded but not hereditary, while
p(az1bc) «— g(azx1),r(z1b) is not length-bounded but hereditary. The definite
clause p(az,bza,czs) « g(z1,z2,x3) is both length-bounded and hereditary.

Definition 6.1

For m, k,r > 0, LB-H-EFS(m,k,r) is the class of languages definable by length-
bounded hereditary EFSs with at most m definite clauses such that the number
of variable occurrences in the head of each clause is bounded by k and the arity
of each predicate is at most r.

Obviously the class LB-H-EFS(m,k,r) contains infinitely many languages
for any m,k,r > 1. Any context-free language is in LB-H-EFS(m,2,1) for some
m > 1 and any regular language is in LB-H-EFS(m,1,1) for some m > 1.

Example 6.2
Example 2.2 shows that the language {a™b" | n > 1} is in LB-H-EFS(2,1,1) and
that the language {a"b"c™ | n > 1} is in LB-H-EFS(3,3,3).

Remark 6.1

Unlike the definition of H-EFS(m, k, t, ), we do not bound the number ¢ of atoms
in the body explicitly, when we define the class LB-H-EFS(m,k,r). However, we
can assume that the number of atoms in the body is at most k& without loss of
generality: Let (T',p) be a pair of a length-bounded EFS I' and its predicate
symbol of arity one. Assume that the number of variable occurrences in the
head of each clause is at most k. For a definite clause C = A « A;,..., A,
in T, suppose that an atom A; does not contain any variables. If A; is not
provable from I' — {C}, it is not hard to show I' I/ A; by induction on the
number of applications of modus ponens since only modus ponens rules can
eliminate A; from the body of C. Hence the clause C is redundant in T, i.e.,
L(T',p) = L(I'—{C},p). On the other hand, if A; is provable from I'—{C}, then
the atom A; is redundant in the clause C, i.e., L(T',p) = L((I'— {C}) U{C'}, p),
where C' = A « Ay,...,A;_1,Aiz1,...,As. Therefore we can assume that
each atom contains at least one variable. From the length-boundedness of T,
the total number of variable occurrences in the body is bounded by k. Thus the
number of atoms in the body is at most k.

Theorem 6.1
LB-H-EFS(m,k,r) is NCZ-learnable for any m, k,r > 0.

Proof
We first observe that the membership problem for LB-H-EFS(m,k,r) is solvable
in NC2. Consider the following nondeterministic recursive procedure that returns
true if and only if T' - q(uy, ... ,u;) for a length-bounded hereditary EFS I' and
Ul,y... U € ot

We can simulate the procedure Prove by a two-way nondeterministic auxil-
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procedure Prove(q, [u1,... ,u])
begin
guess a definite clause q(1rl, e, T, ) — q1(7r1, .. ,1r,.1), .. ,qt(ﬂ';, . ,w:t) in T
guess a substitution 6 with ; 09 = u; for all 4 = 1,...,}
if t = 0 then
return true ) )
else if Prove(q;, [710, ..., 1rij9]) =true for all j = 1,...,t then
return true
end

Fig.3 Algorithm for Proving I' - g(u1,... ,u;)

iary pushdown automaton that runs in polynomial time using O(log n) worktape
space.?” We just state the idea of simulation. We assume that a word w and

a pair (I", p) are given on the input tape and the total length of the input is n.
Since I' is hereditary, we can assume that x,0 is a subword of w for any variable
xp, in the guessed clause. Therefore each 21,6 can be expressed by specifying the
start and end positions of 60 in w. This requires only O(logn) worktape space.
Moreover, since 7 contains at most k variables, we need O(logn) space to keep
0. Since I is on the input tape, guessing nondeterministically a definite clause
from T" requires O(logn) worktape space. Checking m;6 = u; is also possible
in O(logn) worktape space. Recursions are simulated by a pushdown store in
a conventional way by pushing (g;, [776, . 0]) for j =1,...,t, where each

w ;0 is represented by a pair of binary mtegers in O(logn) blts Since t; is at
most r, (gj, [0, ... ,7,8]) requires O(log n) space. Then the simulation can be
continued using O(log n) worktape space.

We consider the size of the recursion tree for Prove(p, [w]), where each
node is labeled with some Prove(q, [u1, ... ,u;]). We can assume that each u; of
Prove(q, [u1, ..., w]) is a subword of w. Since the number of predicates is at
most m and the arity of each predicate symbol is bounded by r, the depth of
the recursion tree is bounded by some polynomial in |w|. Moreover, since T is
length-bounded, the number of the leaves of this tree is at most |w|. Therefore,
the number of the nodes in this recursion tree is also bounded by a polynomial

in |w|. Hence, this nondeterministic algorithm accepts in polynomial time.

It is known in References'®*® that if a set is accepted by a polynomial-
time auxﬂlary pushdown automaton that uses O( log n) worktape space then it
is in NC?. Therefore it is possible to check in NC? whether T F p(w). Thus
we can decide the membership w € L(T, p) in NC? when w and (T, p) are given
as mput Therefore the representation for LB-H-EFS(m,k,r) is computable in
NC2.

We combine this NC algorithm for deciding membership with the following
NC algorithm. We consider how to generate all candidates (T, p) consistent with
S, of positive examples and S_ of negative examples. We define G'(m, k,r, Sy)
in the same way as G(m,k,t,r,S+) in Lemma5.2. From Lemma4.2, it suffices to
deal with G'(m, k, r, S+) as the space of candldates It is not hard to see that we
can generate all pairs in G'(m, k, 7, S;) in NC? since we are required to consider
only subwords of the words in S, as patterns in atoms and m, k, r are constants.

From these NC? algorithms, we can see that a pair (I g) in G'(m, k,r, S;)
which is consistent with examples in S is computable in NC*. [ ]
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Theorem 6.2
FU(LB-H-EFS(m, k,r)) is NC learnable for any m, k,r > 0.

Proof

We can construct an NC Occam fitting for FU/(LB-H-EFS(m, k, r)) by using the
NC approximate algorithm for the weighted set cover problem due to Berger,
Rompel and Shor.” [

§7 Conclusion

We showed that the classes H-EFS(m, k, t,7) and FU(H-EFS(m, k,t,r))
are polynomial-time learnable for any constant m,k,¢,r > 0. But if the num-
ber k of variable occurrences in the head of each definite clause is not bounded
by a fixed constant, even for some small subclasses of H-EFS(m, *,t,7), we can
not expect polynomial-time learning. For example, the consistency problem for
H-EFS(1,,0,1), which is the class of pattern languages, is known to be X5-
complete.’® We strengthened this observation by showing the NP-completeness
of the consistency problem for the class defined by taking all unions of m regular
pattern languages for any fixed constant m > 1. As for the number m of the
clauses, we know that the class H-EFS(x, k,¢,7) is not of polynomial dimension.
Note that, however, it does not imply the impossibility of polynomial-time learn-
ing, since Occam fitting for the class might exist. Similarly for the arity r of the
predicate symbols, the class H-EFS(m, *,t, *) is not of polynomial dimension.
We also showed the class H-EFS(m, *, *,7) is of polynomial dimension. For the
classes H-EFS(m, k, *,*) and H-EFS(m, k, t, *), it is open whether they are of
polynomial dimension. ,

In our paper,” we presented an application of our learning algorithms to
protein classification problems, where we used the class of finite unions of regular
pattern languages. Unfortunately, the experiments did not have the benefit of
hereditariness directly. This is because the running time of our learning algo-
rithm, which is essentially based on an enumeration method, is huge although
it remains polynomial. In order to finish the computation in realistic time, we
had to restrict the class as described in the paper.” Therefore it is an important
problem to develop a more efficient learning algorithm which makes good use of
the hereditariness.
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