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Abstract. We show the tight upperbound of the length of the minimum
solution of a word equation L = R in one variable, in terms of the
differences between the positions of corresponding variable occurrences
in L and R. By introducing the notion of difference, the proof is obtained
from Fine and Wilf’s theorem. As a corollary, it implies that the length
of the minimum solution is less than N = |L| + |R|.

1 Introduction

Word equations can be used to describe several features of strings, for example,
they generalize pattern matching problem [3,4] with variables. Fig. 1 shows an ex-
ample of word equations. The fundamental work in word equations is Makanin’s
algorithm [10] which decides whether a word equation has a solution (see for
a survey on this topic [9]). Plandowski [11] introduced a PSPACE algorithm
which gives the best upperbound so far known. On the other hand, the problem
is known to be NP-hard [1]. An approach to the problem is to analyze word
equations with a restricted number of variables. Charatonik and Pacholski [2],
and Ilie and Plandowski [7] introduced a polynomial time algorithm for word
equations in two variables. As to word equations in one variable, there is an
efficient algorithm by Obono et al. [6] which solves a word equation L = R in
O(N log N) time in terms of N = |L| + |R|. Da̧browski and Plandowski [5] pre-
sented an algorithm of O(N + �x log N) time complexity for the number �x of
occurrences of the variable x.

However, the upperbound of the length of the minimum solution of word
equations is not exactly understood even for one-variable version. Let χ be the
upperbound, that is, a word equation has a solution if and only if there exists
a solution A of length |A| ≤ χ. For any word equation in one variable, we can
choose a single candidate for the solution of a length, therefore we have only
to check for the χ candidates at most to decide whether a word equation has
a solution. Indeed no χ leads a better result for the complexity as long as it is
proportional to N , but from a practical viewpoint, χ is quite important. In [6],
χ is taken to be equal to 4N without precise proof. Hence, we need to reduce χ
as small as possible and prove it formally.
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Let a, b be characters and x be a variable. The word equation

xxbaababa = ababaxabx

has a solution
x = ababaababa

Fig. 1. An example of word equation in one variable

In this paper, we show the tight upperbound of the minimum solution for one
variable word equations, by introducing a new measure in terms of the positions
of variable occurrences. The bound reveals that χ is less than N .

We now explain the basic idea briefly. A word equation in one variable is non-
trivial only if both side of the equation have the same number of occurrences of
the variable: Otherwise, the length of a possible solution is exactly determined
by an integer equation on both the length of instance and the number of variable
occurrences. Let m be the number of occurrences. We focus on the fact that,
for a word equation L = R, the “gap” between the k-th occurrence of the
variable x in L and the k-th occurrence in R is preserved for any substitution
of a string A, as the gap between the corresponding occurrences of A in L[A/x]
and R[A/x]. We denote the gaps by dk (1 ≤ k ≤ m). In the example in Fig. 1,
d1 = 5 and d2 = 7. By utilizing this notion, the proof of the upperbound is
essentially reducible to one for a word equation which has only one occurrence
of x in both side respectively. If A is a solution and is longer than dk, then the
k-th pair of occurrences of A overlap each other, that is, dk is a period of A.
Therefore, by Fine and Wilf’s theorem [9], the upperbound is max1≤k≤m{dk +
p−gcd(dk, p)}−1 for a period p of A. Since the minimum length of p is not larger
than min1≤k≤m,dk �=0 dk, the tight upperbound will be given as max1≤k≤m dk +
min1≤k≤m,dk �=0 dk−2. Obviously, min1≤k≤m,dk �=0 dk ≤ max1≤k≤m dk < |L|. Thus
χ is less than N = 2|L|.

2 Preliminaries

Let Σ be an alphabet and x /∈ Σ be a variable. The empty word is denoted
by ε. The length of a word w is denoted by |w|, where |ε| = 0 and |x| = 1.
The i-th element of a word w is denoted by w[i] for 1 ≤ i ≤ |w|. The word
w[i]w[i+1] · · ·w[j] is called a subword of w, and denoted by w[i : j]. In particular,
it is called a prefix if i = 1 and a suffix if j = |w|. For convenience, let w[i : j] = ε
for j < i.

A period of a non-empty word w is defined as an integer 0 < p ≤ |w|, such
that w[i] = w[i + p] for any 1 ≤ i ≤ |w| − p. Note that the |w| is always a period
of w.

Proposition 1 (Fine and Wilf). Let p, q be periods of a word w. If |w| ≥
p + q − gcd(p, q), then gcd(p, q) is also a period of w.
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A word equation (in one variable) is a pair of words over Σ ∪ {x} and is
usually written by connecting two words with “=”. A solution of a word equa-
tion L = R is a homomorphism σ : (Σ ∪ {x})∗ → Σ∗ leaving the letters of Σ
invariant and such that σ(L) = σ(R). Since the solution is uniquely decided by
a mapping of x into Σ∗, in this paper we define a solution as a word A ∈ Σ∗

such that A = σ(x). Therefore, we can rewrite the condition that σ(L) = σ(R)
by L[A/x] = R[A/x], where the result w[A/x] of the substitution of A to x in a
word w is defined inductively as:
if w = ε, w[A/x] = ε;
if w = a ∈ Σ, w[A/x] = a;
if w = x, w[A/x] = A;
if w = w1w2, w[A/x] = w1[A/x]w2[A/x].

If two words L and R have the same prefix M , the solution of a word equation
L = R is obtained by solving the word equation L′ = R′ where L = ML′ and
R = MR′. Therefore, we can assume without loss of generality that any word
equation is of the form xL1 = BxR1 for a non-empty word B which has no
variable and words L1, R1. This form implies that any solution A is a prefix of
the word Bk for a natural number k. By a similar argument for suffix, we can
assume that either L1 or R1 ends with x. In particular, if L and R have exactly
one occurrence of x respectively, the word equation L = R can be reduced to
the form xC = Bx for non-empty words B, C which have no variable.

We denote by �x(w) the number of occurrences of the variable x in a word w.
If a word equation L = R has a solution A, the length of L[A/x] is same as the
length of R[A/x]. Hence we have |L| + �x(L) · (|A| − 1) = |R| + �x(R) · (|A| − 1),
and therefore |A| = |L|−|R|

�x(R)−�x(L) +1. If �x(L) �= �x(R), the length of the solution is
determined uniquely to the word equation and its upperbound is | |L|−|R| |+1 ≤
max(|L|, |R|). If �x(L) = �x(R), we have |L| = |R|.

Proposition 2 ([6]). Let L = R be a word equation.
(i) If �x(L) �= �x(R), the length of the solution is determined uniquely with respect
to L = R and is at most max(|L|, |R|).
(ii) If �x(L) = �x(R), L = R has a solution only if |L| = |R|.

3 Solutions

We show the upperbound of the length of the minimum solution of word equa-
tions in one variable. By Proposition 2, we have only to consider the word
equation L = R in the situation that �x(L) = �x(R) and |L| = |R|. Let
m = �x(L) = �x(R) and n = |L| = |R|. We denote by �x

1 , · · · , �x
m and rx

1 , · · · , rx
m

the positions of occurrences of x in L and R, respectively in increasing order.
We define �A

k and rA
k for a word A and 1 ≤ k ≤ m as

�A
k = �x

k + (k − 1)(|A| − 1),
rA
k = rx

k + (k − 1)(|A| − 1).
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Fig. 2. The difference �x
k − rx

k is equal to the difference �A
k − rA

k for any A

�A
k is, intuitively, the position in L[A/x] of a occurrence of A substituted to the k-

th occurrence of x in L (which is not always the k-th occurrence).Therefore, �A
k −

rA
k is the difference between it and the position of the corresponding occurrence

of A in R[A/x]. The difference does not depend on the length of A, see Fig. 2.

Proposition 3. For any word A, any word equation L = R, and integer 1 ≤
k ≤ m,
(i) �A

k − rA
k = �x

k − rx
k ,

(ii) L[A/x][�A
k : �A

k + |A| − 1] = R[A/x][rA
k : rA

k + |A| − 1] = A.

Proof. (i) Trivial by the definition.
(ii) We prove for L. By the definition of substitution, L[A/x] is represented as

L[A/x] = L[1 : �x
1 − 1]AL[�x

1 + 1 : �x
2 − 1] · · ·

L[�x
k−1 + 1 : �x

k − 1]AL[�x
k + 1 : �x

k+1 − 1] · · ·
L[�x

m−1 + 1 : �x
m − 1]AL[�x

m + 1 : n]. (1)

The length of the prefix of L[A/x] which ends L[�x
k−1 + 1 : �x

k − 1] equals to
(�x

1 −1)+
∑k

i=2{(�x
i −1)−(�x

i−1+1)+1}+(k−1)|A| = �x
k −k+(k−1)|A| = �A

k −1
for any 1 ≤ k ≤ m. Thus �A

k is the position of the occurrence of A which is the
next to L[�x

k−1 + 1 : �x
k − 1] in the right side of Eq. (1). ��

We denote by dk the absolute value of the difference, that is,

dk = |�x
k − rx

k |

for 1 ≤ k ≤ m. Then we have the following lemma.

Lemma 1. Let A be a solution of a word equation L = R. For 1 ≤ k ≤ m and
dk �= 0, if |A| ≥ dk then A has a period dk.
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Proof. We can assume rx
k < �x

k without loss of generality. If |A| = dk, by the
definition, dk is a period of A. If |A| > dk, by Proposition 3 (i), �A

k = rA
k +�x

k−rx
k =

rA
k + dk < rA

k + |A|. Since A is a solution of L = R, we consider subwords of
L[A/x] and R[A/x], then L[A/x][�A

k : rA
k + |A| − 1] = R[A/x][�A

k : rA
k + |A| − 1].

By Proposition 3 (ii), L[A/x][�A
k : rA

k + |A| − 1] = A[1 : |A| − (�A
k − rA

k )] and
R[A/x][�A

k : rA
k + |A| − 1] = A[1 + (�A

k − rA
k ) : |A|]. Thus, by Proposition 3 (i),

A[1 : |A| − (�x
k − rx

k)] = A[1 + (�x
k − rx

k) : |A|] which implies that �x
k − rx

k is a
period of A. ��

Lemma 2. Let A be a solution of a word equation L = R and p be a period of
A. If

|A| ≥ max
1≤k≤m

dk + p − 1,

then the prefix A[1 : |A| − p] of A is also a solution of L = R.

Proof. We prove by induction on the number m = �x(L) = �x(R).
(Base step) By the argument in Section 2, we can assume L = xC and R = Bx
with B, C ∈ Σ+. By Lemma 1, d1 = |B| is a period of A. By Proposition 1,
gcd(d1, p) is a period of A, moreover it is also a period of AC and BA. Since
A[1 + gcd(d1, p) : |A|] = A[1 : |A| − gcd(d1, p)], we have

A[1 : |A| − k gcd(d1, p)]C = (AC)[1 + k gcd(d1, p) : |A|]
= (BA)[1 + k gcd(d1, p) : |A|]
= BA[1 : |A| − k gcd(d1, p)]

for a natural number k such that k gcd(d1, p) ≤ |A|.
(Induction step) We can assume L = L′xC and R = R′xBx with L′, R′ ∈ (Σ ∪
{x})+ and B, C ∈ Σ+. Then we have dm = |C| and L′[A/x]AC = R′[A/x]ABA.
If |C| ≤ |B|, the result is obviously obtained by induction for two equations
L′ = R′xB[1 : |B| − |C|] and xC = B[|B| − |C| + 1 : |B|]x. If |C| > |B|, we have
|ABA| > |AC| > |BA| by the assumption |A| ≥ max1≤k≤m dk + p − 1. Hence
the occurrence of A starting at �A

m in L[A/x] and the occurrence of A starting at
rA
m−1 in R[A/x] have a non-trivial overlapping Q. (This situation is illustrated in

Fig. 3.) Now we consider two equations L′Q = R′x and xC = QBx. The assump-
tion L′[A/x]AC = R′[A/x]ABA implies L′[A/x]Q = R′[A/x]A and AC = QBA,
that is, A is a solution of the equations. Then, by induction hypothesis, we have
L′[A′/x]Q = R′[A′/x]A′ and A′C = QBA′ where A′ = A[1 : |A| − p]. Thus, we
have L[A′/x] = L′[A′/x]A′C = L′[A′/x]QBA′ = R′[A′/x]A′BA′ = R[A′/x]. ��

Theorem 1 (Tight upperbound). For any word equation L = R such that
�x(L) = �x(R), the length of the minimum solution is at most

max
1≤k≤m

dk + min
1≤k≤m,dk �=0

dk − 2.

The bound is tight.
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L[A/x]: L′[A/x] C

R[A/x]: R′[A/x] B

A

�A
m

A

rA
m−1

A

rA
m

Q

Q

L: L′ C

R: R′ B

x
�x
m

x
rx

m−1

x
rx

m

Fig. 3. If |C| > |B| and |A| ≥ dm = |C|, then |ABA| > |AC| > |BA| and two
occurrences of A starting at �A

m and rA
m−1 have a overlap Q

Proof. Assume a word equation has a solution A such that |A| ≥ max1≤k≤m dk+
min1≤k≤m,dk �=0 dk − 1. By Lemma 1, A has a period p ≤ min1≤k≤m,dk �=0 dk.
Hence, by Lemma 2, A[1 : |A| − p] is also a solution of the word equation.
Therefore A is not the minimum solution.

To see that the bound is tight, let us consider the following word equation:

xxbaababa = ababaxabx.

We can verify that the solution of length 10

x = ababaababa.

is in fact the minimum solution. Since d1 = 5 and d2 = 7, we have max1≤k≤2 dk =
7 and min1≤k≤2 dk = 5. Thus max1≤k≤2 dk +min1≤k≤2 dk −2 = 10, which shows
the bound is tight. ��

In case of binary alphabet, the minimum solution which length is the upper
bound is central which is defined as:
A word is central if and only if it is in the set

0∗ ∪ 1∗ ∪ (P ∩ P10P )

where P is the set of palindrome words.
It is obtained by the proof of Lemma 2 and the fact that: a word w is central if
and only if it has two periods p and q such that gcd(p, q) = 1 and |w| = p+q−2 [9,
pp. 69–70].

We also have the following relaxed upperbound, since min1≤k≤m,dk �=0 dk ≤
max1≤k≤m dk < |L|.
Corollary 1. For any word equation L = R such that �x(L) = �x(R), the length
of the minimum solution is at most N − 4 = |L| + |R| − 4.

Consequently, we have the following upperbound by Proposition 2.

Corollary 2. For any word equation L = R, the length of the minimum solution
is at most N − 1.
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Table 1. The numbers of solvable word equations in one variable in E , classified by
the lengths of their minimum solutions

length of L (and R)
3 4 5 6 7 8 9 10 11

0 4 32 220 1388 8364 49120 284204 1630124 9303292
1 4 20 104 548 2868 14856 76236 388212 1964612
2 0 12 56 252 1208 5844 28268 136536 657868
3 0 0 24 140 564 2488 11304 53008 250296
4 0 0 0 60 260 1148 4764 20784 95868
5 0 0 0 0 116 580 2052 8592 36076
6 0 0 0 0 8 264 1152 4368 16152
7 0 0 0 0 0 8 504 2148 7532
8 0 0 0 0 0 0 24 1084 4404
9 0 0 0 0 0 0 8 48 2120

10 0 0 0 0 0 0 8 36 136
11 0 0 0 0 0 0 0 8 24
12 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 8
14 0 0 0 0 0 0 0 0 8

4 String Statistics Problem

We are developing a system whose aim is to experimentally analyze the combina-
torial property and structures of word equations. As a first step, we are recording
all solvable word equations (up to a moderate length) in one variable together
with their minimum solutions. By the fact that: for any word w, there exists a
binary word w′ which has the same set of periods as w [9, pp. 275–279], we have
only to consider a binary alphabet to find out the relation between the length
of an equation and the length of its solutions. For a fixed alphabet Σ = {a, b}
and a specified length n, we enumerate the set E of all word equations L = R
such that (1) both a and b appear either L or R, (2) |L| = |R| = n, (3) L
and R contains the same number of variables, and (4) the pairs (L[1], R[1]) and
(L[n], R[n]) must be taken from {(x, a), (x, b), (a, x), (b, x)}.

Then for each word equation in E , we try to find the minimum solution by
checking each prefix of Bk (where B is a constant prefix of either L or R) in
increasing order up to 2n − 4. If a solution is found, we logged it and turn to
the next equation. Otherwise, we can conclude that the word equation has no
solution, thanks to the upperbound we have shown (Corollary 1).

For interested readers, Table 1 shows the numbers of the solvable word equa-
tions in E , classified by the lengths of their minimum solutions. At i-th row and
column labeled n = |L| of the table T , we fill the number of word equations
in E of length |L| = |R| = n whose minimum solution is of length i. Remark
that some equations may be equivalent each other, by either replacing a with
b, exchanging left-side with right-side, or reversing the formulae. We did not
exclude these duplications. For example, T (0, 3) = 4 corresponds to the num-
ber of equations {abx = xab, bax = xba, xab = abx, xba = bax}, where the
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empty string is a solution to them. They are equivalent each other. Moreover,
T (1, 3) = 4 corresponds to {abx = xba, bax = xab, xab = bax, xba = abx},
whose minimum solutions are of length 1. They are essentially the same.

Let us pick up some interesting pairs of equation and its minimum solution.

– 〈xxbaababa = ababaxabx, ababaababa〉, from T (10, 9) = 8, which was
used to prove the tightness of the upperbound. This is a unique instance
in T (10, 9) = 8, since the other 7 instances are all equivalent to it.

– 〈xxbaabababa = abababaxabx, abababaabababa〉, from T (14, 11) = 8,
which also matches the upperbound. This is a unique instance in T (14, 11) =
8, since the other 7 instances are all equivalent to it.

– 〈xabxbaaaaaa = aaaaaabaxbx, aaaaaabaaaaaa)〉. This is a unique instance
in T (13, 11) = 8.

5 Conclusion

We showed the tight upperbound of the length of minimum solution of word
equations in one variable. The upperbound is easily computed from a given word
equation. Moreover, we showed concrete examples which match the bound. As
a corollary, we also have a more relaxed upperbound which is easier applicable:
the length of the minimum solution is less than the size of the total length of a
word equation.

Khmelevskĭı [8, pp. 12] proved that if a word equation C0xC1 · · ·xCu =
xB1 · · ·xBv is solvable, it has a solution of length smaller than M2 + 3M where
M = maxi,j{u, v, |Ci|, |Bj |}. When we consider the upperbound in terms of the
length N of a given word equation, the order of this value comes up to N2

since M ≤ N − 1. Even for the original expression, we can show that the value
M2 + 3M − 1 never be less than the upperbound of our result for a non-trivial
word equation. Let ν = u = v and λ = maxi,j{|Ci|, |Bj |}. Then M = max{ν, λ}.
By the definition of dk, we have mink,dk �=0 dk ≤ |C0| ≤ λ and maxk dk ≤
max{∑k−1

i=0 |Ci|,
∑ν

i=k |Ci|} ≤ νλ. Therefore, maxk dk + mink,dk �=0 dk − 2 ≤
νλ + λ − 2 ≤ M2 + 2M − 2 ≤ M2 + 3M − 1.

Thanks to the bound, we could perform a comprehensive analysis of word
equations in one variable up to a moderate size the equations, by enumerating
all word equations and solving them one by one. We showed some statistics of
the lengths of minimum solutions.
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