Space-Economical Construction of Index Structures for All Suffixes of a String

Shunsuke Inenaga ${ }^{1}$, Ayumi Shinohara ${ }^{1,2}$, Masayuki Takeda ${ }^{1,2}$, Hideo Bannai ${ }^{3}$, and Setsuo Arikawa ${ }^{1}$
${ }^{1}$ Department of Informatics, Kyushu University 33, Fukuoka 812-8581, Japan,
${ }^{2}$ PRESTO, Japan Science and Technology Corporation (JST), \{s-ine, ayumi,takeda, arikawa\}@i.kyushu-u.ac.jp
${ }^{3}$ Human Genome Center, University of Tokyo, Tokyo 108-8639, Japan, bannai@ims.u-tokyo.ac.jp

Abstract

The minimum all-suffixes directed acyclic word graph (MAS$D A W G)$ of a string w has $|w|+1$ initial nodes, where the dag induced by all reachable nodes from the k-th initial node conforms with the DAWG of the k-th suffix of w. A new space-economical algorithm for the construction of $\operatorname{MASDAWG}(w)$ is presented. The algorithm reads a given string w from right to left, and constructs $\operatorname{MASDAWG(w)}$ without suffix links. It performs in time linear in the output size. Furthermore, we introduce the minimum all-suffixes compact $D A W G(M A S C D A W G)$. CDAWGs are known to be more space-economical than DAWGs, and thus $\operatorname{MASCDAWG}(w)$ requires smaller space than $\operatorname{MASDAWG(w)\text {.We}}$ present an on-line (right-to-left) algorithm to build MASCDAWG(w) without suffix links, whose running time is also linear in its size.

1 Introduction

Pattern matching on strings is one of the most fundamental and important problems in Theoretical Computer Science. When a pattern is flexible and a text is fixed, the problem can be solved in time proportional to the length of the pattern by using a suitable index structure.

An example of widely explored patterns is the variable-length-don't-care pattern (VLDC-pattern) which includes a symbol \star, a wildcard matching any string. Formally, when Σ is an alphabet, a VLDC-pattern is an element of set $(\Sigma \cup\{\star\})^{*}$. For example, $a \star a b \star$ is a VLDC-pattern, where $a, b \in \Sigma$. VLDC-patterns are sometimes called regular patterns as in [11]. The language of a VLDC-pattern (or a regular pattern) is the set of strings obtained by replacing \star 's in the pattern by arbitrary strings. This language corresponds to a class of the pattern languages proposed in [1].

The smallest automaton to recognize all VLDC-patterns matching a given text string was introduced in [8]. It is essentially the same structure as the minimum dag representing all substrings of every suffix of a string, which is called the minimum all-suffixes directed acyclic word graph (MASDAWG). The MASDAWG for a string w is the minimization of the DAWGs for all suffixes of
w. It has $|w|+1$ initial nodes, in which the dag induced by all reachable nodes from the k-th initial node conforms with the DAWG of the k-th suffix of w. Some applications of MASDAWGs were presented in [8].

The size of the DAWG for a string w is $O(|w|)$ [2]. This implies that the total size of the DAWGs of all suffixes of w is $O\left(|w|^{2}\right)$. Hence, the MASDAWG for w can be constructed in $O\left(|w|^{2}\right)$ time by minimizing the DAWGs [10. On the other hand, it has been proven that the size of the MASDAWG of w is $\Theta\left(|w|^{2}\right)$ [8. The direct construction of MASDAWGs that avoids the creation of redundant nodes and edges is therefore important, considering the reduction of space requirements. The first algorithm to directly build the MASDAWG of a string was given in [8]. It performs in on-line manner, that is, it processes a given string from left to right, a character by a character, and converts the MASDAWG of w to the MASDAWG of $w a$.

The algorithm of [8] can efficiently construct MASDAWGs by means of suffix links, kinds of failure transitions, like most linear-time algorithms constructing index structures (e.g., see $[13|9| 12|2| 3|5| 7|4| 6]$). On the other hand, it is also the fact that the memory space required by suffix links is non-ignorable. Moreover, for each node, the algorithm additionally requires to keep the length of the longest string that reaches to the node, in the construction phase. These values are unnecessary in order to examine whether a given pattern occurs or not in the specified suffix. In this paper, we present a new algorithm to construct MASDAWGs without suffix links nor length information, which thus permits us to save memory space. The algorithm is best understood as one constructing MASDAWGs in 'right-to-left' on-line manner. Namely, it builds the MASDAWG of $a w$ by adding some nodes and edges to the MASDAWG of w.

Furthermore, we aim to reduce the space requirement by compacting the structure itself. We focus on the compact $D A W G(C D A W G)$ whose space requirement is strictly smaller than that of the DAWG, both theoretically and practically 35]. Its all-suffixes version, named the minimum all-suffixes CDAWG ($M A S C D A W G$), is introduced in this paper. We also present an on-line (right-to-left) algorithm to construct the MASCDAWG in linear time with respect to its size, without using suffix links nor length information.

2 Minimum All-Suffixes Directed Acyclic Word Graphs

Strings x, y, and z are said to be a prefix, factor, and suffix of string $w=x y z$, respectively. The sets of prefixes, factors, and suffixes of a string w are denoted by $\operatorname{Prefix}(w)$, Factor (w), and Suffix (w), respectively. The empty string is denoted by ε, that is, $|\varepsilon|=0$. Let $\Sigma^{+}=\Sigma^{*}-\{\varepsilon\}$. The factor of a string w that begins at position i and ends at position j is denoted by $w[i: j]$ for $1 \leq i \leq j \leq|w|$. For convenience, let $w[i: j]=\varepsilon$ for $j<i$. Let $w[i:]=w[i:|w|]$ for $1 \leq i \leq|w|+1$. Assume S is a subset of Σ^{*}. For any string $u \in \Sigma^{*}, u^{-1} S=\{x \mid u x \in S\}$.

Let $w \in \Sigma^{*}$. We define an equivalence relation \equiv_{w} on Σ^{*} by

$$
x \equiv_{w} y \Leftrightarrow x^{-1} S u f f i x(w)=y^{-1} S u f f i x(w) .
$$

Fig. 1. The naive $A S D A W G(w)$ is shown on the left, where $w=a b b a$. $\operatorname{MASDAWG(w)}$ is displayed on the right.

Let $[x]_{w}$ denote the equivalence class of a string $x \in \Sigma^{*}$ under \equiv_{w}. The longest element in the equivalence class $[x]_{w}$ for $x \in \operatorname{Factor}(w)$ is called its representative.

Definition 1. $D A W G(w)$ is the dag (V, E) such that

$$
\begin{aligned}
& V=\left\{[x]_{w} \mid x \in \operatorname{Factor}(w)\right\} \\
& E=\left\{\left([x]_{w}, a,[x a]_{w}\right) \mid x, x a \in \operatorname{Factor}(w), a \in \Sigma\right\}
\end{aligned}
$$

Definition 2. $A S D A W G(w)$ is a kind of dag with $|w|+1$ initial nodes, designated by $0,1, \ldots,|w|$, in which the subgraph consisting of the nodes reachable from the k-th initial node and their out-going edges is $\operatorname{DAWG}(w[k+1:])$.

The simple collection of $\operatorname{DAWG(w[1:]),~} \operatorname{DAWG}(w[2:]), \ldots, D A W G(w[n])$, $D A W G(w[n+1:])(n=|w|)$ is an example of $\operatorname{ASDAWG}(w)$, referred to as the naive $A S D A W G(w)$. The number of nodes of the naive $A S D A W G(w)$ is $O\left(|w|^{2}\right)$. By minimizing the naive $A S D A W G(w)$, we can obtain the minimum $A S D A W G(w)$, which is denoted by $M A S D A W G(w)$. The naive $A S D A W G(a b b a)$ and $M A S D A W G(a b b a)$ are shown in Fig. 1. The minimization is performed based on the equivalence relation defined as follows. Each node of $A S D A W G(w)$ is represented by a pair $\left\langle u,[x]_{u}\right\rangle$ with $u \in \operatorname{Suffix}(w)$ and $x \in \operatorname{Factor}(u)$. The equivalence relation, denoted by \sim_{w}, is defined by

$$
\left\langle u,[x]_{u}\right\rangle \sim_{w}\left\langle v,[y]_{v}\right\rangle \Leftrightarrow x^{-1} \operatorname{Suffix}(u)=y^{-1} \operatorname{Suffix}(v) .
$$

A node of $\operatorname{MASDAWG}(w)$ corresponds to an equivalence class under \sim_{w}. We write $\left\langle u,[x]_{u}\right\rangle$ simply as $\langle u,[x]\rangle$ in case no confusion occurs.

Theorem 1 ([8]). When $|\Sigma| \geq 2$, the number of nodes of $M A S D A W G(w)$ for a string w is $\Theta\left(|w|^{2}\right)$. It is $\Theta(|w|)$ for a unary alphabet.

Proposition 1 ([8]). Let $u \in \operatorname{Suffix}(w)$. Let x be a nonempty factor of u. We factorize u as $u=h x t$ and assume h is the shortest such string. Then, $\langle h x t,[x]\rangle$ is equivalent to $\langle s x t,[x]\rangle$ for every suffix s of h. (NOTE: The string x is not necessarily the representative of $[x]_{u}$.)

Let $h_{0}, h_{1}, \ldots, h_{r}$ be the suffixes of the string h arranged in the decreasing order of their length. The above proposition implies the existence of the chain of equivalent nodes $\left\langle h_{0} x t,[x]\right\rangle,\left\langle h_{1} x t,[x]\right\rangle, \ldots,\left\langle h_{r} x t,[x]\right\rangle$.
Lemma 1 ([8]). Let $h \in \Sigma^{+}$and $u, h u \in S u f f i x(w)$. If a node of $D A W G(u)$ is equivalent to some node of $D A W G(h u)$, then it is also equivalent to some node of $\operatorname{DAWG(au)~where~} a$ is the right-most character of the string h.
The above lemma guarantees that the DAWGs sharing a node of $M A S D A W G(w)$ are 'consecutive'. We can therefore concentrate on the relation between two consecutive DAWGs.

From now on, we consider what happens when constructing $\operatorname{MASDAWG(au)}$ from $M A S D A W G(u)$. Due to Lemma 1 we only investigate the relationship between $D A W G(a u)$ and $D A W G(u)$.
Lemma 2. Let $a \in \Sigma$ and $u \in \Sigma^{*}$. For any string $x \in \operatorname{Factor}(u)-\operatorname{Prefix}(a u)$, it holds that $\langle a u,[x]\rangle \sim_{a u}\langle u,[x]\rangle$.

Proof. $x^{-1} \operatorname{Suffix}(a u)=x^{-1}(\{a u\} \cup \operatorname{Suffix}(u))=x^{-1}\{a u\} \cup x^{-1} \operatorname{Suffix}(u)=$ $x^{-1} \operatorname{Suffix}(u)$, because $x^{-1}\{a u\}=\emptyset$ for $x \notin \operatorname{Prefix}(a u)$.

The above lemma implies that we have only to care about the prefixes of $a u$ in order to construct $\operatorname{MASDAWG(au)}$ from $\operatorname{MASDAWG(u)\text {.Weneednotmodify}}$ nor change the structure of $M A S D A W G(u)$: it is kept static.

Lemma 3. Let $a \in \Sigma$ and $u \in \Sigma^{*}$. For any $x \in \operatorname{Prefix}(u)$ and $y \in \Sigma^{*}$, if $\langle a u,[a x]\rangle \sim_{a u}\langle u,[y]\rangle$ then $[x]_{u}=[y]_{u}$.

Proof. Since $x \in \operatorname{Prefix}(u)$, there exists $s \in \Sigma^{*}$ such that $u=x s$. By the assumption, $(a x)^{-1} S u f f i x(a u)=y^{-1} S u f f i x(u)$. Since s is included in the left set, s is also included in the right set, i.e. $s \in y^{-1} \operatorname{Suffix}(u)$, which implies $y s \in$ Suffix ($x s$), thus $y \in \operatorname{Suffix}(x)$. We have two cases according to $x \in \operatorname{Prefix}(a u)$.
(Case 1) When $x \in \operatorname{Prefix}(a u)$. Since $x \in \operatorname{Prefix}(a x s), x=a^{i}$ and $y=a^{j}$ for some integers $j \leq i$. Suppose $j<i$, and let $k=i-j>0$. Then $a^{k} s \in y^{-1} S u f f i x(u)$ while $a^{k} s \notin(a x)^{-1} S u f f i x(a u)$, that contradicts with the assumption that $(a x)^{-1} \operatorname{Suffix}(a u)=y^{-1} \operatorname{Suffix}(u)$. Thus $j=i$, which yields $y=x=a^{i}$.
(Case 2) When $x \notin \operatorname{Prefix}(a u)$.

$$
\begin{aligned}
y^{-1} S u f f i x(u) & =(a x)^{-1} \text { Suffix }(a u) & & \text { by the assumption } \\
& \subseteq x^{-1} S u f f i x(a u) & & \text { since } x \in \operatorname{Suffix}(a x) \\
& =x^{-1} S u f f i x(u) & & \text { since } x \notin \operatorname{Prefix}(a u) \\
& \subseteq y^{-1} S u f f i x(u) & & \text { since } y \in \operatorname{Suffix}(x)
\end{aligned}
$$

Thus we have $x^{-1} \operatorname{Suffix}(u)=y^{-1} \operatorname{Suffix}(u)$, that is, $[x]_{u}=[y]_{u}$.

The path in $M A S D A W G(u)$ spelling out u is called its 'backbone'. The above lemma shows that if a node $\langle a u,[a x]\rangle$ on the 'backbone' of $M A S D A W G(a u)$ is equivalent to a node of $\operatorname{MASDAWG}(u)$, the node $\langle a u,[a x]\rangle$ is also on the 'backbone' of MASDAWG (u). This fact is crucial in order that our algorithm, which will be given in the sequel, performs in time linear in the size of $\operatorname{MASDAWG(u)}$.

For the prefixes of string $a u$, we have the following lemma.
Lemma 4. Let $a \in \Sigma$ and $u \in \Sigma^{*}$. Let $a x \in \operatorname{Prefix}(a u)$ be the shortest string which satisfies $\langle a u,[a x]\rangle \sim_{a u}\langle u,[x]\rangle$. Then for any longer prefix axv $\in \operatorname{Prefix}(a u)$, it holds that $\langle a u,[a x v]\rangle \sim_{a u}\langle u,[x v]\rangle$.
Proof. Since $\langle a u,[a x]\rangle \sim_{a u}\langle u,[x]\rangle,(a x)^{-1} \operatorname{Suffix}(a u)=x^{-1} \operatorname{Suffix}(u)$. Thus, $(a x v)^{-1} S u f f i x(a u)=v^{-1}\left((a x)^{-1} S u f f i x(a u)\right)=v^{-1}\left(x^{-1} S u f f i x(u)\right)=$ $(x v)^{-1} S u f f i x(u)$.

Remark that the node $\langle u,[x v]\rangle$ already exists in $M A S D A W G(u)$, since $x v \in$ $\operatorname{Prefix}(u)$. Thus the above lemma guarantees that all nodes we have to newly create in $\operatorname{MASDAWG}(a u)$ are $\langle a u,[t]\rangle$ for strings $t \in \operatorname{Prefix}(z)$, where z is the longest prefix of $a u$ which does not satisfy $\langle a u,[a x]\rangle \sim_{a u}\langle u,[x]\rangle$. Now the next question is how to efficiently check whether $\langle a u,[a x]\rangle \sim_{a u}\langle u,[x]\rangle$ or not for each $x \in \operatorname{Prefix}(u)$. Our idea is to count the cardinality of the set $x^{-1} \operatorname{Suffix}(u)$.
Lemma 5. Let $a \in \Sigma$ and $u \in \Sigma^{*}$. For any $x \in \operatorname{Factor}(u),\langle a u,[a x]\rangle \sim_{a u}$ $\langle u,[x]\rangle$ if and only if $\left|(a x)^{-1} S u f f i x(a u)\right|=\left|x^{-1} S u f f i x(u)\right|$.
Proof. We first show that $(a x)^{-1} \operatorname{Suffix}(a u) \subseteq x^{-1} S u f f i x(u)$. Let us choose $s \in$ $(a x)^{-1} S u f f i x(a u)$ arbitrarily. Then axs $\in S u f f i x(a u)=\{a u\} \cup S u f f i x(u)$. If $a x s=a u$, then $x s=u$. Otherwise, axs $\in \operatorname{Suffix}(u)$. Since $x s$ is a suffix of $a x s$, we know that $x s$ is also a suffix of u. In both cases, we have $x s \in \operatorname{Suffix}(u)$, which implies that $s \in x^{-1} S u f f i x(u)$. Thus $(a x)^{-1} S u f f i x(a u) \subseteq x^{-1} S u f f i x(u)$. It yields that $(a x)^{-1} S u f f i x(a u)=x^{-1} S u f f i x(u)$ if and only if $\left|(a x)^{-1} S u f f i x(a u)\right|=$ $\left|x^{-1} S u f f i x(u)\right|$. By the definition of $\sim_{a u}$, we have proved the lemma.

We associate each node $\langle u,[x]\rangle$ with the cardinality of the set, $\left|x^{-1} \operatorname{Suffix}(u)\right|$, denoted by $\#\langle u,[x]\rangle$. Note that $\#\langle u,[u]\rangle=1$ since $u^{-1} \operatorname{Suffix}(u)=\{\varepsilon\}$, and that $\#\langle u,[\varepsilon]\rangle=|u|+1$ since $\varepsilon^{-1} \operatorname{Suffix}(u)=\operatorname{Suffix}(u)$.
Lemma 6. Let $a \in \Sigma$ and $u \in \Sigma^{*}$. For any $x \in \operatorname{Prefix}(u)$, $\#\langle a u,[a x]\rangle=$ $\#\langle u,[a x]\rangle+1$.
Proof. Since $x \in \operatorname{Prefix}(u), \#\langle a u,[a x]\rangle=\mid(a x)^{-1}$ Suffix $(a u)|=|(a x)^{-1}(\{a u\} \cup$ Suffix $\left.(u))|=|(a x)^{-1}\{a u\} \cup(a x)^{-1} \operatorname{Suffix}(u)\right) \mid=\#\langle u,[a x]\rangle+1$.

The whole algorithm is shown in Fig. [2] Since the algorithm manipulates an input string w from right to left, we number the characters in w as $w=$ $w_{n} w_{n-1} \ldots w_{1}$. An edge is represented by a triple $\left(r, w_{i}, s\right)$, where s, r are nodes and w_{i} is the character for the label of the edge.
Theorem 2. For any string $w \in \Sigma^{*}$, our algorithm constructs MASDAWG(w) in time linear in its size.

The on-line (right-to-left) construction of $\operatorname{MASDAWG}(w)$ where $w=a b a a \$$ is displayed in Fig. 3.

```
Algorithm Construction of \(M A S D A W G\left(w=w_{n} w_{n-1} \ldots w_{1}\right)\).
    create new nodes \(s_{0}\);
    \(\#\left(s_{0}\right):=1 ; \quad \#(\) nil \():=0 ;\)
    initNode \([0]:=s_{0} ;\) node \(:=s_{0} ;\)
    for \(i:=1\) to \(n\) do
        \(s:=\operatorname{Find}\left(\right.\) node,\(\left.w_{i}\right) ;\)
        target \(:=\operatorname{NewTARGETNode}(s, i-1\), node \()\);
        newNode \(:=\) create a new node with copying all out-going edges of node;
        add or overwrite edge (newNode, \(w_{i}\), target);
        \#(newNode) \(:=i\);
        initNode \([i]=\) newNode;
        node \(=\) newNode;
function NewTargetNode(Node \(s\), int \(j\), Node backbone) : Node
1 nextNumSuf: \(=\#(s)+1\);
2 if nextNumSuf \(=\#(\) backbone \()\) then return backbone; /* redirection */
    nextBackbone \(:=\operatorname{FIND}\left(\right.\) backbone, \(\left.w_{j}\right)\);
    newNode \(:=\) create a new node with copying all out-going edges of \(s\);
    \(s:=\operatorname{FiND}\left(s, w_{j}\right) ;\)
        target \(:=\) NewTargetNode \((s, j-1\), nextBackbone \()\);
        add or overwrite edge ( \(n e w N o d e, w_{j}\), target);
        \#(newNode) := nextNumSuf;
        return newNode;
function \(\operatorname{Find}(\) Node \(s\), char \(c)\) : Node
1 if \(s\) has the \(c\)-edge then
            let \((s, c, r)\) be the \(c\)-edge from \(s\);
            return \(r\);
        else return nil;
```

Fig. 2. The algorithm to construct $\operatorname{MASDAWG(w)\text {.}}$

3 Minimum All-Suffixes Compact Directed Acyclic Word Graphs

To achieve a more space-economical index structure for all suffixes of a string, we turn our attention to a compact directed acyclic word graph (CDAWG) and consider its all-suffixes version.

Assume S is a subset of Σ^{*}. For any string $u \in \Sigma^{*}, S u^{-1}=\{x \mid x u \in S\}$. Let $w \in \Sigma^{*}$. We define an equivalence relation \equiv_{w}^{\prime} on Σ^{*} by

$$
x \equiv_{w}^{\prime} y \Leftrightarrow \operatorname{Prefix}(w) x^{-1}=\operatorname{Prefix}(w) y^{-1} .
$$

Let $[x]_{w}^{\prime}$ denote the equivalence class of a string $x \in \Sigma^{*}$ under \equiv_{w}^{\prime}. The longest element in the equivalence class $[x]_{w}^{\prime}$ for $x \in \operatorname{Factor}(w)$ is also called its representative, and is denoted by $\stackrel{w}{\vec{x}}$. For any string $x \in \operatorname{Factor}(w)$, there uniquely exists string $\alpha \in \Sigma^{*}$ such that $\stackrel{w}{\vec{x}}=x \alpha$.

baa\$:

abaa\$:

Fig. 3. Construction of $M A S D A W G(a b a a \$)$. Each node is marked by $\#\langle u,[x]\rangle$ where $u=a b a a \$$ and $x \in \operatorname{Factor}(u)$.

Proposition 2. Let $x \in \operatorname{Factor}(w)$. Assume $\stackrel{w}{\vec{x}} \notin \operatorname{Suffix}(w)$. Then, x occurs in w at least twice.

Proof. For a contradiction, assume x occurs in w only once. Then, we have $\left|\operatorname{Prefix}(w) x^{-1}\right|=1$. Let $w=h x y$. Since x occurs in w only once, $\left|\operatorname{Prefix}(w) x^{-1}\right|$ $=\left|\operatorname{Prefix}(w)(x y)^{-1}\right|$. Thus $x \equiv_{w}^{\prime} x y$ and $\stackrel{w}{\vec{x}}=x y$. However, $x y \in \operatorname{Suffix}(w)$, a contradiction. Consequently, x appears in w at least twice.

Definition 3. $C D A W G(w)$ is the dag (V, E) such that
$V=\left\{\left[{ }^{w}\right]_{w} \mid x \in \operatorname{Factor}(w)\right\}$,
$E=\left\{\left([\stackrel{w}{\vec{x}}]_{w}, a \beta,[\stackrel{w}{\overrightarrow{x a}}]_{w}\right) \mid x, x a \in \operatorname{Factor}(w), a \in \Sigma, \beta \in \Sigma^{*}, \stackrel{w}{x a}=x a \beta, \stackrel{w}{\vec{x}} \neq \stackrel{w}{x a}\right\}$.
The following corollary derives from Lemma 2
Corollary 1. Assume that w terminates with a unique symbol \$. Then, for any string $x \in \operatorname{Factor}(w)-\operatorname{Suffix}(w)$, node $[\stackrel{w}{\vec{x}}]_{w}$ is of out-degree more than one.

Namely, $C D A W G(w)$ is the compaction of $D A W G(w)$ where any nodes of outdegree one are removed and their edges are modified accordingly.

Definition 4. $A S C D A W G(w)$ is a kind of dag with $|w|+1$ initial nodes, designated by $0,1, \ldots,|w|$, in which the subgraph consisting of the nodes reachable from the k-th initial node and their out-going edges is $\operatorname{CDAWG}(w[k+1:])$.
 fined similarly to MASDAWGs. Each node of $A S C D A W G(w)$ can be represented
by a pair $\left\langle u,[\vec{x}]_{u}\right\rangle$ with $u \in \operatorname{Suffix}(w)$ and $x \in \operatorname{Factor}(u)$. We write $\left\langle u,[\vec{x}]_{u}\right\rangle$ simply as $\langle u,[\vec{x}]\rangle$ when no confusion occurs. If $\left\langle u,[\vec{x}]_{u}\right\rangle \sim_{w}\left\langle v,\left[\begin{array}{l}v \\ y\end{array}\right]_{v}\right\rangle$, we merge these nodes and the resulting structure is the minimum $\operatorname{ASCDAWG}(w)$, denoted by $M A S C D A W G(w)$.
Theorem 3. When $|\Sigma| \geq 2$, the number of nodes in $\operatorname{MASCDAWG}(w)$ for a string w is $\Theta\left(|w|^{2}\right)$. It is $\Theta(|w|)$ for a unary alphabet.

Here, we have only to consider a string $x \in \operatorname{Factor}(w)$ such that $\stackrel{w}{\vec{x}}=x$. Since Proposition 1 and Lemma hold for an arbitrary string in Factor (w), it
 'consecutive'. Therefore, we only consider the relationship between $C D A W G(a u)$ and $C D A W G(u)$, two consecutive CDAWGs.
 $\vec{x}=\stackrel{a u}{\vec{x}}$.

Proof. Since $x \notin \operatorname{Prefix}(a u)$, there is no new occurrence of x in $a u$. It implies that $a\left(\operatorname{Prefix}(u) x^{-1}\right)=\operatorname{Prefix}(a u) x^{-1}$. Thus we have $[x]_{u}^{\prime}=[x]_{a u}^{\prime}$. Consequently, $\vec{x}=\stackrel{a u}{\vec{x}}$.

The above lemma ensures that any implicit node of $C D A W G(u)$ does not become explicit in $C D A W G(a u)$ if it is not associated with a prefix of $a u$. It follows from this lemma and Lemma 2 that we do not need to modify nor change the structure of $\operatorname{MASCDAWG}(u)$ when constructing $M A S C D A W G(a u)$.
Lemma 8. Let $a \in \Sigma$ and $u \in \Sigma^{*}$. For any $x, z \in \operatorname{Factor}(u)$, if $\frac{a u}{a x}=a z$ then $\vec{z}=z$.
Proof. Suppose contrarily that $\stackrel{u}{z} \neq z$. That means there exists $y \in \Sigma^{*}$ such that $\operatorname{Prefix}(u) y^{-1}=\operatorname{Prefix}(u) z^{-1}$ and $|y|>|z|$. Then $\operatorname{Prefix}(a u)(a y)^{-1}=$ $\left(\operatorname{Prefix}(a u) y^{-1}\right) a^{-1}=\left(a\left(\operatorname{Prefix}(u) y^{-1}\right)\right) a^{-1}=\left(a\left(\operatorname{Prefix}(u) z^{-1}\right)\right) a^{-1}=$
$\operatorname{Prefix}(a u)(a z)^{-1}=\operatorname{Prefix}(a u)(a x)^{-1}$. Thus $a y \equiv_{a u}^{\prime} a x$ and $|a y|>|a z|$. It contradicts the assumption $\stackrel{a u}{a x}=a z$.

Lemma 9. Let $a \in \Sigma$ and $u \in \Sigma^{*}$. For any $x \in \operatorname{Prefix}(u)$ and $y \in \Sigma^{*}$ satisfying $\left\langle a u,\left[\frac{a u}{a x}\right]_{a u}\right\rangle \sim_{a u}\left\langle u,[\stackrel{u}{y}]_{u}\right\rangle$, there exists $z \in \operatorname{Prefix}(u)$ such that $[\stackrel{u}{z}]_{u}=[\stackrel{u}{y}]_{u}$.
Proof. Let z be the string with $\frac{a u}{a x}=a z$. Then we have $\stackrel{u}{z}=z$ by Lemma $\mathbb{\square}$ Moreover, $z \in \operatorname{Prefix}(u)$ since $x \in \operatorname{Prefix}(u)$. Since $\left\langle a u,[a z]_{a u}\right\rangle=\left\langle a u,[\stackrel{a u}{a x}]_{a u}\right\rangle \sim_{a u}$ $\left\langle u,[\stackrel{u}{y}]_{u}\right\rangle$, we have $[z]_{u}=[\stackrel{u}{y}]_{u}$ by Lemma 3. Thus $[\stackrel{u}{z}]_{u}=[\stackrel{u}{y}]_{u}$.
Lemma 9 shows that if node $\left\langle a u,\left[\frac{a u}{a x}\right]_{a u}\right\rangle$ on the 'backbone' of MASCDAWG(au) is equivalent to a node of $\operatorname{MASCDAWG}(u)$, the node $\left\langle a u,\left[\frac{a u}{a x}\right]_{a u}\right\rangle$ is also on the 'backbone' of MASCDAWG(u). It corresponds to Lemma 3

We have the following lemma which corresponds to Lemma 4 .

Lemma 10. Let $a \in \Sigma$ and $u \in \Sigma^{*}$. Let ax $\in \operatorname{Prefix}(a u)$. Let $\stackrel{a u}{a x}$ be the shortest string for which there exists $z \in \operatorname{Prefix}(u)$ such that $\left\langle a u,\left[\frac{a u}{a \vec{a}}\right]_{a u}\right\rangle \sim_{a u}\left\langle u,[\vec{z}]_{u}\right\rangle$. Let $\frac{a u}{a \underset{x}{a}}=a y$. Then for any longer prefix ayv $\in \operatorname{Prefix}(a u)$, there exists $s \in$ $\operatorname{Prefix}(u)$ such that $\left\langle a u,[\stackrel{a u}{a y b}]_{a u}\right\rangle \sim_{a u}\left\langle u,[\vec{s}]_{u}\right\rangle$.

Proof. Let $\stackrel{a u}{a y v}=a s$. By Lemma $\mathbb{8}, \vec{s}=s$. Since $y v \in \operatorname{Prefix}(u), s \in \operatorname{Prefix}(u)$. Let $\stackrel{u}{z}=t$. By the assumption $\left\langle a u,\left[\frac{a u}{a x}\right]_{a u}\right\rangle \sim_{a u}\left\langle u,[\vec{z}]_{u}\right\rangle$, we have $\langle a u,[a y]\rangle \sim_{a u}$ $\langle u,[t]\rangle$. Since $y \in \operatorname{Prefix}(u),\langle a u,[a y]\rangle \sim_{a u}\langle u,[y]\rangle$ by Lemma 3. Note that $y \in$ $\operatorname{Prefix}(s)$. Hence we have $\langle a u,[a s]\rangle \sim_{a u}\langle u,[s]\rangle$ by Lemma 4. Because $a s=\overrightarrow{a u} \overrightarrow{a y}$ and $s=\stackrel{u}{s}$, it holds that $\left\langle a u,[\stackrel{a u}{a y b}]_{a u}\right\rangle \sim_{a u}\left\langle u,[\stackrel{u}{s}]_{u}\right\rangle$.

We remark that the equivalence $\left\langle a u,[\stackrel{a u}{a x}]_{a u}\right\rangle \sim_{a u}\left\langle u,[\vec{z}]_{u}\right\rangle$ can also be examined by checking the cardinalities of the corresponding sets, as is the case of MASDAWGs. Hereby we have shown that $\operatorname{MASCDAWG(w)\text {canbeconstructed}}$ in a similar way to $\operatorname{MASDAWG}(w)$. The only thing not clarified yet is whether or not $M A S C D A W G(w)$ can be built in time linear in its size. We establish the following lemmas to support the linearity.

Lemma 11. Let $a \in \Sigma$ and $w \in \Sigma^{*}$. For any $x, z \in \operatorname{Factor}(w)$, if $\stackrel{w}{a x}=a z$ then $\stackrel{w}{z}=z$.

Proof. For a contradiction, assume $\stackrel{w}{z} \neq z$. Then there exists $y \in \Sigma^{*}$ such that $\operatorname{Prefix}(w) y^{-1}=\operatorname{Prefix}(w) z^{-1}$ and $|y|>|z|$. Then $\operatorname{Prefix}(w)(a y)^{-1}=$ $\left(\operatorname{Prefix}(w) y^{-1}\right) a^{-1}=\left(\operatorname{Prefix}(w) z^{-1}\right) a^{-1}=\operatorname{Prefix}(w)(a z)^{-1}$. Thus $a y \equiv_{a u}^{\prime} a z$ and $|a y|>|a z|$. It contradicts the assumption $\stackrel{w}{\overrightarrow{a x}}=a z$.

Note that the statement of the above lemma slightly differs from that of Lemma 8 . Lemma 12. Let $a, b \in \Sigma$ and $w \in \Sigma^{*}$. Let $x, y \in \operatorname{Factor}(w)$ such that $\vec{x} \vec{x}=$ $x b y \neq w$. If $a x b \in \operatorname{Factor}(w)$, then $a x b y \in \operatorname{Factor}(w)$, and $\overrightarrow{a x b y^{\prime}}=\overrightarrow{a x b y}$ for any $y^{\prime} \in \operatorname{Prefix}(y)$.

Proof. Since $a x b \in \operatorname{Factor}(w)$ and $x b y \neq w$, there always exists $z \in \Sigma^{*}$ such that $\overrightarrow{a x b}=a x b z \in \operatorname{Factor}(w)$. By Lemma $11, \overrightarrow{x b z}=x b z$. Since $\overrightarrow{\overrightarrow{x b}}=x b y, y \in$ $\operatorname{Prefix}(z)$. Because $a x b z \in \operatorname{Factor}(w)$, axby $\in \operatorname{Factor}(w)$. For any $y^{\prime} \in \operatorname{Prefix}(y)$, $a x b z \equiv_{w}^{\prime} a x b y^{\prime}$ since $\overrightarrow{a x b}=a x b z$. Therefore $\overrightarrow{a b x y^{\prime}}=a b x z=\overrightarrow{a b x y}$.

Suppose $\stackrel{w}{\vec{x}}=x$. If we in advance know node $[\stackrel{w}{\vec{x}}]_{w}$ has an out-going edge labeled with $b y$, we can avoid to scan the whole string $x b y$ in traversing the path axby from the initial node of $C D A W G(w)$. Moreover, it is guaranteed that the path by from the (explicit or implicit) node for $a x$ consists of one edge: no explicit node
is contained in the path. This is a key to achieve an algorithm that constructs $M A S C D A W G(w)$ in linear time with respect to its size.

The whole algorithm is shown in Fig. 4. Here we also read an input string w from right to left, and thus w is written as $w=w_{n} w_{n-1} \ldots w_{1}$. The label

```
Algorithm Construction of \(M A S C D A W G\left(w=w_{n} w_{n-1} \ldots w_{1}\right)\).
    create new nodes \(s_{0}, s_{1}, s_{2}\);
    \(\#\left(s_{0}\right):=1 ; \#\left(s_{1}\right):=1 ; \#\left(s_{2}\right):=2 ; \quad \#(\) nil \():=0 ;\)
    \(\operatorname{endpos}\left(s_{0}\right):=0 ; \operatorname{endpos}\left(s_{1}\right):=1 ; \operatorname{endpos}\left(s_{2}\right):=2 ; \operatorname{endpos}(\) nil \():=0 ;\)
    add edges \(\left(s_{1}, 1, s_{0}\right),\left(s_{2}, 1, s_{0}\right),\left(s_{2}, 2, s_{0}\right)\);
    initNode \([0]:=s_{0} ;\) initNode \([1]:=s_{1} ;\) initNode \([2]:=s_{2} ;\) node \(:=s_{2} ;\)
    for \(i:=3\) to \(n\) do
        \((s, k, p, r):=\) Canonize (FAStFind \((\) node \(, i, 1)\) );
        target \(:=\operatorname{NEWTARGETNode}((s, k, p, r), i-1\), node \()\);
        newNode \(:=\) create a new node with copying all out-going edges of node;
        add or overwrite edge (newNode, \(i\), target);
        \(\#(\) newNode \():=i ; \quad\) endpos(newNode) \(:=i\);
        initNode \([i]=\) newNode;
        node \(=\) newNode;
function NewTargetNode(refQuartet \((s, k, p, r)\), int \(j\), Node backbone) : Node
    nextNumSuf \(:=\#(r)+1 ;\)
    if nextNumSuf \(=\#(\) backbone \()\) then return backbone; /* redirection */
    let (backbone, \(\ell\), nextBackbone) be the \(w_{j}\)-edge from backbone;
    \(m:=\ell-\) endpos(nextBackbone); /* length of this edge */
    if \(k=p\) then /* explicit node */
    newNode \(:=\) create a new node with copying all out-going edges of \(s\);
    \((s, k, p, r):=\operatorname{Canonize}(\operatorname{FAStFind}(s, j, m))\);
    target \(:=\) NewTARGEtNode \(((s, k, p, r), j-m\), nextBackbone \()\);
    add or overwrite edge (newNode, \(j\), target);
    \#(newNode) \(:=\) nextNumSuf; \(\quad\) endpos(newNode) \(:=j\);
    return newNode;
    else if \(w_{p}=w_{j}\) then \(/ *\) implicit and next characters are the same */
        \((s, k, p, r):=\operatorname{CanOnize}(s, k, p-m, r) ; \quad{ }^{*}\) skip \(m\) characters */
        return NewTargetNode ( \((s, k, p, r), j-m\), nextBackbone \()\);
    else /* implicit and next characters are different */
        newNode \(:=\) create a new node; /* edge split */
        add new edges (newNode, \(p, r\) ) and (newNode, \(j, s_{0}\) );
        \#(newNode) \(:=\) nextNumSuf; endpos(newNode) \(:=j\);
        return newNode;
function FastFind(Node \(s\), int \(i\), int length) : refQuartet
\(/^{*}\) compute the position from \(s\) along the string \(w_{i} w_{i-1} \ldots w_{i-l e n g t h+1}{ }^{*} /\)
* remark that the first character \(w_{i}\) is only compared */
    if \(s\) has the \(w_{i}\)-edge then
        let \((s, \ell, r)\) be the \(w_{i}\)-edge from \(s\);
        return \((s, \ell, \ell-\) length, \(r\) );
    else return ( \(s, i, i\) - length, nil);
function CANONIZE(refQuartet \((s, k, p, r))\) : refQuartet
/* when the referenced position is an explicit node, canonize the expression */
    if \(k>p\) and \(p=\operatorname{endpos}(r)\) then return \((r, p, p, r)\);
    else return \((s, k, p, r)\);
```

Fig. 4. The algorithm to construct $M A S C D A W G(w)$.

baa\$:

abaa\$:

Fig. 5. Construction of MASCDAWG(abaa\$).
$w_{i} w_{i-1} \ldots w_{j}$ of each edge can be represented by a pair of the beginning position i and the ending position $j-1 .(i>j-1)$ If the string corresponding to the label appears in w more than once, we represent it by the leftmost occurrence. This way we can assign $\operatorname{endpos(s)}$ to a node s, where endpos(s) indicates the ending position of every in-coming edge of s. Thereby, we represent each edge by a triple (r, i, s), where r, s are explicit nodes. An implicit node corresponding to some factor x of w can be represented by a triple (r, k, p), where r is an explicit parent node of the implicit node. Assuming the representative of the equivalence class associated with r is $y, x=y u$ where $u=w_{k} w_{k-1} \ldots w_{p}$. The quartet (r, k, p, s) is called the reference quartet, where s is the closest explicit child node of r reachable via the w_{k}-edge from r. When $|p-k|$ is minimum, the quartet (r, k, p, s) is called the canonical reference quartet.

Theorem 4. For any string $w \in \Sigma^{*}$, our algorithm constructs $\operatorname{MASCDAWG(w)}$ in time linear in its size.

The on-line (right-to-left) construction of $\operatorname{MASCDAWG(w)\text {where}w=abaa\$;~}$ is displayed in Fig. [5.

4 Concluding Remarks

We proposed a new space-economical algorithm to construct MASDAWGs without suffix links, running in time linear in the output size. As shown in [8], there are several important applications for MASDAWGs. Therefore, reducing memory space needed in the construction of MASDAWGs is considerably significant. We have also accomplished further reduction of the space requirement, by intro-
ducing the MASCDAWG and its construction algorithm, which runs in linear time with respect to the size of the structure.

It is easy to construct the minimum all-suffixes suffix trie in time proportional to its size, by a slightly modified algorithm for the MASDAWG. We only need to care not to merge subtrees of the same suffix trie, so that the resulting structure does not become a dag. Similarly, the minimum all-suffixes suffix tree can also be built in time linear to its size, by modifying the algorithm for the MASCDAWG.

References

1. D. Angluin. Finding patterns common to a set of strings. J. Comput. Sys. Sci., 21:46-62, 1980.
2. A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. T. Chen, and J. Seiferas. The smallest automaton recognizing the subwords of a text. Theoretical Computer Science, 40:31-55, 1985.
3. A. Blumer, J. Blumer, D. Haussler, R. McConnell, and A. Ehrenfeucht. Complete inverted files for efficient text retrieval and analysis. J. ACM, 34(3):578-595, 1987.
4. M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, New York, 1994.
5. M. Crochemore and R. Vérin. On compact directed acyclic word graphs. In J. Mycielski, G. Rozenberg, and A. Salomaa, editors, Structures in Logic and Computer Science, volume 1261 of Lecture Notes in Computer Science, pages 192-211. Springer-Verlag, 1997.
6. D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University Press, New York, 1997.
7. S. Inenaga, H. Hoshino, A. Shinohara, M. Takeda, S. Arikawa, G. Mauri, and G. Pavesi. On-line construction of compact directed acyclic word graphs. In A. Amir and G. M. Landau, editors, Proc. 12th Annual Symposium on Combinatorial Pattern Matching (CPM'01), volume 2089 of Lecture Notes in Computer Science, pages 169-180. Springer-Verlag, 2001.
8. S. Inenaga, M. Takeda, A. Shinohara, H. Hoshino, and S. Arikawa. The minimum dawg for all suffixes of a string and its applications. In Proc. 13th Annual Symposium on Combinatorial Pattern Matching (CPM'02), 2002. (to appear).
9. E. M. McCreight. A space-economical suffix tree construction algorithm. J. ACM, 23(2):262-272, 1976.
10. D. Revuz. Minimization of acyclic deterministic automata in linear time. Theoretical Computer Science, 92(1):181-189, 1992.
11. T. Shinohara. Polynomial-time inference of pattern languages and its applications. In Proc. 7th IBM Symp. Math. Found. Comp. Sci., pages 191-209, 1982.
12. E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249-260, 1995.
13. P. Weiner. Linear pattern matching algorithms. In Proc. 14th Annual Symposium on Switching and Automata Theory, pages 1-11, 1973.
