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Abstract. We present a new series of run-rich strings, and give a new
lower bound 0.94457567 of the maximum number of runs in a string. We
also introduce the general conjecture about a asymptotic behavior of the
numbers of runs in the strings defined by any recurrence formula, and
show the lower bound can be improved further to 0.94457571235.

1 Introduction

Repetitions in strings is an important element in the analysis and processing of
strings. It was shown in [1] that when considering maximal repetitions, or runs,
the maximum number of runs ρ(n) in any string of length n is O(n), leading to a
linear time algorithm for computing all the runs in a string. Although they were
not able to give bounds for the constant factor, there have been several works
to this end [2–8]. The currently known best upper bound3 is ρ(n) ≤ 1.029n,
obtained by calculations based on the proof technique of [5, 8]. The technique
bounds the number of runs for each string by considering runs in two parts:
runs with long periods, and runs with short periods. The former is more sparse
and easier to bound while the latter is bounded by an exhaustive calculation
concerning how runs of different periods can overlap in an interval of some length.

On the other hand, an asymptotic lower bound on ρ(n) was first presented
in [9], where it is shown that for any ε > 0, there exists an integer N > 0 such
that for any n > N , ρ(n) ≥ (α− ε)n, where α = 3

1+
√

5
≈ 0.927. Although it was

conjectured in [10] that this bound is optimal, a new bound was shown in [11],
improving the lower bound to α = 174719/184973 ≈ 0.944565. The bound was
obtained by considering the runs of an infinite series of strings w, w2, w3, . . .,
based on a run-rich string w. To the best of our knowledge, the current best
lower bound is α = 27578248/29196442 ≈ 0.9445756438404378 achieved by a
run-rich string discovered by Simon Puglisi and Jamie Simpson4.

In this paper, we design a new series of run-rich strings defined by a simple
recurrence formula, and improve the bound further to 0.94457567. We give a
3 Presented on the website http://www.csd.uwo.ca/faculty/ilie/runs.html
4 personal communication



conjecture for the exact number of runs contained in each string of the series,
and show that the series improves the bound further to α ≈ 0.94457571235.

2 Preliminaries

Let Σ be a finite set of symbols, called an alphabet. Strings x, y and z are said
to be a prefix, substring, and suffix of the string w = xyz, respectively.

The length of a string w is denoted by |w|. The i-th symbol of a string w is
denoted by w[i] for 1 ≤ i ≤ |w|, and the substring of w that begins at position i
and ends at position j is denoted by w[i : j] for 1 ≤ i ≤ j ≤ |w|. A string w has
period p if w[i] = w[i + p] for 1 ≤ i ≤ |w| − p. A string w is called primitive if w
cannot be written as uk, where k is a positive integer, k ≥ 2.

A string u is a run if it is periodic with (minimum) period p ≤ |u|/2. A
substring u = w[i : j] of w is a run in w if it is a run of period p and neither
w[i − 1 : j] nor w[i : j + 1] is a run of period p, that means the run is maximal.
We denote the run u = w[i : j] in w by the triple 〈i, j−i+1, p〉 consisting of the
begin position i, the length |u|, and the minimum period p of u. For a string w,
we denote by run(w) the number of runs in w.

For example, the string aabaabaaaacaacac contains the following 7 runs:
〈1, 2, 1〉 = a2, 〈4, 2, 1〉 = a2, 〈7, 4, 1〉 = a4, 〈12, 2, 1〉 = a2, 〈13, 4, 2〉 = (ac)2,
〈1, 8, 3〉 = (aab)

8
3 , and 〈9, 7, 3〉 = (aac)

7
3 . Thus run(aabaabaaaacaacac) = 7.

We are interested in the behavior of the maxrun function defined for all n > 0
by

ρ(n) = max{run(w) | w is a string of length n}.

Franěk, Simpson and Smyth [10] showed a beautiful construction of a series
of strings which contain many runs, and later Franěk and Qian Yang [9] formally
proved a family of true asymptotic lower bounds arbitrarily close to 3
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n as

follows.

Theorem 1 ([9]). For any ε > 0 there exists a positive integer N so that
ρ(n) ≥

(
3

1+
√

5
− ε

)
n for any n ≥ N .

3 A New Series of Run-Rich Strings

In this section, we show a construction of a series of run-rich binary strings, and
we give new lower bound of the number of runs in string. The series {tn} of
strings is defined by
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t0 = 0110101101001011010,

t1 = 0110101101001,

t2 = 011010110100101101011010,

tk =

{
tk−1tk−2 (if k mod 3 = 0),
tk−1tk−4 (otherwise),

(1)

for any integer k > 2.

Table 1 shows the length of {tn} and the number of runs in {tn} for i =
0, 1, . . . , 44. We actually counted the number of runs by implementing the linear-
time algorithm proposed by Kolpakov and Kucherov [1] combined with the
space-effiecient algorithm to compute Lempel Ziv Factorization proposed by
Crochemore et al. [12]. In our PC with 18GB RAM, t44 was the longest possible
string to be handled. As we can see, these strings contain many runs and the
ratio run(tn)/|tn| in the third column is monotonically increasing as n grows.
We are interested in its limit value, and we will try to estimate it in Section 4.

Using this result in Table 1, we improve the bound. {tn} contains enough
runs, but we can improve the bound further by considering the string tkn. First,
we give a previous result about the number of runs in an infinite string obtained
by concatenating the same string infinite many times.

Theorem 2 ([11]). For any string w and any ε > 0, there exists a positive
integer N such that for any n ≥ N ,

ρ(n)
n

>
run(w3) − run(w2)

|w|
− ε.

From Theorem 2, we show a new lower bound.

Theorem 3. For any ε > 0 there exists a positive integer N so that
ρ(n) > (α − ε) n for any n ≥ N , where α = 48396453

51236184 ≈ 0.94457567.

Proof. From Table 1, we have |t41| = 51236184, run(t41) = 48396417, run(t241) =
96792871, and run(t341) = 145189324. Therefore from Theorem 2, we have

ρ(n)
n

>
145189324 − 96792871

51236184
− ε.

ut

Needless to say this bound is not optimal. If we can calculate run(tn) for
larger n, we would be able to obtain better bounds.

4 Analysis of Asymptotic Behavior

In this section, we analyze the asymptotic behavior of the number of runs in
{tn}. We conjecture that limn→∞ run(tn)/|tn| ≈ 0.94457571235.

3



Table 1. The length of {tn} and number of runs in {tn}

n |tn| run(tn) run(tn)/|tn| run(t2n) run(t3n) run(tk
n)/k|tn|

0 19 13 0.6842105263 29 44 0.7894736842
1 13 7 0.5384615385 19 30 0.8461538462
2 24 17 0.7083333333 39 60 0.8750000000
3 37 28 0.7567567568 62 95 0.8918918919
4 56 47 0.8392857143 99 150 0.9107142857
5 69 56 0.8115942029 120 183 0.9130434783
6 125 110 0.8800000000 227 343 0.9280000000
7 162 143 0.8827160494 295 446 0.9320987654
8 218 197 0.9036697248 402 606 0.9357798165
9 380 346 0.9105263158 704 1061 0.9394736842

10 505 467 0.9247524752 943 1418 0.9405940594
11 667 617 0.9250374813 1246 1874 0.9415292354
12 1172 1094 0.9334470990 2200 3305 0.9428327645
13 1552 1451 0.9349226804 2916 4380 0.9432989691
14 2057 1930 0.9382596014 3872 5813 0.9436071949
15 3609 3391 0.9395954558 6799 10206 0.9440288168
16 4781 4501 0.9414348463 9016 13530 0.9441539427
17 6333 5964 0.9417337755 11945 17925 0.9442602242
18 11114 10480 0.9429548317 20977 31473 0.9443944574
19 14723 13887 0.9432180941 27793 41698 0.9444406711
20 19504 18405 0.9436525841 36827 55248 0.9444729286
21 34227 32307 0.9439039355 64636 96964 0.9445174862
22 45341 42808 0.9441344479 85635 128461 0.9445314395
23 60064 56712 0.9441928609 113446 170179 0.9445424880
24 105405 99540 0.9443574783 199102 298663 0.9445567098
25 139632 131868 0.9443966999 263760 395651 0.9445614186
26 184973 174698 0.9444513524 349418 524137 0.9445648824
27 324605 306586 0.9444894564 613199 919811 0.9445695538
28 430010 406152 0.9445175694 812328 1218503 0.9445710565
29 569642 538042 0.9445265623 1076111 1614179 0.9445722050
30 999652 944219 0.9445477026 1888465 2832710 0.9445737117
31 1324257 1250831 0.9445530588 2501691 3752550 0.9445742027
32 1754267 1657010 0.9445597506 3314047 4971083 0.9445745716
33 3078524 2907866 0.9445649928 5815764 8723661 0.9445750626
34 4078176 3852116 0.9445683560 7704261 11556405 0.9445752219
35 5402433 5102974 0.9445696041 10205980 15308985 0.9445753423
36 9480609 8955120 0.9445722316 17910272 26865423 0.9445755014
37 12559133 11863017 0.9445729255 23726068 35589118 0.9445755531
38 16637309 15715165 0.9445737288 31430362 47145558 0.9445755921
39 29196442 27578212 0.9445744108 55156461 82734709 0.9445756438
40 38677051 36533368 0.9445748074 73066770 109600171 0.9445756606
41 51236184 48396417 0.9445749707 96792871 145189324 0.9445756733
42 89913235 84929820 0.9445752897 N/A N/A N/A
43 119109677 112508068 0.9445753765 N/A N/A N/A
44 157786728 149041473 0.9445754715 N/A N/A N/A
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To make the analysis easier, we classify the strings of {tn} into the following
three forms and we focus attention on {an}.

an = t3m = bn−1cn−1,

bn = t3m+1 = anan−1,

cn = t3m+2 = bnbn−1.

By definition, we can get the closed form of {an} as follows:

an = bn−1cn−1

= bn−1bn−2bn−1

= an−1an−2an−2an−3an−1an−2.

So we will analyze the length of {a2n} in Section 4.1, and the number of runs
in Section 4.2.

4.1 Length

At first we give the generating function of |a2n| = |t6n|.

Lemma 1. Let LA(z) be the generating function of |a2n|. LA(z) can be repre-
sented as follows:

LA(z) =
−17z2 + 65z − 19
z3 − 5z2 + 10z − 1

.

Proof.

|ak| = |ak−1ak−2ak−2ak−3ak−1ak−2|
= 2|ak−1| + 3|ak−2| + |ak−3|.

Let gn = |an|,

g0 = |a0| = 19,

g1 = |a1| = 37,

g2 = |a2| = 125,

gn = 2gn−1 + 3gn−2 + gn−3 ( n > 2 ).

Therefore, we have general term of gn as follows:

gn = 2gn−1 + 3gn−2 + gn−3 + 19[n=0] − 1[n=1] − 6[n=2],
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where the expression m[n=k] means the function such that the result is m if
n = k, and 0 if n 6= k.

Let L(z) be the generating function of gn. We have

L(z) = 2
∑

n

gn−1z
n + 3

∑
n

gn−2z
n +

∑
n

gn−3z
n

+
∑

n

(19[n=0] − 1[n=1] − 6[n=2])zn

= 2zL(z) + 3z2L(z) + z3L(z) + 19 − z − 6z2

=
6z2 + z − 19

z3 + 3z2 + 2z − 1
.

By definition, |a2n| = |t6n| = |t3(2n)| = g2n,∑
n

g2nz2n =
1
2

(L(z) + L(−z))

=
1
2

(
6z2 + z − 19

z3 + 3z2 + 2z − 1
+

6z2 − z − 19
−z3 + 3z2 − 2z − 1

)
=

1
2

(
−17z4 + 65z2 − 19
z6 − 5z4 + 10z2 − 1

)
.

Therefore, the generating function of |a2n| is as follows:

LA(z) =
∑

n

|a2n|zn =
∑

n

g2nzn =
1
2

(
−17z2 + 65z − 19
z3 − 5z2 + 10z − 1

)
.

ut

To solve this generating function, we use the following theorem. If A(z) is a
power series

∑
k≥0 akzk, we will find it convenient to write [zn]A(z) = an.

Theorem 4 (Rational Expansion Theorem for Distinct Roots [13]). If
R(z) = P (z)/Q(z), where Q(z) = q0(1 − ρ1z) . . . (1 − ρ`z) and the numbers
(ρ1, . . . , ρ`) are distinct, and if P (z) is a polynomial of degree less than `, then

[zn]R(z) = a1ρ
n
1 + · · · + a`ρ

n
` , where ak =

−ρkP (1/ρk)
Q′(1/ρk)

.

Using this theorem, we will show the general term of |an|. Let Q(z) = z3 −
5z2+10z−1 and QR(z) = −z3+10z2−5z+1. Therefore QR(z) is the “reflected”
polynomial of Q(z). Let (α, β, γ) be the roots of QR(z). Therefore QR(z) =
(z − α)(z − β)(z − γ), and Q(z) = (1 − αz)(1 − βz)(1 − γz). By Theorem 4, we
have the general term of |an| as follows.

Theorem 5. |an| = f(α)αn + f(β)βn + f(γ)γn for f(x) =
x(19x2−65x+17)

10x2−10x+3 ,
where (α, β, γ) are the roots of the equation −z3 +10z2 − 5z +1 = 0. The values
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of α, β, and γ are as follows:

α =
10
3

+
1
3

3

√
1577

2
− 21

√
69

2
+

1
3

3

√
1
2

(
1577 + 21

√
69

)
,

β =
10
3

− 1
6

(
1 − i

√
3
)

3

√
1577

2
− 21

√
69

2
− 1

6

(
1 + i

√
3
)

3

√
1
2

(
1577 + 21

√
69

)
,

γ =
10
3

− 1
6

(
1 + i

√
3
)

3

√
1577

2
− 21

√
69

2
− 1

6

(
1 − i

√
3
)

3

√
1
2

(
1577 + 21

√
69

)
.

4.2 Number of Runs

Instead of trying to count the numbers of runs in the strings defined by the
recurrence (1) only, we take a general approach here. We address ourselves to
find general formulae which express the numbers of runs in strings defined by
some recurrence, or equivalently, by some morphism.

Let m, k, γ1, γ2 . . . γk be integers such that 1 ≤ γj ≤ m for any 1 ≤ j ≤ k,
and s0, s1, . . . , sm−1 ∈ Σ+ be any nonempty strings. We consider a series of
strings {sn} defined by the recurrence formula

sn = sn−γ1sn−γ2 . . . sn−γk
(n ≥ m).

We pay our attentions to the quantity ∆n = run(sn)−
∑k

i=1 run(sn−γi). It is the
difference between the number of newly created runs and the number of merged
runs by the concatenation. Let p be the least common multiple of the two integers
γ1 and γk. We observe that {∆n} is a mixture of p arithmetic progressions with
the same common difference, except initial several terms. More formally, we have
the following conjecture.

Lemma 2 (Conjecture). There exist integers A and n0 such that ∆n = ∆n−p

+ A for any n ≥ n0.

For example, in {an} we have ∆n = ∆n−2 + 25 for n ≥ 5 (see Table 2).
Unfortunately, we have not succeeded to give a formal proof to the conjecture
at this time of writing. However, we have verified it for various instances and
encountered no counter examples. Based on the conjecture, we have the following
corollary, which is very useful to calculate the generating function.

Corollary 1 (Based on conjecture Lemma 2). There exist integers A,B0,
. . . , Bp−1, and n0 such that

run(spn+i) =
k∑

j=1

(run(spn+i−γj )) + An + Bi,

for any n ≥ n0.
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Table 2. The length of {an} and number of runs in {an}.

n |an| run(an) ∆n ∆n − ∆n−2

0 19 13

1 37 28

2 125 110

3 380 346 29

4 1172 1094 44

5 3609 3391 55 26

6 11114 10480 70 26

7 34227 32307 80 25

8 105405 99540 95 25

9 324605 306586 105 25

10 999652 944219 120 25

11 3078524 2907866 130 25

12 9480609 8955120 145 25

13 29196442 27578212 155 25

14 89913235 84929820 170 25

Note that an = an−1an−2an−2an−3an−1an−2, from Corollary 1, we have
p = 2 and the recurrence formula of run(an) for large n as follows:

run(a2n) = 2run(a2n−1) + 3run(a2n−2) + run(a2n−3) + 25n − 5,

run(a2n+1) = 2run(a2n) + 3run(a2n−1) + run(a2n−2) + 25n + 5.

Let us consider the progression {rn} defined by

r0 = 15,

r1 = 27,

r2 = 110,

r2k = 2r2k−1 + 3r2k−2 + r2k−3 + 25k − 5 (k ≥ 2),
r2k+1 = 2r2k + 3r2k−1 + r2k−2 + 25k + 5 (k ≥ 1).

We can see that run(an) = rn for any n ≥ 2.
To analyze the asymptotic behavior of run(an), we give the general term of

{rn}.
Let X(z), Y (z) be the generating functions of {r2n} and {r2n+1}:

X(z) =
∑

r2nzn,

Y (z) =
∑

r2n+1z
n.

8



Then,

X(z) = 2zY (z) + 3zX(z) + z2Y (z) + 25z
(1−z)2 − 5z

1−z −15 + 9z,

Y (z) = 2X(z) + 3zY (z) + zX(z) + 25z
(1−z)2 + 5z

1−z −3.

To solve above simultaneous equations, we have

X(z) = −19z4 − 103z2 + 164z2 − 70z + 15
(z − 1)2(z3 − 5z + 10z − 1)

.

Let α, β, γ are the roots of equation −z3 + 10z2 − 5z + 1 = 0. We have the
general term r2n from X(z) as follows:

r2n = g(α)αn + g(β)βn + g(γ)γn + O(n)

where,

g(x) =
x

(
15x4 − 70x3 + 164x2 − 103x + 19

)
12x4 − 52x3 + 6x2 − 28x + 5

.

Therefore we have the lower bounds of the maximal number of runs.

Theorem 6 (Based on Conjecture Lemma 2).

ρ(n)
n

≥ 0.94457571235.

Proof.

ρ(n) ≥ lim
n→∞

run(a2n)
|a2n|

= lim
n→∞

r2n

|a2n|

= lim
n→∞

g(α)αn + g(β)βn + g(γ)γn + O(n)
f(α)αn + f(β)βn + f(γ)γn

=
g(α)αn

f(α)αn
(|α| > |β| = |γ|)

=
α(15α4−70α3+164α2−103α+19)

12α4−52α3+6α2−28α+5

α(19α2−65α+17)
10α2−10α+3

=

(
3 − 10α + 10α2

) (
99 − 488α + 889α2

)
(17 − 65α + 19α2) (73 − 356α + 683α2)

=
7714 − 109145 3

√
2

−27669823+9298929
√

69
+ 3

√
−27669823+9298929

√
69

2

8079
≈ 0.94457571235.

ut
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5 Conclusion

In this paper, we showed a new series {tn} of run-rich strings defined by a simple
recurrence formula, and we succeeded to improve the lower bound to 0.94457567
of the maximum number of runs in a string by using concrete string t41. If we
count the number of runs in a more longer strings t2n and t3n for n > 41, the bound
can be improved further. Moreover, we gave a conjecture about the numbers of
runs in the strings defined by any recurrence formula. Based on the conjecture,
we evaluated the value lim

n→∞
run(tn)/|tn| accurately, which yields the best lower

bound so far. We are trying to give a proof of the conjecture.
Recently, Baturo et al. [6] derived an explicit formula for the number of runs

in any standard Sturmian words. Moreover, they showed how to compute the
number of runs in a standard Sturmian words in linear time with respect to
the size of its compressed representation, that is, the recurrences describing the
string. We are interested in extending it to a general strings described by any
recurrences for further research.
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