A series of run-rich strings

Wataru Matsubara¹, Kazuhiko Kusano¹, Hideo Bannai², and Ayumi Shinohara¹

¹ Graduate School of Information Science, Tohoku University, Aramaki aza Aoba 6-6-05, Aoba-ku, Sendai 980-8579, Japan {matsubara@shino., kusano@shino., ayumi@ }ecei.tohoku.ac.jp ² Department of Informatics, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395 Japan. bannai@i.kyushu-u.ac.jp

Abstract. We present a new series of run-rich strings, and give a new lower bound 0.94457567 of the maximum number of runs in a string. We also introduce the general conjecture about a asymptotic behavior of the numbers of runs in the strings defined by any recurrence formula, and show the lower bound can be improved further to 0.94457571235.

1 Introduction

Repetitions in strings is an important element in the analysis and processing of strings. It was shown in [1] that when considering maximal repetitions, or runs, the maximum number of runs $\rho(n)$ in any string of length n is O(n), leading to a linear time algorithm for computing all the runs in a string. Although they were not able to give bounds for the constant factor, there have been several works to this end [2–8]. The currently known best upper bound³ is $\rho(n) \leq 1.029n$, obtained by calculations based on the proof technique of [5,8]. The technique bounds the number of runs for each string by considering runs in two parts: runs with long periods, and runs with short periods. The former is more sparse and easier to bound while the latter is bounded by an exhaustive calculation concerning how runs of different periods can overlap in an interval of some length.

On the other hand, an asymptotic lower bound on $\rho(n)$ was first presented in [9], where it is shown that for any $\varepsilon > 0$, there exists an integer N > 0 such that for any n > N, $\rho(n) \ge (\alpha - \varepsilon)n$, where $\alpha = \frac{3}{1+\sqrt{5}} \approx 0.927$. Although it was conjectured in [10] that this bound is optimal, a new bound was shown in [11], improving the lower bound to $\alpha = 174719/184973 \approx 0.944565$. The bound was obtained by considering the runs of an infinite series of strings w, w^2, w^3, \ldots , based on a run-rich string w. To the best of our knowledge, the current best lower bound is $\alpha = 27578248/29196442 \approx 0.9445756438404378$ achieved by a run-rich string discovered by Simon Puglisi and Jamie Simpson⁴.

In this paper, we design a new series of run-rich strings defined by a simple recurrence formula, and improve the bound further to 0.94457567. We give a

³ Presented on the website http://www.csd.uwo.ca/faculty/ilie/runs.html

⁴ personal communication

conjecture for the exact number of runs contained in each string of the series, and show that the series improves the bound further to $\alpha \approx 0.94457571235$.

2 Preliminaries

Let Σ be a finite set of symbols, called an *alphabet*. Strings x, y and z are said to be a *prefix*, *substring*, and *suffix* of the string w = xyz, respectively.

The length of a string w is denoted by |w|. The *i*-th symbol of a string w is denoted by w[i] for $1 \le i \le |w|$, and the substring of w that begins at position i and ends at position j is denoted by w[i:j] for $1 \le i \le j \le |w|$. A string w has period p if w[i] = w[i+p] for $1 \le i \le |w| - p$. A string w is called *primitive* if w cannot be written as u^k , where k is a positive integer, $k \ge 2$.

A string u is a run if it is periodic with (minimum) period $p \leq |u|/2$. A substring u = w[i : j] of w is a run in w if it is a run of period p and neither w[i-1:j] nor w[i:j+1] is a run of period p, that means the run is maximal. We denote the run u = w[i:j] in w by the triple $\langle i, j-i+1, p \rangle$ consisting of the begin position i, the length |u|, and the minimum period p of u. For a string w, we denote by run(w) the number of runs in w.

We are interested in the behavior of the maxrun function defined for all n > 0 by

$$\rho(n) = \max\{run(w) \mid w \text{ is a string of length } n\}.$$

Franěk, Simpson and Smyth [10] showed a beautiful construction of a series of strings which contain many runs, and later Franěk and Qian Yang [9] formally proved a family of true asymptotic lower bounds arbitrarily close to $\frac{3}{1+\sqrt{5}}n$ as follows.

Theorem 1 ([9]). For any $\varepsilon > 0$ there exists a positive integer N so that $\rho(n) \ge \left(\frac{3}{1+\sqrt{5}} - \varepsilon\right) n$ for any $n \ge N$.

3 A New Series of Run-Rich Strings

In this section, we show a construction of a series of *run-rich* binary strings, and we give new lower bound of the number of runs in string. The series $\{t_n\}$ of strings is defined by

$$t_{0} = 0110101101001011010,$$

$$t_{1} = 0110101101001,$$

$$t_{2} = 01101011010010110101010,$$

$$t_{k} = \begin{cases} t_{k-1}t_{k-2} & \text{(if } k \mod 3 = 0), \\ t_{k-1}t_{k-4} & \text{(otherwise)}, \end{cases}$$

for any integer $k > 2.$
(1)

Table 1 shows the length of $\{t_n\}$ and the number of runs in $\{t_n\}$ for $i = 0, 1, \ldots, 44$. We actually counted the number of runs by implementing the lineartime algorithm proposed by Kolpakov and Kucherov [1] combined with the space-efficient algorithm to compute Lempel Ziv Factorization proposed by Crochemore et al. [12]. In our PC with 18GB RAM, t_{44} was the longest possible string to be handled. As we can see, these strings contain many runs and the ratio $run(t_n)/|t_n|$ in the third column is monotonically increasing as n grows. We are interested in its limit value, and we will try to estimate it in Section 4.

Using this result in Table 1, we improve the bound. $\{t_n\}$ contains enough runs, but we can improve the bound further by considering the string t_n^k . First, we give a previous result about the number of runs in an infinite string obtained by concatenating the same string infinite many times.

Theorem 2 ([11]). For any string w and any $\varepsilon > 0$, there exists a positive integer N such that for any $n \ge N$,

$$\frac{\rho(n)}{n} > \frac{run(w^3) - run(w^2)}{|w|} - \varepsilon.$$

From Theorem 2, we show a new lower bound.

Theorem 3. For any $\varepsilon > 0$ there exists a positive integer N so that $\rho(n) > (\alpha - \varepsilon) n$ for any $n \ge N$, where $\alpha = \frac{48396453}{51236184} \approx 0.94457567$.

Proof. From Table 1, we have $|t_{41}| = 51236184$, $run(t_{41}) = 48396417$, $run(t_{41}^2) = 96792871$, and $run(t_{41}^3) = 145189324$. Therefore from Theorem 2, we have

$$\frac{\rho(n)}{n} > \frac{145189324 - 96792871}{51236184} - \varepsilon.$$

Needless to say this bound is not optimal. If we can calculate $run(t_n)$ for larger n, we would be able to obtain better bounds.

4 Analysis of Asymptotic Behavior

In this section, we analyze the asymptotic behavior of the number of runs in $\{t_n\}$. We conjecture that $\lim_{n\to\infty} run(t_n)/|t_n| \approx 0.94457571235$.

Table 1.	The	length	of	$\{t_n\}$	and	number	of	runs	in	$\{t_n\}$	}
----------	-----	--------	----	-----------	-----	--------	----	------	----	-----------	---

n	$ t_n $	$run(t_n)$	$run(t_n)/ t_n $	$run(t_n^2)$	$run(t_n^3)$	$run(t_n^k)/k t_n $
0	19	13	0.6842105263	29	44	0.7894736842
1	13	7	0.5384615385	19	30	0.8461538462
2	24	17	0.7083333333	39	60	0.8750000000
3	37	28	0.7567567568	62	95	0.8918918919
4	56	47	0.8392857143	99	150	0.9107142857
5	69	56	0.8115942029	120	183	0.9130434783
6	125	110	0.8800000000	227	343	0.9280000000
7	162	143	0.8827160494	295	446	0.9320987654
8	218	197	0.9036697248	402	606	0.9357798165
9	380	346	0.9105263158	704	1061	0.9394736842
10	505	467	0.9247524752	943	1418	0.9405940594
11	667	617	0.9250374813	1246	1874	0.9415292354
12	1172	1094	0.9334470990	2200	3305	0.9428327645
13	1552	1451	0.9349226804	2916	4380	0.9432989691
14	2057	1930	0.9382596014	3872	5813	0.9436071949
15	3609	3391	0.9395954558	6799	10206	0.9440288168
16	4781	4501	0.9414348463	9016	13530	0.9441539427
17	6333	5964	0.9417337755	11945	17925	0.9442602242
18	11114	10480	0.9429548317	20977	31473	0.9443944574
19	14723	13887	0.9432180941	27793	41698	0.9444406711
20	19504	18405	0.9436525841	36827	55248	0.9444729286
21	34227	32307	0.9439039355	64636	96964	0.9445174862
22	45341	42808	0.9441344479	85635	128461	0.9445314395
23	60064	56712	0.9441928609	113446	170179	0.9445424880
24	105405	99540	0.9443574783	199102	298663	0.9445567098
25	139632	131868	0.9443966999	263760	395651	0.9445614186
26	184973	174698	0.9444513524	349418	524137	0.9445648824
27	324605	306586	0.9444894564	613199	919811	0.9445695538
28	430010	406152	0.9445175694	812328	1218503	0.9445710565
29	569642	538042	0.9445265623	1076111	1614179	0.9445722050
30	999652	944219	0.9445477026	1888465	2832710	0.9445737117
31	1324257	1250831	0.9445530588	2501691	3752550	0.9445742027
32	1754267	1657010	0.9445597506	3314047	4971083	0.9445745716
33	3078524	2907866	0.9445649928	5815764	8723661	0.9445750626
34	4078176	3852116	0.9445683560	7704261	11556405	0.9445752219
35	5402433	5102974	0.9445696041	10205980	15308985	0.9445753423
36	9480609	8955120	0.9445722316	17910272	26865423	0.9445755014
37	12559133	11863017	0.9445729255	23726068	35589118	0.9445755531
38	16637309	15715165	0.9445737288	31430362	47145558	0.9445755921
39	29196442	27578212	0.9445744108	55156461	82734709	0.9445756438
40	38677051	36533368	0.9445748074	73066770	109600171	0.9445756606
41	51236184	48396417	0.9445749707	96792871	145189324	0.9445756733
42	89913235	84929820	0.9445752897	N/A	N/A	N/A
43	119109677	112508068	0.9445753765	N/A	N/A	N/A
44	157786728	149041473	0.9445754715	N/A	N/A	N/A

To make the analysis easier, we classify the strings of $\{t_n\}$ into the following three forms and we focus attention on $\{a_n\}$.

$$a_n = t_{3m} = b_{n-1}c_{n-1},$$

 $b_n = t_{3m+1} = a_n a_{n-1},$
 $c_n = t_{3m+2} = b_n b_{n-1}.$

By definition, we can get the closed form of $\{a_n\}$ as follows:

$$a_n = b_{n-1}c_{n-1}$$

= $b_{n-1}b_{n-2}b_{n-1}$
= $a_{n-1}a_{n-2}a_{n-2}a_{n-3}a_{n-1}a_{n-2}$.

So we will analyze the length of $\{a_{2n}\}$ in Section 4.1, and the number of runs in Section 4.2.

4.1 Length

At first we give the generating function of $|a_{2n}| = |t_{6n}|$.

Lemma 1. Let $L_A(z)$ be the generating function of $|a_{2n}|$. $L_A(z)$ can be represented as follows:

$$L_A(z) = \frac{-17z^2 + 65z - 19}{z^3 - 5z^2 + 10z - 1}$$

Proof.

$$|a_k| = |a_{k-1}a_{k-2}a_{k-2}a_{k-3}a_{k-1}a_{k-2}|$$

= 2|a_{k-1}| + 3|a_{k-2}| + |a_{k-3}|.

Let $g_n = |a_n|$,

$$\begin{split} g_0 &= |a_0| = 19, \\ g_1 &= |a_1| = 37, \\ g_2 &= |a_2| = 125, \\ g_n &= 2g_{n-1} + 3g_{n-2} + g_{n-3} \ (\ n > 2 \). \end{split}$$

Therefore, we have general term of g_n as follows:

$$g_n = 2g_{n-1} + 3g_{n-2} + g_{n-3} + 19_{[n=0]} - 1_{[n=1]} - 6_{[n=2]},$$

where the expression $m_{[n=k]}$ means the function such that the result is m if n = k, and 0 if $n \neq k$.

Let L(z) be the generating function of g_n . We have

$$\begin{split} L(z) &= 2\sum_{n} g_{n-1} z^{n} + 3\sum_{n} g_{n-2} z^{n} + \sum_{n} g_{n-3} z^{n} \\ &+ \sum_{n} (19_{[n=0]} - 1_{[n=1]} - 6_{[n=2]}) z^{n} \\ &= 2zL(z) + 3z^{2}L(z) + z^{3}L(z) + 19 - z - 6z^{2} \\ &= \frac{6z^{2} + z - 19}{z^{3} + 3z^{2} + 2z - 1}. \end{split}$$

By definition, $|a_{2n}| = |t_{6n}| = |t_{3(2n)}| = g_{2n}$,

$$\sum_{n} g_{2n} z^{2n} = \frac{1}{2} \left(L(z) + L(-z) \right)$$
$$= \frac{1}{2} \left(\frac{6z^2 + z - 19}{z^3 + 3z^2 + 2z - 1} + \frac{6z^2 - z - 19}{-z^3 + 3z^2 - 2z - 1} \right)$$
$$= \frac{1}{2} \left(\frac{-17z^4 + 65z^2 - 19}{z^6 - 5z^4 + 10z^2 - 1} \right).$$

Therefore, the generating function of $|a_{2n}|$ is as follows:

$$L_A(z) = \sum_n |a_{2n}| z^n = \sum_n g_{2n} z^n = \frac{1}{2} \left(\frac{-17z^2 + 65z - 19}{z^3 - 5z^2 + 10z - 1} \right).$$

To solve this generating function, we use the following theorem. If A(z) is a power series $\sum_{k\geq 0} a_k z^k$, we will find it convenient to write $[z^n]A(z) = a_n$.

Theorem 4 (Rational Expansion Theorem for Distinct Roots [13]). If R(z) = P(z)/Q(z), where $Q(z) = q_0(1 - \rho_1 z) \dots (1 - \rho_\ell z)$ and the numbers $(\rho_1, \dots, \rho_\ell)$ are distinct, and if P(z) is a polynomial of degree less than ℓ , then

$$[z^n]R(z) = a_1\rho_1^n + \dots + a_\ell\rho_\ell^n$$
, where $a_k = \frac{-\rho_k P(1/\rho_k)}{Q'(1/\rho_k)}$.

Using this theorem, we will show the general term of $|a_n|$. Let $Q(z) = z^3 - 5z^2 + 10z - 1$ and $Q^R(z) = -z^3 + 10z^2 - 5z + 1$. Therefore $Q^R(z)$ is the "reflected" polynomial of Q(z). Let (α, β, γ) be the roots of $Q^R(z)$. Therefore $Q^R(z) = (z - \alpha)(z - \beta)(z - \gamma)$, and $Q(z) = (1 - \alpha z)(1 - \beta z)(1 - \gamma z)$. By Theorem 4, we have the general term of $|a_n|$ as follows.

Theorem 5. $|a_n| = f(\alpha)\alpha^n + f(\beta)\beta^n + f(\gamma)\gamma^n$ for $f(x) = \frac{x(19x^2 - 65x + 17)}{10x^2 - 10x + 3}$, where (α, β, γ) are the roots of the equation $-z^3 + 10z^2 - 5z + 1 = 0$. The values

of α , β , and γ are as follows:

$$\begin{aligned} \alpha &= \frac{10}{3} + \frac{1}{3}\sqrt[3]{\frac{1577}{2}} - \frac{21\sqrt{69}}{2} + \frac{1}{3}\sqrt[3]{\frac{1}{2}\left(1577 + 21\sqrt{69}\right)}, \\ \beta &= \frac{10}{3} - \frac{1}{6}\left(1 - i\sqrt{3}\right)\sqrt[3]{\frac{1577}{2}} - \frac{21\sqrt{69}}{2} - \frac{1}{6}\left(1 + i\sqrt{3}\right)\sqrt[3]{\frac{1}{2}\left(1577 + 21\sqrt{69}\right)}, \\ \gamma &= \frac{10}{3} - \frac{1}{6}\left(1 + i\sqrt{3}\right)\sqrt[3]{\frac{1577}{2}} - \frac{21\sqrt{69}}{2} - \frac{1}{6}\left(1 - i\sqrt{3}\right)\sqrt[3]{\frac{1}{2}\left(1577 + 21\sqrt{69}\right)}. \end{aligned}$$

4.2 Number of Runs

Instead of trying to count the numbers of runs in the strings defined by the recurrence (1) only, we take a general approach here. We address ourselves to find general formulae which express the numbers of runs in strings defined by some recurrence, or equivalently, by some morphism.

Let $m, k, \gamma_1, \gamma_2 \dots \gamma_k$ be integers such that $1 \leq \gamma_j \leq m$ for any $1 \leq j \leq k$, and $s_0, s_1, \dots, s_{m-1} \in \Sigma^+$ be any nonempty strings. We consider a series of strings $\{s_n\}$ defined by the recurrence formula

$$s_n = s_{n-\gamma_1} s_{n-\gamma_2} \dots s_{n-\gamma_k} \quad (n \ge m).$$

We pay our attentions to the quantity $\Delta_n = run(s_n) - \sum_{i=1}^k run(s_{n-\gamma_i})$. It is the difference between the number of newly created runs and the number of merged runs by the concatenation. Let p be the least common multiple of the two integers γ_1 and γ_k . We observe that $\{\Delta_n\}$ is a mixture of p arithmetic progressions with the same common difference, except initial several terms. More formally, we have the following conjecture.

Lemma 2 (Conjecture). There exist integers A and n_0 such that $\Delta_n = \Delta_{n-p} + A$ for any $n \ge n_0$.

For example, in $\{a_n\}$ we have $\Delta_n = \Delta_{n-2} + 25$ for $n \geq 5$ (see Table 2). Unfortunately, we have not succeeded to give a formal proof to the conjecture at this time of writing. However, we have verified it for various instances and encountered no counter examples. Based on the conjecture, we have the following corollary, which is very useful to calculate the generating function.

Corollary 1 (Based on conjecture Lemma 2). There exist integers A, B_0, \ldots, B_{p-1} , and n_0 such that

$$run(s_{pn+i}) = \sum_{j=1}^{k} (run(s_{pn+i-\gamma_j})) + An + B_i,$$

for any $n \ge n_0$.

n	$ a_n $	$run(a_n)$	Δ_n	$\Delta_n - \Delta_{n-2}$
0	19	13		
1	37	28		
2	125	110		
3	380	346	29	
4	1172	1094	44	
5	3609	3391	55	26
6	11114	10480	70	26
7	34227	32307	80	25
8	105405	99540	95	25
9	324605	306586	105	25
10	999652	944219	120	25
11	3078524	2907866	130	25
12	9480609	8955120	145	25
13	29196442	27578212	155	25
14	89913235	84929820	170	25

Table 2. The length of $\{a_n\}$ and number of runs in $\{a_n\}$.

Note that $a_n = a_{n-1}a_{n-2}a_{n-2}a_{n-3}a_{n-1}a_{n-2}$, from Corollary 1, we have p = 2 and the recurrence formula of $run(a_n)$ for large n as follows:

$$run(a_{2n}) = 2run(a_{2n-1}) + 3run(a_{2n-2}) + run(a_{2n-3}) + 25n - 5,$$

$$run(a_{2n+1}) = 2run(a_{2n}) + 3run(a_{2n-1}) + run(a_{2n-2}) + 25n + 5.$$

Let us consider the progression $\{r_n\}$ defined by

$$\begin{aligned} r_0 &= 15, \\ r_1 &= 27, \\ r_2 &= 110, \\ r_{2k} &= 2r_{2k-1} + 3r_{2k-2} + r_{2k-3} + 25k - 5 \quad (k \ge 2), \\ r_{2k+1} &= 2r_{2k} + 3r_{2k-1} + r_{2k-2} + 25k + 5 \quad (k \ge 1). \end{aligned}$$

We can see that $run(a_n) = r_n$ for any $n \ge 2$. To analyze the asymptotic behavior of $run(a_n)$, we give the general term of $\{r_n\}.$

Let X(z), Y(z) be the generating functions of $\{r_{2n}\}$ and $\{r_{2n+1}\}$:

$$X(z) = \sum r_{2n} z^n,$$

$$Y(z) = \sum r_{2n+1} z^n.$$

Then,

$$\begin{aligned} X(z) &= 2zY(z) + 3zX(z) + z^2Y(z) + \frac{25z}{(1-z)^2} - \frac{5z}{1-z} - 15 + 9z, \\ Y(z) &= 2X(z) + 3zY(z) + zX(z) + \frac{25z}{(1-z)^2} + \frac{5z}{1-z} - 3. \end{aligned}$$

To solve above simultaneous equations, we have

$$X(z) = -\frac{19z^4 - 103z^2 + 164z^2 - 70z + 15}{(z-1)^2(z^3 - 5z + 10z - 1)}$$

Let α, β, γ are the roots of equation $-z^3 + 10z^2 - 5z + 1 = 0$. We have the general term r_{2n} from X(z) as follows:

$$r_{2n} = g(\alpha)\alpha^n + g(\beta)\beta^n + g(\gamma)\gamma^n + O(n)$$

where,

$$g(x) = \frac{x\left(15x^4 - 70x^3 + 164x^2 - 103x + 19\right)}{12x^4 - 52x^3 + 6x^2 - 28x + 5}.$$

Therefore we have the lower bounds of the maximal number of runs.

Theorem 6 (Based on Conjecture Lemma 2).

$$\frac{\rho(n)}{n} \ge 0.94457571235.$$

Proof.

$$\begin{split} \rho(n) &\geq \lim_{n \to \infty} \frac{run(a_{2n})}{|a_{2n}|} = \lim_{n \to \infty} \frac{r_{2n}}{|a_{2n}|} \\ &= \lim_{n \to \infty} \frac{g(\alpha)\alpha^n + g(\beta)\beta^n + g(\gamma)\gamma^n + O(n)}{f(\alpha)\alpha^n + f(\beta)\beta^n + f(\gamma)\gamma^n} \\ &= \frac{g(\alpha)\alpha^n}{f(\alpha)\alpha^n} \quad (|\alpha| > |\beta| = |\gamma|) \\ &= \frac{\frac{\alpha(15\alpha^4 - 70\alpha^3 + 164\alpha^2 - 103\alpha + 19)}{12\alpha^4 - 52\alpha^3 + 6\alpha^2 - 28\alpha + 5}}{\frac{\alpha(19\alpha^2 - 65\alpha + 17)}{10\alpha^2 - 10\alpha + 3}} \\ &= \frac{(3 - 10\alpha + 10\alpha^2) \left(99 - 488\alpha + 889\alpha^2\right)}{(17 - 65\alpha + 19\alpha^2) \left(73 - 356\alpha + 683\alpha^2\right)} \\ &= \frac{7714 - 109145\sqrt[3]{\frac{2}{-27669823 + 9298929\sqrt{69}}} + \sqrt[3]{\frac{-27669823 + 9298929\sqrt{69}}{2}}}{8079} \end{split}$$

 $\approx 0.94457571235.$

5 Conclusion

In this paper, we showed a new series $\{t_n\}$ of run-rich strings defined by a simple recurrence formula, and we succeeded to improve the lower bound to 0.94457567 of the maximum number of runs in a string by using concrete string t_{41} . If we count the number of runs in a more longer strings t_n^2 and t_n^3 for n > 41, the bound can be improved further. Moreover, we gave a conjecture about the numbers of runs in the strings defined by any recurrence formula. Based on the conjecture, we evaluated the value $\lim_{n\to\infty} run(t_n)/|t_n|$ accurately, which yields the best lower bound so far. We are trying to give a proof of the conjecture.

Recently, Baturo et al. [6] derived an explicit formula for the number of runs in any standard Sturmian words. Moreover, they showed how to compute the number of runs in a standard Sturmian words in linear time with respect to the size of its compressed representation, that is, the recurrences describing the string. We are interested in extending it to a general strings described by any recurrences for further research.

References

- Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear time. In: Proc. 40th Annual Symposium on Foundations of Computer Science (FOCS'99). (1999) 596–604
- Rytter, W.: The number of runs in a string: Improved analysis of the linear upper bound. In: Proc. 23rd Annual Symposium on Theoretical Aspects of Computer Science (STACS 2006). Volume 3884 of LNCS. (2006) 184–195
- 3. Rytter, W.: The number of runs in a string. Inf. Comput. 205(9) (2007) 1459-1469
- Puglisi, S.J., Simpson, J., Smyth, W.F.: How many runs can a string contain? Theoretical Computer Science 401(1–3) (2008) 165–171
- Crochemore, M., Ilie, L.: Maximal repetitions in strings. J. Comput. Syst. Sci. 74 (2008) 796–807
- Baturo, P., Piatkowski, M., Rytter, W.: The number of runs in Sturmian words. In: Proc. CIAA 2008. (2008) 252–261
- 7. Giraud, M.: Not so many runs in strings. In: Proc. LATA 2008. (2008) 245–252
- Crochemore, M., Ilie, L., Tinta, L.: Towards a solution to the "runs" conjecture. In: Proc. CPM 2008. Volume 5029 of LNCS. (2008) 290–302
- 9. Franěk, F., Yang, Q.: An asymptotic lower bound for the maximal-number-of-runs function. In: Proc. Prague Stringology Conference (PSC'06). (2006) 3–8
- Franěk, F., Simpson, R., Smyth, W.: The maximum number of runs in a string. In: Proc. 14th Australasian Workshop on Combinatorial Algorithms (AWOCA2003). (2003) 26–35
- Matsubara, W., Kusano, K., Ishino, A., Bannai, H., Shinohara, A.: New lower bounds for the maximum number of runs in a string. In: Proc. The Prague Stringology Conference 2008. (2008) 140–145
- Crochemore, M., Ilie, L., Smyth, W.F.: A simple algorithm for computing the lempel ziv factorization. In: Proc. DCC 2008. (2008) 482–488
- Graham, R., Knuth, D., Patashnik, O.: Concrete mathematics Second Edition. Addison-Wesley (1995)