An Improved Pattern Matching
Algorithm for Strings in terms of
Straight-line Programs

MASAMICHI MIYAZAKI !, AYUMI SHINOHARA, MASAYUKI
TAKEDA, Department of Informatics, Kyushu University 33, Fukuoka
812-8581, Japan, {masamich, ayumi,
takeda}@i.kyushu-u.ac.jp

ABSTRACT: We show an efficient pattern-matching algorithm for strings that are succinctly de-
scribed in terms of straight-line programs, in which the constants are symbols and the only
operation is the concatenation. In this paper, both text T and pattern P are given by straight-
line programs 7 and P. The length of the text T (pattern P, resp.) may grow exponentially
with respect to its description size ||T'|| = n (||P|| = m, resp.). We show a new combinatorial
property concerning with the periodic occurrences of a pattern in a text. Based on this property,
we develop an O(n’m?®) time algorithm using O(nm) space, which outputs a compact repre-
sentation of all occurrences of P in T'. This is superior to the algorithm proposed by Karpinski
et al.[13], which runs in O((n +m)* log (n + m)) time using O((n 4+ m)*) space. Moreover,
our algorithm is much simpler, and the experimental results show that our ‘algorithm is more
efficient than theirs from the practical view point.

Keywords: Compressed string matching, Periodicity, Combinatorial pattern matching; Straight-line pro-
gram.

1 Introduction

The string pattern-matching is a task to find all occurrences of a pattern in a text. In
practice the text is large and is often stored in compressed form in secondary storage.
In order to find a pattern in the text quickly, we usually use some text indexing data
structures [9, 15]. However, it requires extra-space, which is often undesirable. More-
over, decompressing the original text also consumes extra-space. Thus, it is very at-
tractive to develop an efficient pattern-matching algorithm for searching a compressed
text without any extra data structures nor decompression process. Moreover, if the text
is stored in some compressed form, the data transmission time from the secondary
storage to the main memory is decreased according to the compression ratio. Text
compression thus possibly speeds up pattern-matching. It also justifies the importance
of an efficient pattern-matching algorithm which searches a compressed text directly.

The problem of pattern-matching in compressed text is of not only practical interest
but also of theoretical interest. Several researchers have studied it for various com-

IThe author is currently working at NEC.

J. of Discrete Algorithms, Vol. 1 No. 1, pp. 187-204, 2000 (© Hermes Science Publications

188 J. of Discrete Algorithms, Vol. 1 No. 1, 2000

pression methods. For example, [1, 2, 3, 4, 7] are for the run-length coding, [5] for the
LZW coding, [8, 10, 11] for the LZ77 coding. Refer to an excellent survey [17] for
recent development on this topic.

A straight-line program is a compact representation of string. It is a context-free
grammar in the Chomsky normal form that derives only one string. The length of the
- string represented by a straight-line program can be exponentially long with respect to
the size of the straight-line program. In this sense, conversion of string into straight-
line program can be viewed as a kind of text compressions.

In this paper we concentrate on the pattern-matching problem where both text
and pattern are represented in terms of straight-line programs. Karpinski et al. [12]
showed the first polynomial-time algorithm. Later in [13] they proposed an O((n +
m)*log (n +m)) time algorithm using O((n + m)?) space, where n and m are
the sizes of straight-line programs representing the text and the pattern, respectively.
However, the algorithm is rather complicated. In this paper we exploit a new combina-
torial property concerning with the periodic occurrences of a pattern in a text, and then
present an O(n?m?) time algorithm using O(nm) space, which is based on this prop-
erty. Our algorithm is simpler, and outputs an O(n) representation of all occurrences.
Moreover, we implemented both our algorithm and the algorithm in [13]. Comparing
these two algorithms from practical view point, we verified that our algorithm is more
efficient than the algorithm in [13]. '

A preliminary version of this paper was presented at [16].

2 Preliminary

In this paper, both text and pattern are described in terms of straight-line programs. A
straight-line program R is a sequence of assignments as follows:

Xy = expri; Xo = expry; ...; Xn = expry,
where X; are variables and expr; are expressions of the form:

e expr; is a symbol of a given alphabet X, or
® expr; = X¢ - X, (€,7 < i), where - denotes the concatenation of X, and X,.

Denote by R the string which is derived from the last variable X, of the program
R. The size of the straight-line program R, denoted by ||R||, is the number n of
assignments in R. The length of a string w is denoted by |w|. We identify a variable
X; with the string represented by X if it is clear from the context.

EXAMPLE 2.1
Let us consider the following straight-line program R

X1 =a; Xo =b; X3 =X;-Xy; X4 = X3-X1; X5 = X3-Xy;
Xe = X5-X5; X7 = X4-Xg; Xg = X7-X5.

We can see that R = X3 = abaababaababaababa, and ||R|| = 8, |R| = 18.
The evaluation tree is shown in Fig. 1.

Strings in terms of Straight-line Programs 189

/\
/\ /\
A /\ NN

X3 Xi X5 X1X2 X3 X1
Al /' \ / \ /\
X1 X2 X3 X4 X3 X1 X2

AYANNA /\

X1X2 X3 X1 X1X2 X3 X1

AYEEE A

abaéééﬁééﬁéﬁéababa

FIG. 1. Evaluation tree of R in Example 1.

We define the depth of a variable X in a straight-line program R by

_J1 ifX=a€k,
depth(X) = { 1 + max(depth(X,),depth(X,)) if X = X, X,.

It corresponds to the length of the longest path from X to a leaf in the tree.

For a string w denote by w(i..j](1 < i < j < |w]|) the subword of w starting at
i and ending at j. A period of a string w is an integer p, (0 < p < |w]), such that
wli] = w[i + p]foranyi =1,...,|w| —

The pattern matching problem for strings in terms of straight-line programs is,
given straight-line programs P and 7 which are the descriptions of pattern P and
text T" respectively, to find all occurrences of P in T'. Namely, we will compute the
following set:

Oce(T, P) = {i | Tli.i +|P| - 1] = P}.

Hereafter, we use X and X; for variables in 7 and Y and Y for variables in P. We
assume ||7|| = n and ||P|| = m. For a set U of integers and an integer k, we denote
- Uok={i+k|ie€U}andUSk = {i—k|i € U}. Anarithmetic progression is a
sequence in which each term after the first is determined by adding a constant, called
a step, to the preceding term.

3 Overview of algorithm

In this section, we give an overview of our algorithm together with its basic idea. First
we consider a compact representation of the set Occ(X,Y).

190 J. of Discrete Algorithms, Vol. 1 No. 1, 2000

Y

FIG. 2: k € Occ*(X,Y), since Y covers or touches the boundary between X, and
X, V

Suppose X = X, - X,. We define Occ*(X,Y) to be the set of occurrences of Y in
X such that ¥’ covers or touches the boundary between X, and X, (see Fig. 2):

Occ*(X,Y) = {s € Occ(X,Y) : | X¢| - Y| +1<5< | X, +1}.

For convenience, let Occ*(X,Y) = Occ(X,Y) for X = a € . Then we have the
following lemma, which is informally stated in [10]. For the sake of completeness,
we give a proof here.

LEMMA 3.1
Forany X in 7 and any Y in P, Occ*(X,Y') forms a single arithmetic progression.

PROOF. Itis enough to consider the case Occ*(X, Y) contains at least three elements,
since any set of integers with cardinality at most two forms a single arithmetic pro-
gression. Let 7, 7, and k be consecutive elements arbitrarily chosen from Occ*(X,Y)
in increasing order. We will show that j — 4 = k — 7, which implies that Occ*(X, Y)
forms a single arithmetic progression. Since Y occurs in X at positions ¢ and k and
both the occurrences cover the same boundary, we have k — i < |Y|. Let py be the
smallest period of Y, and let p; = j — % and p, = k — j. Since both p; and p, are
periods of Y, and py is the smallest period of Y, we have pg < p; and py < ps. Thus
P1+po <p1+p2=(j—1i)+(k—j) = k—1i <|Y|. By the periodicity lemma (See
[6], p. 24), the greatest common divisor d of p; and py is also a period of Y. Since
Po is the smallest period, we have d = po, which implies that p; = [- py for some
! > 1. Supposel > 2. Then j =i +1-po > i +po > . Since both ¢ and j are in
Occ*(X,Y'), and py is a period of Y, we have i + pg € Occ*(X,Y). This contradicts
the assumption that 7 and j are consecutive elements in Occ*(X,Y). Therefore [= 1,
thatis p; = po. In the same way, we can see that p» = pg. This completes the proof. ||

Strings in terms of Straight-line Programs 191

Xi

FIG. 3: ki, ko, k3 € OCC(.Xi, Y), while k; € OCC(Xg(i), Y), ky € OCC*(X,;, Y), and
ks — Xyl € Occ(Xr(3), Y).

We have the following observation (see Fig. 3):

OBSERVATION 3.2 (decomposition of text variables)
For X; = Xy(;) - Xp(4) in TandY in P,

OCC(Xi, Y) = OCC*(X,‘, Y) U OCC(Xg(,'),Y) U (OCC(X,.(i), Y) &) ng(,)')

The above observation suggests that Occ(X,,Y’) can be represented by a combina-
tion of the sets {Occ*(X;, Y)}, = Occ*(X1,Y), Occ*(X2,Y),...,0cc*(Xp,Y).
By Lemma 3.1, each Occ*(X;,Y) forms a single arithmetic progression, which can
be stored in O(1) space as a triple of the first element, the last element, and the
step of the progression. We remark that in our definition of Occ*, the occurrence
of Y in X at position | X, — |Y| + 1 can be listed both in Occ*(X,Y) and in
Occ(X¢,Y). It does not cause a big problem since we can eliminate the duplica-
tion in constant time. Thus the desired output, a compact representation of the set
Occ(T, P) = Occ(X,,Yn) is given as a combination of {Occ*(X;,Y,,)}, which
occupies O(n) space. Moreover, as we will show in Lemma 5.3 in Section 5, the
membership to the set Occ(X;,Y;) can be answered in O(depth(X;)) = O(n) time
using this representation. Therefore the computation of the set Occ(T, P) is reduced
to the computation of each set Occ*(X;,Ym), ¢ = 1,...,n. The next observation
gives us a recursive procedure to compute the set Occ*(X;, Y;) (see Fig. 4):

OBSERVATION 3.3 (decomposition of pattern variables)
For X;in T and Y; = Yy(5) - Yr(5) in P,

Occ*(X;,Y;) = Occ (X;,Y;) U Occy(X, Y;), where
OCC?(X,‘, }/]) = OCC*(Xi, Yg(])) n (OCC(Xi, YT(J)) e IYK(J) I), and
OCC?:(Xi,)/_7) = OCC(X,', Yg(j)) N (OCC*(Xi, Yr(j)) e lYZ(j) I)

192 J. of Discrete Algorithms, Vol. 1 No. 1, 2000

Xi Xi

FIG. 4. k € Occ*(X;,Y;) if and only if either k € Occ* (X, Yy(;)) and k + |Ye(s)] €
Occ(X5, Yr(5)) (eft case), or k € Oce(X;, Y¢(;)) and k + |Ye5)| € Occ*(X;, Yr()»)
(right case).

The problem to be overcome is to perform the set operations, union and intersection
efficiently, since each set possibly contains exponentially many elements.

Lemma 4.1 in the next section is a key to solving this problem. The key lemma
concerns with the periodicities in strings. It guarantees that each of Occ}(X;, Y;) and
Occy (X, Y;) forms a single arithmetic progression. This enables us to perform the
union operation of these two sets in O(1) time. At the same time, the key lemma
gives us a basis to construct an efficient procedure of computing Occj(X;,Y;) from
Occ* (X, Yy(5)), assuming the function FirstMismatch which returns the first position
of the mismatches between X; and Y,.(j). We can compute the set Occ}(X;,Y;) in the
~ same way. In Section 5, we will explain these procedures in detail.

When computing each Occ*(X;, Y;) recursively, we may often refer to the same set
Occ*(Xy,Yj) repeatedly for i < ¢ and j' < j. We take the dynamic programming
strategy. Let us consider an n x m table App where each entry Appli, 5] at row 4
and column j stores the triple representing the set Occ*(X;,Y;). We compute each
Appli, 5] in bottom-up manner, fors = 1,...,n and j = 1,...,m. As we will show
in Lemma 5.5 in Section 5, each Appli, j] is computable in O(depth(X;) - depth(Y;))
time. Since depth(X;) < n and depth(Y;) < m for any X; and Y;, we can construct
the whole table App in O(n?m?) time. The size of the whole table is O(nm), since
each triple occupies O(1) space. Hence we have the main theorem of this paper.

Strings in terms of Straight-line Prograhzs 193

THEOREM 3.4

Given two straight-line programs 7 and P, we can compute an O(n) size representa-
tion of the set Occ(T, P) of all occurrences of the pattern P in the text T', in O(n?>m?)
time using O(nm) work space. For this representation, the membership to the set
Occ(T, P) can be determined in O(n) time.

4 Keylemma

This section shows the key lemma on a property of periodic occurrences of a pattern in
a text, which our algorithm based on. Let 7" and P be strings of a text and a pattern. At
first we define the function FirstMismatch(T, P, k) which returns the first (leftmost)
position of mismatches, when we compare P with T" at position k. Formally,

FirstMismatch(T, P, k) = min{1 < i < |P| : T[k+1i —1] # P[i]},

for 1 < k < |T| — |P] + 1. The value is a witness of £ ¢ Occ(T, P). If there is no
such %, we define FirstMismatch(T, P, k) = nil.

LEMMA 4.1 (Key Lemma)

LetT = vu'z (u,z € £+,1 > 0) and P € F. The set S = Occ(T, P) N {1 +ifu] :
i =0,1,...,0} forms a single arithmetic progression, which can be computed by at
most three calls of FirstMismatch.

PROOF. Let Abetheset {1+iju] : i =0,1,...,1}n{1,2,...,|T|~—|P|+1}. Since
S = Occ(T, P) N A, we have only to check whether j € Occ(T, P) for each j € A.
If A consists of at most three elements, we can trivially check it by directly calling
FirstMismatch(T, P, j) for each j € A. We now consider the cases that A contains
more than four elements. The basic idea is as follows. Let ¢; be the first position at
which T violates the form u*. If T'is of the form u*, let t; = nil. Similarly, we define
py for P. First we try to infer t; and p; by twice calls of FirstMismaich. If both ¢,
and p; are nil, we know S = A, since both T" and P are of the form u’“_. If t, = nil
and p; # nil, we have S = ¢ since P never matches with 7. If 1 # nil and p, = nil,
we see that S = {j € A | j < t} for some ¢ since P only appears in the prefix of
T. Finally, if neither ¢; nor p; is nil, P matches with T" at most one position, and we
can verify it by the third call of FirstMismatch. The essential idea is similar to the
one introduced in [12, 13]. However, unfortunately, we cannot always identify both ¢,
and p; exactly in our situation. Nevertheless, we can compute the set S based on the
above idea.

Let A be the maximum element in A. At the beginning, we invoke the function
FirstMismatch for two positions 1 and h as follows:

miss, = FirstMismatch(T, P, 1), and
missy = FirstMismatch(T, P, h).

Note that 1 < miss,, missy < |P)|, if not nil. It is convenient that we regard nil as
|P| 4+ 1. Depending on the values of miss; and miss,, we have six cases as shown

194 J. of Discrete Algorithms, Vol. 1 No. 1, 2000

miss,
nil |4 case 3 > A
|P|
case 1
IPl-n 4 x
i
case 2
I
1
i
1 y miss
1 h | P| nil

FIG. 5: Six cases depending on miss; and misss. (Cases 2 and 5 are vacantif b > |P|.)

-
-

miss

1

T |l Tw Tu Tu Tu Tu lu Tu Tu TuTu

miss =nil |

P Wu\lil]

p

i r'+1
Nuir] Bunry P [ululu lu Tu AAlld Tu N

FIG. 6. Case 1, miss, = nil and missy = nil or |P| — h + 1 < miss,.

in Fig. 5. We will explain only the first case in detail, since the other cases would be
understood similarly.,

We use the following notation in the rest of the proof. For two integers a and b, we

denote by (g, 7) = div(a, b) that q is the quotient and r is the remainder of the division
of aby b. Thatis,a =b-g+rand0 < r < b.

case 1: (Fig. 6) miss; = nil and missy = nil or |P| — h + 1 < miss,.

Let (g,r) = div(|P|, |u|) and (¢’,7') = div(h + missy — 2, |u|). First we show
the following equations.

P = wfy[l..r] and | (4.1)
T = ufu[l.r'|w for some w € £* with ulr' + 1] #w[l] 4.2)

Strings in terms of Straight-line Programs 195

,.l I:z mz.l:ssz_
; : 1
Tlwlwlulululu N%iﬁfi
1 1 :
: miss=nil . 1
Plululululu !u, Nﬁﬁi S
]
t a
)
)

r+l1

ull..r] P [NI 11,' T Tu Tu N

FIG. 7. Case 2, miss; = nil and missy < |P|—h+ 1.

{ h miss,
: L el
T 'ru [l lulu !u Mu Ly 1w lu N
: 5 :
Plulululy lu ! RN\
ufl.r] P |

FIG. 8. Case 3, miss; # nil and missy = nil.

Let d be the quotient of the division of h — 1 by |u|. Remind that T[1 : h — 1] =
u® from the definition of h. Since miss; = FirstMismatch(T, P,1) = nil, we
know P[1 : |P]] = T[1 : |P|]. Since miss, = FirstMismatch(T, P, k), we have
T[h : h + missy — 2] = P[1 : missy — 1] and T[h + missy — 1] # P[miss,].
Therefore, the equations 4.1 and 4.2 hold when |P| < h — 1. On the other hand,
when |P| > h — 1, since missz > |P| — h+ 1 (or nil, which is treated as | P| + 1),
we have P[h : |P|] = T[h : |P|] = P[1: |P| — h + 1], that implies that b — 1 is
aperiod of P. Since T[L : h — 1] = P[1: h — 1] = u®, the equations 4.1 and 4.2
hold. ‘

We now see that S = {1 +ifu| : i € {0,..,t}}, wheret = ¢’ —qifr' > r and
t = ¢' — g — 1 otherwise. This is immediate from the equations 4.1 and 4.2. We
note that such ¢ can be directly computed by (¢,7") = div(h+missa—|P|—2, |u}).
Totally, twice calls of FirstMismatch are enough to determine the set S.

case 2: (Fig. 7) miss; = nil and miss; < |P|— h + 1. (This is impossible if b > | P)).
Let {g,7) = div(h+missy —2, |u]). We can show that P = wfu[l..rlv and
T = w9u[l..r]w for some v,w € T+ such that u[r + 1] # v[1] = w[l] and visa.
prefix of w. Thus we have S = {1}.

case 3: (Fig. 8) miss; # nil and missy = nil.
Let (q,7) = div(miss;—1, |ul), and (¢, r') = div(h+miss;—2, |u|). We can show

196 J. of Discrete Algorithms, Vol. 1 No. 1, 2000

_—————

Piulu
N u/l..r] ull.r] P [u W1Tu NF

FIG. 9. Case 4, miss; — h +1 <missy < miss;

i
r+1

{ B ipsy missy
5 i
T lulu Ty Tululu N
| 5
Plululylu lu s NESGH
: 1

ull..r] y2
F1G. 10. Case 5, missy < miss; — h + 1.

that 7 = ¢/, P = udu[l..7]v and T = u¢ u[l..r}w for some v,w € X+ such that
ul[r + 1] # v[1] and v is a prefix of w. Thus we have S = {h}.
case 4: (Fig. 9) miss; — h + 1 < missy < miss;.

Let {(g,r) = div(miss; —1, |ul) and (¢',7') = div(h+miss, —2, |u|). We can
show that P = udu[l..rJv and T = u? u[L..r"]w for some v,w € £+ such that
ulr + 1] # v[1] and u[r' + 1] # w[1]. If r = v’ and v is a prefix of w, then S is
a singleton of s = 1+1|u|— miss; +missz. Otherwise S = ¢. That is, the only
candidate for the elements in S is s. We can verify whether S = {s} or S = ¢ by
the third call of FirstMismatch(T, P, s): If FirstMismatch(T, P, s) = nil, we have
S = {s}, and otherwise, S = ¢. Only in this case, we need to call FirstMismatch
three times.

case 5: (Fig. 10) misso < miss; — h + 1. (This is impossible if A > |P|).
Let (g,7) = div(h+missy— 2, |u]), and s = miss; — h — missy + 2. Since we
can show that P = w9u[l..r]v and T = u9u[l..r]w for some v,w € X+ such that
ulr + 1] # v[1] = w[1] and v[s] # w[s], we have S = ¢.

case 6: (Fig. 11) miss, < miss,.
Let (g,r) = div(miss; —1, |u|), and (¢',r") = div(h+miss; —2, |u]). Let s =

Strings in terms of Straight-line Programs 197

missy miss,

r+l1 1

h

1L iu III, IIL |Il ill, NIIIH IlL Iu |Il, Niw
|
[

T

!
|

1
u N\ 2

\

1
lu lu lu Ty Ty NEFEEES

PILu Vo Tu tu Ty

ull..r] P

FIG. 11. Case 6, miss; < miss,.

missy — missy + 1. Since 7 = 7', P = uu[l..rv and T = u? u[l..rJw for some
v,w € X% such that u[r + 1] # v[1] and v[s| # w[s], we have S = ¢.

For any case, S forms a single arithmetic progression, and we can compute its repre-
sentation by calling FirstMismatch at most three times.

S Algorithm in detail

In this section, we explain the details on the algorithm. That is, how to compute each
entry Appli, j] of the table, which represents the set-Occ*(X;, Y;). The computation
is done in bottom-up manner.

If either X; or Y; is a symbol, we can compute the entry Appli, 7] in a trivial way.
We show how to compute Appli,j] for X; = Xy) - Xps) and Yy = Yy - Yo(h),
assuming that all preceding entries App[i’, j'] for i/ < 7 and j' < j are already
computed. We can also assume that we know all lengths |X;| and |Yj/|. As we
have explained in Section 3, the critical point is the computation of Occj(X;,Y;) =
OCC*(Xi,Ye(j)) N (OCC(Xi,Y,.(j)) &) |Yg(j)'). ,

LEMMA 5.1 ‘
Independently of the cardinality of the set Occ*(X;, Yy(;)), we can compute the set
Occy (X5, Y;) by using the function FirstMismatch(X;, Y,(j), k) at most three times.

PROOF. If the cardinality of the set Occ* (X, Y(;)) is at most two, we can compute
the set Occy(X;,Y;) easily: For each s € Occ*(X;,Y,;), check whether or not
5 € 0cc(Xi,Y,(5)) © |Yy(j)| by using FirstMismatch(X;, Y, (5),5 + |Yo(5)))-

For the case that the set Occ*(X;, Yy(;)) contains more than two positions, we apply
Lemma4.1 as follows. Let e, and emax be the minimum and the maximum elements
in Occ* (X3, Yy(5)) @ |Ye(j)|, respectively (Fig. 12).

Let d be the step of the arithmetic progression of Occ*(Xj, Yy(;)), and let | =
(émax — emin)/d. Then we can see that the string X;[emin.-|X;|] is of the form u'z,
where v is the suffix of ¥, of length d. By Lemma 4.1, we can compute the set

S = OCC(Xi[emin--|Xi|]7 Y,,.(J)) N {1, 1+ d, R ld}

198 J. of Discrete Algorithms, Vol. 1 No. 1, 2000

€min Mmiss, emmx miss,
D.¢] ! ;
— - Y !
Xl[Z‘ZZ.-:'..::-:Z-J.ZZH.-Z-.Z-?:'.-I-Zl l-l-:»?::l.ll..::i..-]
[} 1
Yl(j/\l Jl:}-;::: i 3
r(j)
1]
{ 1
E]
L H
[) EE i nis s, t T T T T ;|

FIG. 12. FirstMismaich(X;, Yy (;), €min) and FirstMismatch(X;, Yy (j), €max)-

by calling the function FirstMismatch(X;, Y,(;, k) at most three times. Since

S @ (emin — 1)
(Oce(Xilemin--1Xills Vo) N {L, 1+ dy .o, 1+ 1-d}) @ (min — 1)
= (Occ(Xilemin--1Xil}, Yr(5)) @ (emin—1)) N {€min, €min + d, - . ., €min + I-d}
= Occ(Xs, Yr()) N (Occ™ (X, Yez)) @ Yo l),

we have S @ (emin — 1 — IYZ(J')D = (Occ(X;, Yr(j))_e IYE(J')I) N Occ*(X;, Y[(j)) =
Occy(X;,Y;), which is the desired set.

We show how to realize the function FirstMismatch(X,Y, k) for variables X in T
and Y in P and an integer k. Remark the following recursive property:

OBSERVATION 5.2
For two variables X in 7 andY withY =Y, - Y, in P,

FirstMismatch(X, Yy, k) ifk & Occ(X,Yy),

FirsiMismatch(X. Y, k) = { |Y,| + FirstMismatch(X, Y, k) ifk € Occ(X, Yy).

We show a pseudo-code of the function FirstMismatch in Fig. 13, where the func-
tion Match(X,Y, k) returns true if and only if £ € Occ(X,Y). The correctness of
Match(X,Y, k) is directly derived from Observation 3.2.

LEMMA 5.3
The function Match(X;, Y;, k) answers in O(depth(X;)) time.

PROOF. The membership query of the form k € Occ*(Xy,Y;) can be answered in
O(1) time by simple calculations for any ¢’ < 7 and j' < j, since it is already com-
puted and stored in the entry Appl[i’, j']. Moreover, the number of recursive calls of
Match(X;,Y;, k) is at most depth(X;). Thus the lemma holds. |

LEMMA 5.4
The function FirstMismaich(X;,Y;, k) answers in O(depth(X;) - depth(Y;)) time.

Strings in terms of Straight-line Programs 199

function FirstMismatch(X,Y, k): integer;
/* returns the minimum s such that X[k + s — 1] # Y'[s] if exists,
and nil otherwise */
begin
if |Y| = 1 then
if X[k] = Y then return 1 else return nil
else /*assumeY =Y, Y, ¥
if Match(X,Yy, k) then
return |Y;| + FirstMismatch(X,Y,, k + |Yy|)
else
return FirstMismatch(X, Yy, k)
end

function Match(X,Y, k): boolean;
/% returns true if X[k.k+ Y| -1 =Y. ¥

begin
if (k < 0) or (|X| < k + |Y'|) then return false;
if | X| = 1 then

if Y = X then return true else return false
else /*assume X = Xg- X, ¥
if k£ + |Y| < | X,| then return Match(X,,Y, k)
else if | X;| < k then return Match(X,,Y, k — | X,|)
else
if £ € Occ*(X,Y) then return true
else return false
end

F1G. 13. Pseudo-codes of the functions FirstMismatch and Match.

PROOF. The number of recursive calls of the function FirstMismatch(X;,Y;,k) is
at most depth(Y;). At each call, the function Match(X;, Y;, k) is called once. By
Lemma 5.3, it answers in O(depth(X;)) time. Thus the lemma holds. |

By Lemma 5.1 and Lemma 5.4, we have the following result.

LEMMA 5.5
Each entry App[z, 7] is computable in O(depth(X;) - depth(Y;)) time.

6 Performance Comparison

First we compare the performance of our algorithm with the previous ones [12, 13],
from the theoretical view points. Table 1 shows time complexity and space complex-

ity.

200 J. of Discrete Algorithms, Volv. 1 No. 1, 2600

TABLE 1. Summary

algorithm time space
KRS’95 [12] O((n+m)") not estimated
KRS’97 [13] | O((n+m)*log (n+m)) | O((n+m)3)
Ours O(n*m?) O(nm)

We briefly state the improvement of our algorithm compared to the one in [13].
The latter algorithm consists of two phases: At the first phase, it computes two sets:
Pref(X;,Y;) of the lengths of prefixes of Y; that are suffixes of X, and Suff{X;, Y;) of
the lengths of suffixes of Y; that are prefixes of X;. At the second phases, it computes
the set Occ(X;,Y;) from Pref(X;, Y;) and Suff{.X;, Y;) by solving certain linear Dio-
phantine equations with using Euclid’s algorithm. Each Suff(X;, Y;) and Pref(X;, Y;)
can be stored in O(depth(X;) + depth(Y;)) space, although Occ(X;,Y;) occupies
only O(1) space. On the other hand, our algorithm directly computes Occ(X;, Y;).
The property of periodic occurrences of a pattern in a text shown in the key lemma
enabled the direct computation.

Our algorithm uses the first position of mismatches only between text and pat-
tern, whereas the previous algorithm additionally requires text-to-text and pattern-to-
pattern comparisons. This is the reason why the previous algorithm makes (n 4+ m) x
(n+m) table with O(n +m) size entries, while our algorithm needs only n x m table
with O(1) size entries. This is also the contribution of the key lemma.

In order to compare our algorithm with the algorithm in [13] from the practical view
point, we implemented these two algorithms on a Sun SPARCstation 20. In this ex-
periment, we choose patterns and texts are two series of Fibonacci words [6] defined
in Table 2, because of the following two reasons. First, |T'| and |P| are exponentially
long with respect to n = ||7|| and m = ||P||, since they are the n-th and m-th Fi-
bonacci numbers, respectively. Thus any string matching algorithm which explicitly
expands text or pattern inevitably requires exponential time and space. The second
reason is due to the difference of pattern detection ability for multiple occurrence.
Since our algorithm finds all occurrences of a pattern in a text, the running time natu-
rally depends on the number of occurrences, while the previous algorithm finds only
one occurrences. Therefore it is hard to make a fair judgment if a pattern occurs more
than once in the text. Fortunately, we can see that Y,,; occurs in X, exactly once for
any n, so that the performance comparison can be made on the same condition.

The experimental results on the running time and work space are shown in Fig. 14
and Fig. 15 respectively, where n varies from 21 to 46 and m is set to n — 1. We can
see that both the running time and work space curves of our algorithm rise much more
slowly than those of the previous algorithm.

Let us notice that these two algorithms are much more efficient than any algorithm
expanding a text or a pattern. Since the lengths | X46| and |Yy5| are approximately
1.8 x 10° and 1.1 x 10°, respectively, it is impractical to expand explicitly and keep
them on a memory. Moreover, we verified that it takes 152 seconds to execute only
character-to-character comparison 1.8 x 10° times on the same machine. That implies

Strings in terms of Straight-line Programs 201

run time (second)
5 T T T T

Our algorithm —
451 Previous algorithm in [13]---.

1] 1 1

21 26 31 36 41 46 N

FI1G. 14. The comparison of run time

that, once we expand the text explicitly, any string matching algorithm shall consume
at least 152 seconds.

On the contrary, even the previous algorithm runs in 4.6 seconds, and our algorithm
only 0.1 seconds for n = 46. Concerning with work space, the previous algorithm
requires 351 kilobytes, while our algorithm uses only 8.6 kilobytes. Therefore we can
conclude that these algorithms are efficient enough in practice if the expanded string
is long, and our algorithm drastically reduces both running time and work space.

7 Conclusion

In this paper we showed a fast pattern matching algorithm, where both text and pattern
are described in terms of straight-line programs. We verified that our algorithm is more

202 J. of Discrete Algorithms, Vol. 1 No. 1, 2000

TABLE 2. Text and Pattern

T P
Xl:b ‘Y1:b
Xy =a Y, =a
X3 =Xy - X, Ya=Y1-1,

X4=X3'X2 Y4=Yz.‘Y3

. ‘ Ym =rm-_29- Y, -1
Xn=Xn_1"Xn2 (nm> 3)

work space (KB)

350

300

250

2001

150

100 I

50

Our algorithm —
Previous algorithm in [13]---.

4

26 31 36 41

F1G. 15. The comparison of work space

46

Strings in terms of Straight-line Programs 203

efficient than the previous algorithm in [13] both from theoretical and practical points
of view.

Recently, Kida et al. [14] introduced a Collage System as a general framework
which is suitable to capture an essence of compressed pattern matching according
to various dictionary based compressions. They gave a compressed pattern matching
algorithm where the text is compressed but the pattern is given explicitly. The frame-
work includes such compression methods as Lempel-Ziv family (LZ77, LZSS, 1.Z78,
LZW), byte-pair encoding, and the static dictionary based method. Since the collage -
systems contain straight-line programs as a special subclass, their general results gave
us a pattern matching algorithm which finds a explicitly given pattern in the text given
as a straight-line program. The running time is O(n + M?) , where n is the size of
straight-line program for the text and M is the length of the pattern given explicitly.
To generalize our results in this paper for collage systems will be interesting future
works.

Acknowledgements

We would like to thank the referees for their helpful comments and suggestions.

References

[1] A. Amir and G. Benson. Efficient two-dimensional compressed matching. In Proc. Data Compression
Conference, pages 279-288, 1992.

[2] A. Amir and G. Benson. Two-dimensional periodicity and its application. In Proc. 3rd Symposium on
Discrete Algorithms, pages 440452, 1992.

(3] A. Amir, G. Benson, and M. Farach. Optimal two-dimensional compressed matching. In Proc. 21st -
International Colloquium on Automata, Languages and Programming, 1994.

[4] A. Amir, G. M. Landau, and U. Vishkin. Efficient pattern matching with scaling. Journal of Algo-
rithms, 13(1):2-32, 1992.

[5] Amihood Amir, Gary Benson, and Martin Farach. Let sleeping files lie: Pattern matching in Z-
compressed files. Journal of Computer and System Sciences, 52:299-307, 1996,

[6] M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, New York, 1994.

[7} T. Eilam-Tsoreff and U. Vishkin. Matching patterns in a string subject to multilinear transformations.
In Proc. International Workshop on Sequences, Combinatorics, Compression, Security and Transmis-
sion, 1988. _

[8] M. Farach and M. Thorup. String-matching in Lempel-Ziv compressed strings. In 27th ACM STOC,
pages 703-713, 1995.

[9] P. Ferragina and R. Grossi. The string B-Tree: a new data structure for string search in external
memory and its applications. Journal of the ACM, 46(2):236-280, 1999. .

[10] Leszek Ggsieniec, Marek Karpinski, Wojciech Plandowski, and Wojciech Rytter. Efficient algorithms
for Lempel-Ziv encoding. In Proc. 4th Scandinavian Workshop on Algorithm Theory, volume 1097 of
Lecture Notes in Computer Science, pages 392—403. Springer-Verlag, 1996.

[11]} Leszek Gasieniec, Marek Karpinski, Wojciech Plandowski, and Wojciech Rytter. Randomized effi-
cient algorithms for compressed strings: the finger-print approach. In Proc. Combinatorial Pattern
Matching, volume 1075 of Lecture Notes in Computer Science, pages 39-49. Springer-Verlag, 1996.

[12] M. Karpinski, W. Rytter, and A. Shinchara. Pattern-matching for strings with short descriptions. In
Proc. Combinatorial Pattern Matching, volume 637 of Lecture Notes in Computer Science, pages
205-214. Springer-Verlag, 1995.

204 J. of Discrete Algorithms, Vol. 1 No. 1, 2000

{13} M. Karpinski, W. Rytter, and A. Shinohara. An efficient pattern-matching algorithm for strings with
short descriptions. Nordic Journal of Computing, 4(2):172-186, 1997.

[14] T. Kida, Y. Shibata, M. Takeda, A.Shinohara, and S. Arikawa. A unifying framework for compressed
pattern matching. In Proc. 6th International Symposium on String Processing and Information Re-
trieval, pages 89-96, 1999.

[15] U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches. Siam Journal on
Computing, 22(5):935-948, 1993. .

{16} Masamichi Miyazaki, Ayumi Shinohara, and Masayuki Takeda. An improved pattern matching algo-
rithm for strings in terms of straight-line programs. In Proc. 8th Ann. Symp. on Combinatorial Pattern
Matching, number 1264 in Lecture Notes in Computer Science, pages 1-11. Springer-Verlag, 1997.

[17] W. Rytter. Algorithms on compressed strings and arrays. In Proc. 26th Annual Conference on Cur-
rent Trends in Theory and Practice of Informatics (SOFSEM99), volume 1725 of Lecture Notes in
Computer Science. Springer-Verlag, 1999.

Received November 15, 1999,

