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ABSTRACT: In this paper we address the problem of searching in LZW compressed texts directly.
We present an algorithm that finds all occurrences of multiple patterns in comparison with
the algorithm proposed by Amir et al. [4] that finds the occurrence of a single pattern. Our
algorithm runs in O(n 4+ m? +r) time using O(n + m?) space, where n is the length of a given
LZW compressed text, m is the total length of a given patterns, and r is the number of pattern
occurrences. Technically, it simulates the move of the Aho-Corasick pattern matching machine
on an LZW compressed text. We also present another algorithm for a single pattern that is based
on bit-parallelism. It is indeed fast when the pattern length is not greater than the word length,
which is 32 or 64 in current architecture. After an O(m) time and space preprocessing of a
pattern, it scans an LZW compressed text in O([m/w](n+r)) time and reports all occurrences
of the pattern, where w is the word length. We implemented both algorithms and verified that
they are about twice faster than a decompression followed by a search with agrep.

Keywords: bit-parallelism, compressed string matching, combinatorial pattern matching, LZ family com-
pression, mutiple pattern,

1 Introduction

Recently, the compressed pattern matching problem has attracted special concern
where the goal is to find a pattern in a compressed text without decompressing it.
The problem was first defined by Amir and Benson [3], and several researchers have
tackled this problem for various compression methods (see an excellent survey paper
[23D).

Amir, Benson, and Farach[4] addressed the LZW compression[27] and presented
a series of algorithms having various time and space complexities (O(n + m?) time
and space, O(nlogm + m) time and O(n + m) space, and so on, where n is the
length of compressed text and m is the length of pattern). Among them, we focus on
the O(n + m?2) time and space algorithm as it runs in linear time proportional to the
compressed text length. The algorithm can be viewed as two functions that simulate
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the move of the KMP automaton [19]. This view enables us to simplify the algorithm
and then extend it to the multiple pattern matching problem.

In this paper, we give an algorithm for finding multiple patterns in an LZW com-
pressed text. It simulates the move of the Aho-Corasick multipattern matching ma-
chine [2]. The algorithm runs in O(n + m? + r) time using O(n 4+ m?) space, where
n is the length of the compressed text, m is the total length of the patterns, and r is
the number of occurrences of the patterns. The O(r) time is devoted only to reporting
the positions of the pattern occurrences. It is worth mentioning that this is the first
compressed pattern matching algorithm that deals with multiple patterns.

We also present another algorithm that uses bit-parallelism. It is indeed fast when
the pattern length is not greater than the word length in bits, which is 32 or 64 in
current architecture,

The experimental results show that the proposed algorithms run faster than a de-
compression followed by an ordinary search. Especially, they run even about twice
faster than the combination of gunzip and the exact match routine of the software
package agrep [28], known as the fastest pattern matching tool.

2 Related works

In this paper, we consider the compressed pattern matching problem for the LZW
compression. As well-known, the LZW compression is a variation of the Ziv-Lempel
family (LZ77[30], LZ78[31], LZW, and so on). Amir, Benson, and Farach[4] pre-
sented algorithms for searching an LZW compressed text for a single pattern. We
presented in [18] an extension of [4] to multiple pattern searching, together with the
first experimental results in this area.

Moreover, we introduced in [16] a unifying framework, named collage system,
which abstracts various dictionary-based methods. We showed a general pattern match-
ing algorithm for text string described in terms of collage system. The algorithm can
be applied to the problem for any compression methods, such as the Ziv-Lempel fam-
ily, the RE-PAIR [20], and static dictionary-based methods. Of course, it cannot be
applied to non-dictionary based methods, such as the one using anti-dictionaries [8]
and the Burrows Wheeler Transform [7]. However, Shibata, et al. [26]presented an
algorithm based on a similar technique for the compression using anti-dictionaries.

As other works on the Ziv-Lempel family, Farach and Thorup[11] and Gasieniec,
et al. [13] addressed the LZ77 compression. Bit-parallel realization of [4] was inde-
pendently proposed in [17, 22] and proved to be fast in practice for a short pattern.

Recently, new practical results appeared. Miyazaki, ef al. [21] addressed the Huff-
man encoding. Moura, et al. [9, 10] addressed a new compression scheme that uses a
word-based Huffman encoding with a byte-oriented code. Shibata, et al. [24, 25] ad-
dressed the byte-pair encoding [12], which is a simple version of the RE-PAIR. Their
algorithms run even faster than pattern matching in uncompressed texts.

This paper is based on [18] and [17].
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Original text abia b abbabcababcab ab:

.................................................................

Compressed text 1,2, 4, 4, 5, 2,3, 6, 9, 11

FIG. 1. Dictionary trie.

3 Preliminaries

In the following subsections we briefly sketch the LZW compression, and review the
Aho-Corasick pattern matching machine and the generalized suffix trie[15]. These
data structure are used in our algorithm. First, we introduce some notation. Let X
be a finite set of characters, called an alphabet, and %* be the set of strings over .
We denote the length of u € ¥* by |u|. We call the string whose length is 0 the null
string, and denote it by €. Let X T = X* — {¢}. We denote by u[i] the ith character of
a string u, and by ulfi : j] the string u[i]ufi + 1]...u[j], 1 <4 < j < |u|l. When j < i,
let ufz : j] = &. When a string u can be written as u = zyz, the strings z,y, and 2
are called a prefix, a factor, and a suffix of u, respectively. Let Prefix(u) be the set of
prefixes of a string u, and let Prefix(S) = |, g Prefix(u) for a set S of strings. We
also define the sets Suffix and Factor in a similar way. We denote the cardinality of a
set V by |V].

3.1 LZW compression

The LZW compression [27] is a very popular compression method. It is adopted as the
compress command of UNIX, for instance. It parses a text into phrases and replaces
them with pointers to a dictionary. The dictionary initially consists of the characters
in ¥. The compression procedure repeatedly finds the longest match at the current
position and updates the dictionary by adding the concatenation of the match and the
next character. The dictionary is implemented as a trie structure, in which each node
represents a phrase in it. The matches are encoded as integers associated with the
corresponding nodes of the dictionary trie. The update of the dictionary is executed in
O(1) time by creating a new node labeled by the next character as a child of the node
corresponding to the current match.

FIG. 1 shows the dictionary trie for the text abababbabcababcabab, assuming the al-
phabet ¥ = {a, b, c}. Hereafter, we identify the string u with the integer representing
it, if no confusion occurs.

The dictionary trie is removed after the compression is completed since it can be
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reconstructed from the compressed text. In the decompression, the original text is
obtained with the aid of the reconstructed dictionary trie. This decompression takes
linear time proportional to the length of the original text. However, if the original
text is not required, the dictionary trie can be built only in O(n) time, where n is the
length of the compressed text. The algorithm for constructing the dictionary trie from
an LZW compressed text is summarized in FIG. 2.

Input. An LZW compressed text uius . . . Un,
Output. Dictionary D represented in the form of a trie.
Method. '
begin

D:=%;

fori:=1ton — 1 do begin
if Ui4-1 < |D| then
let a be the first character of w; 1
else
let a be the first character of u;;
D :=DuU{u;a}
end
end.

FIG. 2. Reconstruction of dictionary trie.

3.2 Aho-Corasick pattern matching machine

The Aho-Corasick pattern matching machine [2] (AC machine for short) is a finite
state machine which simultaneously recognizes all occurrences of multiple patterns in
a single pass through a text.

The AC machine for a finite set I C X1 of patterns is specified by the three
functions:

goto function g : Q x X — Q U {fail},
failure function f : ) — @), and
output function 0 : Q — 21,

where ¥ is an alphabet, () is the set of states, and fail is a special value notin @). FIG. 3
shows the AC machine for the patterns I1 = {aba, ababb, abca, bb} with ¥ = {a, b, c}.

Define the state transition function d : ¢} x ¥ — @) by

_ [ 9lga)  ifglg,a) #Jail
5(q,a)~{ 9(f(q),a) Ltgegw(ilse, ’
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\

’
C@w b, a»@ b7, b»@ababbbb
7

~—

FI1G. 3. Aho-Corasick machine for II = {aba, ababb, abca, bb}.

The solid and the broken arrows represent the goto and the failure functions, respec-
tively. The underlined strings adjacent to the states mean the outputs from them.

and then extend ¢ into the function from ) x ¥* to ) by

6(g,e) =q and d(q,ua) = 38(8(q,u),a),

where g € Q,u € ¥*,and a € X.

It should be noted that the states of the AC machine have a one-to-one correspon-
dence with the prefixes of the patterns. For example, the initial state O corresponds to
the empty string ¢ and the state 4 corresponds to the string abab in FIG. 3. Hereafter,
we identify a pattern prefix with the state representing it. Thus we can identify ) with
Prefix(1I). :

The following lemma characterizes the state transition function 4 of the AC ma-
chine. This is a modified version of Lemma 3 in [2].

LEMMA 3.1
Let g € Q = Prefix(I1), u € ¥*, and let p = 6(g, u). Then, the string p is the longest
string in the set Suffix(qu) N Q.

3.3 Generalized suffix trie

A generalized suffix trie [15] for a set II of strings (GST, for short) is a trie, which
represents the set of suffixes of the strings in IL. It is an extension of the suffix trie for
a single string. FIG. 4 shows the GST for I = {aba, ababb, abca, bb}.

Note that each node of the GST for II corresponds to a string in Factor(Il). A node
of GST for II is said to be explicit if and only if either it represents a suffix of some
pattern in II or its out-degree is more than one. The nodes that are not explicit are
said to be implicit. Note that the number of explicit nodes in the GST for II is O(m),
whereas the number of all nodes is O(m?), where m is the total length of the strings
in II. The construction of the GST for II takes O(m?) time and space.
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FIG. 4. Generalized Suffix Trie for II = {aba, ababb, abca, bb}.

The explicit nodes are shaded, and the nodes which represent suffixes of patterns in IT
are indicated by the thick circles.

4 Basicidea

The basic idea of our algorithm is to build a pattern matching machine that runs on an
LZW compressed text and simulates the behavior of the AC machine on the original
text. That is, for every integer u of the compressed text such machine makes one
state transition that corresponds to the consecutive state transitions of the AC machine
caused by the string u. Let Jump be the new state transition function. Namely, the
function Jump is the limitation of § : @ x X* — @ to the domain Q x D, where D
is the set of phrases in the dictionary of the LZW compression. By using the function
Jump, we can simulate the state transitions of the AC machine. However, the AC
machine being simulated may pass through states with outputs in one step of the new
machine. To avoid missing such outputs the new machine should be a Mealy type
sequential machine (Section 2.7 of [14]), with an output function from @ x D to
2{1.2, }xI1 defined as

Output(q,u) = {(i,7) | 1 <4 < |u| and 7 € o(6(g,u[1..i]))}.

That is, Output(q,u) stores all outputs emitted by the AC machine during the state
transitions from the state ¢ reading the string u. Though the above idea is similar to
that of Amir et al. [4], our definition of Output differs from their definition in that it is
designed to report all occurrences of multiple patterns.

Note that the domains of the functions Jump and Output are both Q x D, and
the set D grows incrementally when reading the compressed text. Therefore the data
structures required for Jump and Output fall into two classes according to whether they
depend only on the patterns but not on D. Thus the algorithm consists of two parts:
preprocessing the patterns and scanning the compressed text. The functions Jump
and Qutput are partially constructed in the preprocessing phase, and then updated
incrementally in the text scanning phase. The proposed algorithm can be summarized
as in FIG. 5. FIG. 6 shows the move of the new machine on the compressed text of
FIG. 1.

As shown later, the function Jump can be built to return its value in O(1) time, and
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Input. Set of patterns II and LZW compressed text ujusg . . . Up,.
Output. Al positions of the original text at which pattern ends.
Method.
begin

/* Preprocessing phase */

Construct from II the AC machine and the GST,;

Initialize the dictionary trie and the functions Jump and Output,

/* Text scanning phase */
? = (; state .= 0;
for i := 1 to n do begin
for each (d, 7) € Output(state,u;) do
report an occurrence of pattern 7 that ends at position £ + d;
state := Jump(state,u;);

=40+ qul,
Update the dictionary trie and the functions Jump and Output
end
end.
FIG. 5. Pattern matching algorithm.
original text: a b ab ab ba b c aba bé abab
compressed text: 1 2 4 4 5 2 3 6 9 11

state: 0 — 1 — 2 —4 —4 — 1 —2 — 6 —3 — 6 — 4

output: (1,aba) (1,aba) (1,ababb) (1, abca) (1, abca)
(1, bb) {3, aba) {3, aba)

F1G. 6. Move of the new machine.

the procedure for enumerating the elements of Qutput can be built to enumerate them
in linear time proportional to the number of the elements, using O(n + m?) time and
space, where n is the length of the compressed text and m is the total length of the
patterns. Thus, the algorithm of FIG. 5 runs in O(n +m? + r) time using O(n + m?)
space, where r is the number of occurrences of patterns.

5 Algorithm in detail

In this section, we discuss how to compute Jump and Qutput. Our goal is to prove the
following two theorems.

THEOREM 5.1
The state transition function Jump defined on ) X D can be built to return its value in
O(1) time, using O(|D| + m?) time and space.
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TABLE 1. Table N; for II = {aba, ababb, abca, bb}.
The blanks indicate nil.

state a b c ab ba bb bc ca aba abb abc bab bca abab abca babb ababb
0 0 0 0 0 0 0 0 0 0
1 0 1 O 1 0 1 0 0 1 1 0 0 1 0
2 2 8 2 2 0 2 0 2 0 0 0 0
3 0 3 o 1 3 1 0 0 1 1 0 0 1 0
4 2 4 2 2 0 2 0 2 0 0 0 0
5 0 8 0 0 0 0 0 0 0
6 6 0 0 0 0 0 0 0 0
7 0 1 0 1 0 1 0 0 1 1 0 0 1 0
8 0 8 0 0 0 0 0 0 0
9 0 8 0 0 0 0 0 0 0

THEOREM 5.2
The procedure that takes as input ¢ € @ and u € D and enumerates the set Output,

can be built in O(| D| + m?) time and space, so that it runs in linear time proportional
to |Output(q, u)|.

5.1 Computation of Jump

DEFINITION 5.3
Letw € X7 be a pattern, and let u € ©t. Define

Occ(m,u) = {q € Prefix(r) | qu € Prefix(r)}.

Also define, for a set IT C X% of patterns,

Occ(Il,u) = U Occ(m,u).
well

For example, Occ(Il,a) = {e,ab,abc}, Occ(Il, badb) = {a}, and Occ(Il,aa) = §
for Il = {aba, ababb, abca, bb}. Recall that Q = Prefix(Il) (see Section 3.2). We
can regard each element of Occ(Il, u) as a state of the AC machine. For example,
Occ(Il,a) = {0,2,6}, Occ(Il, bab) = {1}, and Occ(Il, aa) = 0 in the AC machine
of F1G. 3 for Il = {aba, ababb, abca, bb}.

DEFINITION 5.4

For any (g,u) € Q x Factor(Il), let Ny(g,u) be the longest string in Suffix(q) N
Occ(I1, w). If no such string, let Ny (q, v) = nil.

TABLE 1 shows the table N; for the AC machine of FIG. 3 where II = {aba, ababb,
abca, bb}. Note that the entries of N; are stored as integers that represent states of the
AC machine. For example, N1 (4, ab) = 2 since Suffix(4) N Occ(Il, ab) = {0,2} and.
the string ab represented by state 2 is longer than € represented by state 0. The next
lemma, which can be proved by using Lemma 3.1, is an extension of the idea in [4] to
the multiple pattern problem.
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LEMMA 5.5
Let (g,u) € @ x D. Then,

| Ni(q,u)-u ifu € Factor(Il) and Ny (g, u) # nil,
Jump(g,u) = { d(e,u) otherwise.

PROOF. Let p = Jump(q,u) = 6(q,u). By Lemma 3.1, the string p is the longest
string in the set :

Suffix(qu) N Q.
From the definition of Ny, the string V1 (g, u) is the longest string in the set
Suffix(q) N Occ(I1, u).

(Recall that N1 (g, u) = n4l if this is empty.) It is not difficult to show that, between
the above two sets, the following relation holds: for any p' € £*,

pu € Suffix(qu)NQ < P € Suffix(q) N Occ(Il, u).

Therefore, when Suffix(q) N Occ(Il, u) # 0, it holds that Jump(q,u) = Ni(q,u) - u.
On the other hand, when Suffix(¢)NOcc(I1,u) = B, we can show that Suffix(qu)NQ =
Suffix(u) N Q. Hence the string Jump(q, u) is the longest string in Suffix(e - u) N Q,
and this implies Jump(q, u) = d(¢, u). |

By using the GST for II, we can determine for any u € D whether u € Factor(II).
Namely, if there exists a node in the GST that represents u, then u € Factor(Il). In
order to build the function Jump, we will construct two tables that store respectively
the values of '

e d(g,u) (u€ D), and
e Ni(q,u) = Ni(q,u) v (g€ Q,u€ D).

LEMMA 5.6

The table that stores the values of §(e, u) for the strings u € D can be computed in
O(|D|) time using O(|D|) space.

PROOF. The values of §(¢,u) for u € D can be computed incrementally when con-
structing the dictionary trie from the compressed text, and stored in nodes of the dic-
tionary trie. The computation is as follows. Suppose that the values of (¢, v) are
already computed for all existing nodes v of the dictionary trie. Suppose also that we
have created a new node, and added a new edge labeled a from the node representing
u to the new node that represents the string ua. Then, the value of 6(g, ua) is obtained
as 6(0(g,u), a) by performing one state transition of the AC machine. This requires
only O(1) time. Since it obviously requires O(1) space to store each value, the total
complexities are O(|D|) time and space. |

On the other hand, the values of Nj can be stored in a table whose size is |Q] x
|Factor(IT)| = O(m?). The table size can be reduced to O(m?) as shown below.
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DEFINITION 5.7
For a node u in GST for II, let @ denote the nearest descendant of v that is explicit.
Note that if v is explicit, then T = w.

The table that stores the value @ for every u can be built using O(m?) time and space
by traversing over the GST. The next lemma follows directly from Definition 5.3 and
Definition 5.7.

LEMMA 5.8

Let u be a node in GST for II. Then, for any = € II,

Occ(m,u) = Oce(w,n).

From Definition 5.4 and Lemma 5.8, we can prove the next lemma.

LEMMA 5.9
Let u.be a node in GST for IT. Then, N;(q,u) = N1(q,%) for any q € Q.

For example, we see in TABLE 1 that V; (q, abc) Ni(g,abca) and Ny (g, bad) =
Ni(q, babb) for any ¢ € Q.

The above lemma implies that the size of table N; can be reduced to O(m?2).
However, we need the values of N; (not of N3). In the single pattern case, we can
number each state 0,1, ...,m as the length of pattern prefix it represents and holds,
Ni(g,u) = Ni(q,u) + |u| Ni(g,u) + |ul, as pointed out in [4]. Thus, it suffices to
store the entries of Ny only for the domain @ x {u | u € Factor(Il)}. In the multiple
pattern case, however, we need some additional effort. Recall that each entry of Ny
corresponds to a state of the AC machine, that is, a node of the trie for II. We see
that in the trie, the node N; (¢, ) is an ancestor of the node N; (g,u), and the distance
between the two nodes is [u| — |u|, where the distance is the length of the path from
the ancestor to the descendant. Denote by Ancestor(q, k) the ancestor of the node ¢
with distance k£ > 0. Then,

Na(q,u) = Ancestor(Ni (q,8), 7] — [ul).

Although the table that stores the values Ancestor(g, k) can be built using O(m?)
time and space, we need not to built it. We will give here a more efficient method.
From Lemma 5.8, for any g € Occ(w, u) the path from the node qu to the node qu in
the AC machine is non-branching and does not contain a node that corresponds to the
end of a pattern. Hence, the nodes on such path have consecutive numbers if the trie is
constructed according to the standard way shown in FI1G. 7. This observation enables
us to simplify the computation, namely,

Ancestor(N1(q, ), @] — [u]) = Ni(g, @) — (|| — [u])-
For example for ¢ = 5 and u = abc, Ny (5, abc) = Ancestor(N; (5, abea), |abea| —
labe|) = N1(5, abea) — (|abea| — |abe|) =7 — 1 = 6.

LEMMA 5.10
Let (g,u) € @ x D. Then,

_ [ Ni(g,m) - ([5] — |u|) ifue Factor(Il) and N1 (g, @) # nil,
Jump(g,u) = { 8(e,u) otherwise.
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Input. Set of patterns IT C X*.
Output. Trie representing II.
Method. ’
begin

newstate == Q;

for each 7 € II do call enter(r)
end.

procedure enter(w[1 : £]);
begin
state := 0;
for i := 1 to £ do begin
if g(state, 7[i]) = fail then
begin
newstate := newstate + 1;
g(state, 7[i]) := newstate
end;
state := g(state, 7[i])
end :
end;

FiG. 7. Coustruction of trie of AC machine.

LEMMA 5.11

The table that stores the values of Ny can be computed in O(m?) time using O(m?)
space.

PROOF. We give a sketch of the algorithm for computing the table that stores the
values of Nq. The algorithm has two stages. In the first stage, for every pair (g, u)
such that Ny (q,u) = ¢, let Ny (g,u) := qu. A naive computation requires O(m?)
time. Using the compacted GST in which the implicit nodes are eliminated, we can
perform the computation in O(m?) time and space. In the second stage, we fill the
entries for the other pairs (g, ) using the failure function f of the AC machine. For
each node u in the compacted GST, perform the following action. For each node ¢
in the trie of the AC machine in the breadth first order, if Ny (g, u) is not filled, then
let N1 (g, u) := N1(f(q),u). The computation of this stage requires O(m?) time and
space. Thus, the total time and space complexities of the algorithm are O(m?). |

We can prove Theorem 5.1 by using Lemmas 5.6, 5.10, and 5.11.

5.2 Computation of Output

It follows from the definition of Output that

Output(q,u) = {{i,7) | 1 <i < |u|,n € I, and 7 is a suffix of string ¢ - u[1..7] }.
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DEFINITION 5.12
Let Ips(u) be the longest prefix v of a string u such that v € Suffix(II).

We partition the set Output(g, u) into two sets according to the following lemma.

LEMMA 5.13
Forany ¢ € Q) and any u € D, Output(q,v) = Outpur(g, Ips(u)) U Qutput(e, u).

PROOF. It is obvious that Qutput(q,u) 2 Output(q,lps(u)) U Output(e,u). As-
sume for a contradiction that there exists (4, 7) € Output(q,u) \ Output(q, Ips(u)) U
Output(e,u). Since (j,7) € Outpur(q,u) \ Output(g, Ips(v)), |Ips(u)| < j < [u
and 7 is a suffix of string ¢ - u[1..5]. If || < j, then u[j — || + 1..5] = =, which
contradicts (j, 7) ¢ Output(e,u). So we have j < |r|. Hence u[l..5] is a prefix of u
that is also a suffix of 7. This contradicts the definition of Ips(u).

We will build three tables that store respectively the values of

e Ips(u) (u€ D),
® Output(e,u) (u € D), and
® Output(q,u) (g € Q,u € Suffix(II)).

LEMMA 5.14
The table storing the values of Ips(u) for u € D can be computed in O(|D|) time and
space. :

PROOF. The values of Ips(u) for u € D can be computed incrementally when con-
structing the dictionary trie from the compressed text and stored in the nodes of dictio-
nary trie. The computation is as follows. Suppose that the values of Ips(v) are already
computed for all existing nodes v of the dictionary trie. Suppose also that we have
created a new node, and added a new edge labeled a from the node representing u to
the new node that represents the string ua. Then, by traversing one edge of GST, the
value of Ips(ua) is obtained as

| ua if ua € Suffix(II),
ps(ua) = { Ips(u) otherwise.
This requires only O(1) time. The proof is complete. | |

LEMMA 5.15

The procedure that takes as input u € D and enumerates the set Output(e, u), can be
built in O(| D) time using O(|D|) space, so that it runs in linear time proportional to
|Output(e, u)|. '

PROOF. The set Ouiput(z, u) can be represented as Output(e, u) = Output(e, prev(w))
U{lul | 6(¢,u) € TI}, where prev(u) is the longest proper prefix of a string u whose
suffix is in II. The function prev(u) can be computed incrementally when constructing
the dictionary trie and stored in its nodes, in a similar way to Ips(u). Thus, we need to
store for any u € D the value prev(u) and the information about whether 6 (e, u) € II.
The enumeration procedure is summarized in FIG. 8. The proof is now complete.
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procedure enumQOuiput, (offset, u)
begin
v i=u;
while |Ips(u)| < |v| do begin
q = 6(e,v);
for each 7 € o(q) do
report an occurrence of pattern 7 that ends at position offset + |v|;
v := prev(v)
end
end;

FIG. 8. Enumeration of Qutput(e,u).

TABLE 2. Table Next for Il = {aba, ababb, abca, bb}.
The asterisks indicate the pairs (p, v) with o{p) # 0.

state aba ba a ababb babb _ abb bb b abca beca ca
0 (1ba) (8,a) (l,e) (l,babb) (8,abb) (L,bb) (8b) (8e) (lbca) (8ca) (02)
1 (1ba) (2,2 (l,e) (l,babb) (2,abb) (I,bb) (2,b) (2) (Lbca) (2,ca) (0,3)
2 (3,ba)* (9,2)* (3,6)* (3,babb)* (9,abb)y* (3,bb)* (9,b)* (96)* (3,bca)" (S,ca)* (6,2)
3 (1,ba) (4,2) (l,e) (l,babb) (4,abb) (L,bb) (4,b) (4e) (Lbca) (4,ca) (0,2
4 (3ba)* (5,a* (3.6)* (3,babb)* (5,abb)* (3,bb)* (5,b)* (5,6)* (3bca)" (S,ca)* (6,3)
5 (1,ba) (9a)* (l,) (Lbabb) (9,abb)* (1,bb) (9,b)* (9.e)* (Lbcay (9ca)* (0,a)
6 (7ba)* (8,a) (7.6)* (7,babb)* (8,abb) (7,bb)* (8b) (8,e) (7bca)* (8,ca) (0,a)
7 (1ba) (2,2 (l,) (l,babb) (2,abb) (1,bb) (2,b) (2,6) (l,bca) (2ca) (0,3)
8 (1,ba) (9,@* (L) (l,babb) (9.,abb)* (1,bb) (9,b)* (9,6)* (l,bca)y (9,ca)* (0,a)
9 (1,ba) (92)* (l,) (l,babb) (9,abb)* (1,bb) (9,b)* (96)" (lLbca) (9,ca)" (0,a)

We have to store the values of Output(q,u) for (g,u) € @ x Suffix(II), and the
enumeration of the set Output(q,u) should be performed in linear time proportional
to |Output(q,v)|. In the following discussion, we give such a data structure and an
enumeration procedure.

DEFINITION 5.16
Let g € Q = Prefix(I) and u € Suffix(Il) with u # €. Denote by Next(q, u) the pair
(8(q,u[1]),u[2 : |ul]]). A sequence of pairs

(Po,v0) = (P1,91) = +++ = (Plus Vju))>

where p; € Q and v; € Suffix(Il) fori = 0, ..., |u|, is said to be the P-S sequence
w.r.t. (¢, ) if and only if

(p07U0) = (qau)7
(pi,v;) = Next(pi—1,vi—1) fori=1,2,...,ul.
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TABLE 2 shows the table Next for the running example. For instance, the P-S se-
quence w.r.t. (2, ababb) is

(2, ababd) — (3, babb) — (4, abb) — (3,bb) — (4,b) — (5, ).

Now we mention the construction of the table Next(g, u). The arguments g € Prefix(II)
and u € Suffix(II) are given as a node of the AC machine and a node of the GST,
respectively. The number of entries is O(m?) and each entry occupies only 0(1)
space. To compute each entry, we need a mechanism to determine from the node rep-
resenting u the character u[1] and the node representing the string u[2 : |ul] for every
u € Suffix(II). Such mechanism can be embedded in the GST by using O(m?) time
and space. Therefore, the table Next can be built in O(m?) time and space.

By repeated references to the table Next, we can getforany g € @ and any u €
Suffix(Il) the P-S sequence (go,vo) — (q1,v1) — -+ — (Qul> Vo)) WrL. (g, u).
Thus we can enumerate all elements of Qutput(q,u) = Ulzill{(z, ) | T € o(g;)}.
However, the enumeration takes linear time proportional to the length of the string
u. To make the enumeration time linear in the number of elements, we need the
subsequence of the P-S sequence in which the states g; have non-empty outputs.

DEFINITION 5.17

Let (go,v0) = (q1,v1) = ... > (gJu|> V}u)) be the P-S sequence w.r.t. (¢, u). Define
Next*(q,u) = (g;,ulj +1 : |u|]) where j is the smallest integer such that 1 < j < |u
and o(g;) # 0.

TABLE 3 shows the values of Next* for the running example. The table Next* can be
constructed from the table Next using O(m?) time and space by using the procedure
in FIG. 9. Although the procedure has three-nested loops, the table can be built in
O(m?) time since each entry of the table is calculated only once.

Using the table Next* we can get the desired subsequence in linear time proportional
to the length of it. In the running example, the obtained subsequence is

(2, ababb) — (3,babb) — (3,bb) — (5,¢).
The procedure for enumerating Output(q, u) forg € Q and u € Suffix(II) is summa-
rized in FIG. 10. We thus have the following lemma.

LEMMA 5.18

The procedure that takes as input ¢ € @ and u € Suffix(II), and enumerates the set
Output(g, ), can be built using O(m?) time and space, so that it runs in linear time
proportional to |Output(g, u)|.

We can prove Theorem 5.2 by using Lemmas 5.13, 5.15, and 5.18.

6 Bif-parallel implementation

In this section we present an efficient implementation of [4] by using the technique
called bit-parallelism[6). This technique takes advantage of the fact that the processor
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procedure ComputeNext" (¢, )
/* Assume that Next(q,u) is already computed. */
Prepare a stack S for a pair of q and u.
begin
for each g € ) do
for each u € Suffix(Il) do
if Next® (g, u) is already calculated then
continue
else begin
push(q,u); /* push the pairinto S. */
(q',u') := Next(q,u); :
while o(q') # 0 do begin
- push(q',u');
(¢',u') := Next(q', )
end;
(neq, neu) := (¢, u');
while S is not empty do begin
(¢',u') :=pop(); /* pop the pair from S. */
Next*(¢',u') := (neq, neu)
end
end
end; '
FIG. 9. Computation of Next* from Next.
TABLE 3. Table Next* for Il = {aba, ababb, abca, bb}.
The asterisks indicate the pairs (p, v) with o(p) # 0.
state aba ba a ababb babb abb bb b abca bca ca
0 3B.e)* (e (Le) (3)bb)* 9,e)* Gey 9e)* Be) (e Lg (Le)
1 3.8 Ge)* (e (3.bb)* @B.bb)*  (96)* (9e)* 2e) Te)y TeF (leg)
2 (3,ba)* (9,2)* (3,&)* (3,babb)* (9,abb)* (3,bb)* (9,b)* (9,£)* (3,bca)* 9,ca)* (7,8)*
3 BG.e)* Ge)* (e (@bb* @B.bbY* (96 (G.e)* e (1o (Te)r (L)
4 (3,ba)* (52)* (3,£)* (3babb)* (5,abb)* (3,bb)* (5,b)* (5.£)* (3,bca) (5,ca)* (7.&)*
5 3G.o* 92 (le) @bb* (9,abb)* (9,)* (9.b)* (9,£)* (7,e3)fk 9,ca)* (L)
6 (7.ba)* (1,e) (7,&)* (7,babb)* (9,6)* (7,bb)* (9.6)* (8,e) (Thbeca)* (leg) (Le)
7 3B Ge)* (le) @by* @.bb)* 9,0 98 e (e (Te)r (19
8 3B.e)* 9,2* (l,e) (3,bb)* (9,abb)* (9,6)* (O.b)* 9,2)* (Te)* (Oca)* (Lg)
9 3.e)* (9,2 (l,e) (3,bb)* 9,abb)* (9,6)* (O,b)* (9.8 (7.e)* (Oca)* (lLg)
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procedure enumOQutputs (offset, q, u)
/* Third argument is limited to u € Suffix(II). */
begin
(p,v) == (g, u);
while v # ¢ do begin
(p,v) := Next*(p,v);
d:=|u|l —|v|;
for each 7 € o(q) do
report an occurrence of pattern 7 that ends at position offset + d
end '
end;

FIG. 10. Enumeration of Ousput(q,u).

works in parallel on all the bits of word length, say 32 or 64. By using the technique,
we can simplify the calculation of Jump and Output.

Independently, Navarro and Raffinot[22] proposed a more general pattern matching
algorithm on LZ family compressed text by using bit-parallelism.

6.1 Bit-parallel approach to uncompressed pattern matching

Pattern matching algorithms utilizing bit-parallelism were proposed independently by
Abrahamson [1], Baeza-Yates and Gonnet [5], and Wu and Manber [29]. Here, we
review the algorithm following the notation in [1]. Let 7 = #[1 : m] be a pattern
of length m and 7 = T|1 : N] be a text of length N. For k = 0,1,..., N, let
Rp ={1<i<m|i<kandn[l:i]=7T[k—i+1:k]}, andforanya € %,
let M(a) = {1<i<m | 7[i] = a}. For a set A of integers and an integer k, let
Aeok={i+k|ic A}andko A= {k—i|ic A}

DEFINITION 6.1 ‘
Define the function F : 2{1:2--m} » 37 _y 9{1,2,... . m} by

F(S,a) = ((Se 1) U{1}) N M(a).
Using this function we can compute the values of Ry, for k = 1,2,... ,N by
Ro=10 and Ry = F(Ry,T[k+ 1)) (k> 0).

Fork =1,2,..., N, the algorithm reads the k-th character of the text, computes the
value of Ry, and then examines whether m € Ry. If m € Ry, then Tk—-m+1:
k] = m, that is, there is a pattern occurrence at position k — m + 1 of the text. Note
that we can regard Ry, as the states of the KMP automaton, and F acts as the state
transition function.
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original text: a b a b a b b a b ¢ a b a b c
a0 1 0 1 0o 1 0 O 1 0 0O 1 O 1 0 O
b0 0 1t o0 1 0 1 o0 O 1t O o0 1t O 1 O
Ry a0-50-50-21-240-41-20-20-20-20—-0-20—2+0—-21—-20—-20
b0 0 ¢ o 1 o 1 O O O O O O O 1 0O
¢cO 0 0 0 0 0 0 0 0 O O O O o0 o0 1
A

F1G. 11. Behavior of the Shift-And algorithm.

The symbol A indicates that a pattern occurrence is found at that position.

When m < 32 (or m < 64), we can represent the sets Ry and M (a) as m-bit
integers. Then, we can calculate the integers Ry by

Ro=0, and Rpy1 = ((Rr <1)[1) & M(T[k+1]) (k> 0),

where ‘< £ is the bit-shift operation which assigns the i-th bit to the (i + £)-th
setting the first £ bits to zero, ‘|’ is the bitwise-or of the computer word, and ‘&’ is
the bitwise logical product of the computer word. The bitwise logical product, the
bit-shift, and the arithmetic operations can be performed in constant time. We find a
pattern occurrence if Ry, & 2™~! # 0. For example, the values of Ry, fork = 0,1,. ..
are shown in FIG.11, where T = abababbabcababc and m = ababc.

The time complexity of this algorithm is O([m/w]N), where w is the word length
in bits. We can regard the time complexity as O(N) if m < w (in fact such a case
occurs very often).

6.2 Application to LZW compressed pattern matching

Assume that the text is parsed as ujusz ... up by the LZW compression. Let k; =
lugusg ... u;| for i = 0,1,...,n. Our idea is to compute only the values of Ry,
fori = 1,2,...,n, to achieve a linear time complexity which is proportional to the
compressed text length n (not to the original text length V). .

Extend F into the function from 2{1:2:-m} x 3% 1o 2{1:2,---:m} by

F(S,e)=S and F(S,ua)=F(F(S,u),a),

where S C {1,:-- ,m}, u € £* and a € X. Then, the next lemma holds.

LEMMA 6.2
Suppose that the text is 7 = zuy with z,u,y € X* and u # €. Then,

R|mu| = F(le‘,u).

If we have the values of F for the domain 2{1+™} x D, we can compute the
value Ry, , = F(Rg,,u;y1) from Ry, and u;y; foreach¢ = 0,1,... ,n — 1. As
shown later, we can perform the computation of F' only in O(1) time by executing the
bit-shift and the bitwise logical operations, using the function M defined as follows.
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DEFINITION 6.3
Forany u € ¥*,let M (u) = F({1,... ,m},u).

LEMMA 6.4
Forany S C {1,... ,m} and any u € ¥*,

F(S,u)= ((S@ul)U{1,2,...,[ul}) N M(w). (6.1)

PROOF. By induction on |u|. It is easy for u = €. Suppose u = u'a with u' € $* and
a € 3. We have, from the induction hypothesis,

F(S,u)= ((Sel/)U{L,2,..., [ [}) n M@).
It follows from the definition of F' that, for any S;,S» C {1,2,... ,m} and for any

a € X, F(51N83,a) = F(S1,a)NF(S2,a) and F(S;US3,a) = F(S51,a)UF(S2,a).
Then,

F(Sv) = (F(Seu',a)UF({1,2,... ,I/U\'I}ﬂ))ﬂF(J/VI\(U'),a)
(S@ul)U{L,2,...,[ul}) N M(u).

Our remaining work for computing F'(S, u) is how to compute the value of the func-
tion M (u). '

LEMMA 6.5

The function that takes as input u € D and returns in O(1) time the m-bit represen-
tation of the set M (u), can be built in O([m/w]|D| + m) time using O([m /w]|D|)
space.

PROOF. Since M (w) C {1,...,m}, we can store M (u) as an m-bit integer in the
node u of the dictionary trie D. Suppose u = w'a withu' € Danda € X. M (u)
can be computed in O(1) time from M (v’ ) and M (a) when the node u is added to
the dictionary trie since M(u) = F(M(u'),a) = (M) @ 1) U {1}) N M(a).
Since the table M (a) is computed in O([m/w]|%| + m) time using O([m/w] b))
space and . C D, the total time and space complexities are O([m /w]|D| + m) and
O([m/w]|D)), respectively.

- Now we have the following theorem from Lemma 6.2, Lemma 6.4, and Lemma 6.5.

THEOREM 6.6

The function which takes as input (S,u) € 2{1-™} x D and returns in O(1) time
the m-bit representation of the set F'(S,w), can be built in O([m/w]|D| + m) time
using O([m/w]|D|) space.
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Equation (6.1) can be translated into.
F(8,u) = ((§ < Jul) | (A < ul) - 1)) & M(u).

The function Jump can be computed using the above equation. In practice, this com-
putation is faster than the one described in the previous section.

Now let us turn to Qutput. For S C {1,...,m} and v € D, let Output(S,u) =
{1<i<|ul|meF(Sul:4)},andletU(u) = {1 <i<|u| |i<mandm €
M (u[l : i])}. Then, we have the following lemma.

LEMMA 6.7
Forany S C {1,...,m}and any u € ¥¥,

Output(S,u) = ((m © S) N U(u)) U Output(d, u).
PROOF.

Output(S,u) = {1<i<|u||i<mandm € (S&i)N Mull:i])}
U{l<i<|ul|m<iandm € M(u[l:4i])}
= ((moeS)NU(u)) U Output(D,w).

Since Output((),u) is the same as the one described in the previous section, the
enumeration of it can be performed using the algorithm of FI1G. 8. The remaining
problem is how to enumerate the set ((m © S) N U (u)).

Since U(u) C {1,...,m}, we can store the set U(u) as an m-bit integer in the
node u of the dictionary trie D.

LEMMA 6.8

The function which takes as input u € D and returns in O(1) time the m-bit rep-
resentation of U (u), can be built in O([m/w]|D| + m) time using O([m/w]|D|)
space. '

PROOF. By the definition of U, for any u = u'a with v’ € ¥* anda € %,
Uu) =U()U{|u| | |u] < mandm € ]/\I\(u)}
Then, we can prove the lemma in a similar way to the proof of Lemma 6.5. |

To eliminate the cost of performing the operation & in (m©.S)NU (u), we store the
set U'(u) = m © U(u) instead of U (u). Then, we can obtain the integer representing
the set S N U'(u) by one execution of the bitwise logical product operation. For an
enumeration of a set represented as an m-bit integer, we need an operation to find the
Jeftmost bit of the integer that is one. Since such operation takes O([m/w]) time >,
we can enumerate the set in O([m /w]£) time, where £ is the cardinality of the set.

From the above discussion, we have the following theorem.

3The operation can be done by using some bitwise logical operations and one logarithm operation. Since w is a constant number, the
logarithm operation requires only O (1) time if m < w.
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THEOREM 6.9 :

The procedure which takes as input (S, u) € o{L-sm} % D and enumerates the set
Output(S, ), can be realized in O(|D| + m) time using O(|D|) space, so that it runs
in O([m /w]|Output(S,u)|) time.

Now we can simulate the behavior of the Shift-And algorithm on the original text
completely. The algorithm is summarized as in FIG. 12. The behavior of the algorithm
is illustrated in FIG. 13. This algorithm, moreover, can be extended to the problems of
generalized pattern matching [1], pattern matching with k mismatches 4, and multiple
pattern matching, like the Shift-And algorithm [5, 29]. '

7 Experimental results
We estimated the performances of the following programs:

e Decompression followed by a search with the AC machine.

We tested this approach for compress and gzip, which are the famous UNIX tools
based on the LZW and the LZ77 compressions, respectively. We combine the de-
compression programs and the AC machine using the UNIX ‘pipe’. These meth-
ods are abbreviated as uncompress+AC and gunzip+AC, respectively. On the
other hand, we embedded the search routine of the AC machine in the decompres-
sion programs, so that the AC machine processes the decoded characters ‘on the
fly’. These methods are abbreviated as uncomAC and gunzipAC, respectively.

e Decompression followed by a search with agrep.
We tested this approach for compress and gzip again. We combine the decompres-
sion programs and agrep using the UNIX ‘pipe’. The programs are abbreviated as
uncompress+agrep and gunzip+agrep, respectively.

e Compressed pattern matching.
Our algorithms, which are proposed in Sections 4 and 5. They are abbreviated as
AC on LZW and Bit-Parallel on LZW, respectively.

Our experiment was carried out on an AlphaStation XP1000 with an Alpha21264
processor at 667MHz running Tru64 UNIX operating system V4.0F. The text files we
used are:

Genbank. A subset of the GenBank database, which is an annotated collection of
all publicly available DNA sequences. However, all fields other than accession
number and nucleotide sequence were removed. The file size is about 17.1 Mbyte.

Medline. A clinically-oriented subset of Medline, consisting of 348,566 references.
The file size is about 60.3 Mbyte.

Table 4 shows the compression ratios of these texts for compress and gzip. We se-
lected patterns of lengths 5 to 30 from the texts randomly. We tested for 10 patterns of
each length and took an average, where the same patterns were used for all methods.
Recall that the time complexities of our algorithms are linear with respect to the
compressed text size n, not to the original size N. This property is desirable since the

4Navarro and Raffinot [22] also have achieved this extension.
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Input. An LZW compressed text ujug...Un and a pattern P.
Output.  All positions at which P occurs.
begin

/¥ Preprocessing */

Construct the table M from P;
D:=0; U'(e) :=0; prev(e) :=¢;
for each a € ¥ do call Update(g,a);

/¥ Text scanning */
k=0, R:=0;
for / := 1 to n do begin
call Update(ug—1,ue); /* We assume up = e*/
for each p € (RN U'(ug)) U Output(, ug) do
report an occurrence of pattern 7 that ends at position k + p;
R:=((Ro®u)U{1,2,... Juel}) N M (ue);
k=k+ |Ue|
end
end.

procedure Update(u,v)
begin
if v < |D| then
let @ be the first character of v
else
let a be the first character of u;
D:=DU{u-a};
M(u-a):= (M(u) ®1) U {1}) N M(a);
if |u - a] < m then
if m € M(u - a) then
U'(u-a):=U'(u)U{m — |u-al}
else
U'(u-a):=U'(u)
else begin
U'(u-a):=0;
itme M (u) then
prev(u-a) ‘=u
else
prev(u - a) := prev(u)
end
end;

FIG. 12. Bit-parallel approach to LZW compressed pattern matching
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original text: a b ab ab ba b c aba be
compressed text: 1 2 4 4 5 2 3 6 9
a0 1 0 0 0 1 0 0 1 0
b0 0 1 1 1 “0 1 0 0 0
R,: a0 —0—>0—0—0-—0—-—350—0—1-—70
b0 0 0 1 1 0 0 0 0 0
cO 0 0 0 0 0 0 0 0 1

Oupu(Riyugy: 0 0 0 0 0 ¢ 0 0 {2}
FIG. 13. Behavior of algorithm of Fig. 12.

TABLE 4. Compression ratio (%).
text (original size) compress  gzip
Genbank (17.1Mbyte) 26.80 23.15
Medline (60.3Mbyte) 42.34 33.35

best LZW compression gives n = v/2N. However, the LZW compression normally
gives n that is linear with respect to N. In fact, the LZW compressions of Genbank
and Medline give n ~ 0.18N and n =~ 0.22N, respectively. Thus the constant factor
is crucial. ‘

F1G.14 shows the running times (CPU time), where the preprocessing times were
included. We observed the following facts.

1. The difference between uncompress+AC and gunzip+AC corresponds to the dif-
ference between the decompression times of uncompress and gunzip. The differ-
ence between uncompress+agrep and gunzip+agrep is the same.

2. The approach that uses the UNIX pipe is slower than the others. Even gun-
zip+agrep is slower than uncomAC.

3. The difference between the approaches using AC and agrep is small in comparison
with the difference between gunzipAC and Bit-Parallel on LZW. Thus, even if

we could embed the search routine of the agrep in gunzip, it must be slower than
Bit-Parallel.

4. The proposed algorithms are faster than the other approaches. Especially, it runs

about 1.8 times faster than gunzip+agrep for Medline, and about twice faster for
Genbank.

In general, the searching time is the sum of (1) the file I/O time and (2) the CPU
time consumed for compressed pattern matching. Text compression reduces the file
I/O time at the same ratio as the compression ratio while it may increase the CPU
time. When the data transfer is slow, we have to give a weight to the reduction of the
file I/O time, and a good compression ratio leads to a fast search. Therefore, we also
performed the experiment in the following two different situations, where we used
Medline as the text to be searched.
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(sec) Genbank (17.1 Mbyte) (sec) Medline (60.3 Mbyte)
1.4 9.0
uncompress+AC
S woompresragep |+ 80 oo ool
I 70 b uncompresstagrep
1.0 SUnZpiagiep
uncomAC L .
03 gunzipAC gunzip+AC
. 5.0 _‘““‘—/"“—/gun“zg;.;gm'p’ﬁ
4.0 leocoococoeeooeoo oo UOCOMAC
gunzipAC
3.0 l—remeeeeee—AC LW
T 04 e e Bit-parallel on LZW
2.0 s
02 [ e :
4 1.0 mmmmmmmmmmmmmmm e
0 Ll ittt ettty bl 0 1 1 T Y Y I I I T I A A O
5 10 15 20 25 30 5 10 15 20 25 30
Pattern length Pattern length

FIG. 14. Search time (CPU time).

Local. Workstation (AlphaStation XP1000) with local disk storage. The file transfer
ratio is 24.9 Mbyte/sec.

Remote. Workstation (AlphaStatidn XP1000) with remote disk storage. The file
transfer ratio is 6.57 Mbyte/sec.

The results are shown in TABLE 5. Even a decompression followed by an ordi-
nary search was faster than the uncompressed search in Situation 2, whereas it wasn’t
in Situation 1. Thus we conclude that the compressed search can be faster than the
uncompressed search when the data transfer is relatively slow, e.g. network environ-
ments. v

We measured total search times including the preprocessing times above. However,
the preprocessing times vary according to the pattern length m, especially the one of
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TABLE 5. Elapsed time comparison.

method Local Remote

agrep on the original text | 2.39 9.03
uncomAC 4.10 6.93
gunzipAC 3.38 6.49
AC on LZW 3.29 5.51
Bit-parallel on LZW 3.01 5.49

(sec)

0.06

0.05

0.04

0.03

0.02

0.01

0

1 10 20 30 40 50 60 70 8 90
Pattern lengh

F1G. 15. Preprocessing time.

AC on LZW is O(m?). FI1G.15 shows the preprocessing time of AC on LZW from
m = 5 to m = 100. We observe that the preprocessing time is very small compared
with the search time.

Practically, we used about 16|D| + (|X| + 25)m? byte and 12| D| + 16 byte memory
space for the implimentations of AC on LZW and Bit-parallel on LZW, respectivly.
Recall that | D| = O(n). Since n is the compressed text length, the memory require-
ments seem vary large. However, the size of the dictionary trie is usually restricted to
at most 216 — 1 = 65535 in the LZW compression, thus the memory requirements are
about 1 ~ 2Mbyte at most.

8 Conclusion

In this paper we addressed the problem of searching in LZW compressed text directly,
and presented the first algorithm that deals with multiple patterns. The algorithm
simulates the move of the AC machine by scanning a compressed text in linear time
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proportional to the compressed text size. It should be emphasized that the number of
patterns affects only the preprocessing time, which is very small in comparison with
the scanning time. From the practical viewpoint, this property is desirable when we
want to search many patterns at once. We also proposed another algorithm using bit-
parallelism that is suitable for the case that the pattern length is not greater than the
word length. Experimental results show that both algorithms are indeed faster than
a decompression followed by an ordinary search, like the AC machine and agrep.
Moreover, our algorithms are also faster than a fast search in the original text when
the text data is stored in a remote disk device.

We have proved in this paper that compresed pattern matching is not only of the-
oretical interest but also of practical importance. The importance is rising recently
because of a remarkable explosion of machine readable text files, which are often
stored in a compressed form. ‘
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