Pattern Matching in Text Compressed
by Using Antidictionaries |

YUSUKE SHIBATA!, MASAYUKI TAKEDA, AYUMI
SHINOHARA, SETSUO ARIKAWA, Department of Informatics,
Kyushu University 33, Fukuoka 812-8581, Japan, {yusuke,
takeda, ayumi, arikawa}@i.kyushu-u.ac.jp

ABSTRACT: In this paper we focus on the problem of compressed pattern matching for the text
compression using antidictionaries, which is a new compression scheme proposed recently by
Crochemore et al. (1999). We show an algorithm which preprocesses a pattern of length m and
an antidictionary M in O(m? + ||M|}) time, and then scans a compressed text of length n in
O(n + r) time to find all pattern occurrences, where ||M]| is the total length of strings in M
and 7 is the number of the pattern occurrences.

Keywords: Text compression, Compressed pattern matching, Minimal forbidden word, Antidictionary.

1 Introduction

Compressed pattern matching is one of the most interesting topics in the combinatorial
pattern matching, and many studies have been undertaken on this problem for several
compression methods from both theoretical and practical viewpoints. One important
goal of compressed pattern matching is to achieve a linear time complexity that is
proportional not to the original text length but to the compressed text length.
Recently, Crochemore et al. proposed a new compression scheme: text compres-
sion using antidictionary [4], over the binary alphabet. Contrary to the compression
methods that make use of dictionaries, which are particular sets of strings occurring
in texts, the new scheme exploits an antidictionary that is a finite set of strings that
do not occur as factors in text, i.e. that are forbidden. Let a; . ..a, € {0,1}T be the
text to be compressed. Suppose we have read a prefix a; ... a; at a certain moment.
If the string a; ...azb (i < j, b € {0,1}) is a forbidden word, namely, is in the an-
tidictionary, then the next symbol a;j;; cannot be b. In other words, the next symbol
aj+1 is predictable since the alphabet is binary. Based on this idea, the compression
method removes such predictable symbols from the text. The compression and the
decompression are performed by using the automaton accepting the set of strings in
- which no forbidden words occur as factors.
In this paper we focus on the problem of compressed pattern matching for the text
compression using antidictionaries. We present an algorithm that solves the problem
~in O(m? + ||M|| + n + r) time using O(m? + ||M]||) space, where m and n are

1 Currently working at NTT Communicationware corporation

J. of Discrete Algorithms, Vol. 1 No. 1, pp. 257-269, 2000 (© Hermes Science Publications

258 J. of Discrete Algorithms, Vol. 1 No. 1, 2000

the pattern length and the compressed text length, respectively, || M| denotes the total
length of strings in antidictionary M, and r is the number of pattern occurrences.
Since M is a part of the compressed representation of text, the text scanning time is
O(||M||+n+r), which is linear in the compressed text length || M ||+n, when ignoring
r. Moreover, in the case where a set of text files shares a common antidictionary
[4], we can regard the O(]|M||) time processing of M as a preprocessing. Then the
O(n + r) time text scanning will be fast in practice. The proposed algorithm thus has
desirable properties.
A preliminary version of this paper was presented at [9].

2 Preliminaries

Let B be an alphabet. We assume B = {0, 1} throughout this paper. The set of strings
over B is denoted by B*. The length of a string u is denoted by |u}. The empty string
is denoted by ¢, that is, |¢| = 0. Let BT = B* — {¢}. Strings z, y, and z are said to
be a prefix, factor, and suffix of the string u = zyz, respectively. The sets of prefixes,
factors, and suffixes of a string u are denoted by Prefix(u), Factor(u), and Suffix(u),
respectively. A prefix, factor, and suffix of a string u is said to be proper if it is not
u. The ith symbol of a string u is denoted by u[z
of a string u that begins at position ¢ and ends at position j j is denoted by ulfi : j] for
- 1< <j < |ul. For convenience, let u[z : j] = € for j < ¢. The reversed string of
a string u is denoted by u®. The total length of strings of a set S is denoted by ||.S||.
For strings z and y, denote by Occ(x, y) the set of occurrences of z in y. That is,

Occ(z,y) = {|Jz| <i < |yl | & =yli — |=| +1:]}

The next lemma follows from the periodicity lemma [5].

LEMMA 2.1

If Occ(z,y) has more than two elements and the difference between the maximum
and the minimum elements is at most |z|, then it forms an arithmetic progression, in
which the step is the smallest period of z.

3 Text compression using antidictionary

In this section we describe the text compression scheme proposed by Crochemore et
al. [4].

3.1 Method

Let B = {0,1}. Suppose that 7 € B™ be the text to be compressed. A forbidden
word for T is a string w €. B that is not a factor of 7. A forbidden word is said to
be minimal if it has no proper factor that is forbidden. An antldzctzonary for 7 is a set
of minimal forbidden words for 7.

Let M be an antidictionary for 7. Then the text T is in the set B* \B*M B*. The
automaton accepting the set B*\B*M B* can be built from M in O(||M||) time in

Pattern Matching in Text Compressed 259

FIG. 1: Automaton A(M) for M = {0000,111,011,0101,1100}. Circles and
squares denote the final and the nonfinal states, respectively. Shaded circles denote
the predict states.

a similar way to the construction of the Aho-Corasick pattern matching machine [1].
We denote the automaton by :

AM) =(Q, B,d,¢, M),

where Q = Prefix(M) is the set of states; B is the alphébet; d is the state transition
function from @ x B to) defined as

6(ud)={u’ o ifu € M;
’ longest string in Q N Suffix(ua), otherwise; .
e is the initial state; M is the set of final states. Figure 1 shows the automaton
A(M) for M = {0000,111,011,0101, 1100}, which is an antidictionary for text
T = 11010001.

The encoder and the decoder in this compression scheme are obtained directly from
the automaton .A(M). The encoder £(M) is a generalized sequential machine based
on A(M) with output function A : @ x B defined by

__ | a, ifLiveDegree(u) = 2;
Au, a) = { g, otherwise,

where LiveDegree(u) = |{a € B|o(u,a) € M }|. The decoder D(M) is a generalized
sequential machine obtained by swapping the input label and the output label on each
arc of the encoder £(M). Figure 2 illustrates the move of the encoder £(M) based
on A(M) of Fig. 1 which takes as input 7 = 11010001 and emits 110. It should be
noted that, any prefix of 1101000100 with length greater than 6 is compressed into

260 J. of Discrete Algorithms, Vol. 1 No. 1, 2000

input: 1 1 0 1 0O o0 O 1
state. 0 9210211252622 —=33-25
output: 1 1 € e € € 0 €

FIG. 2. Move of encoder £(M) for 7 = 11010001.

the same string 110. For a decompression we therefore need the length of 7 together
with the encoded string itself. Formally, the compressed representation of 7 is a triple
(M, b ...by, N), where M is an antidictionary, b, ... b, is output from the encoder,
and N is the length of 7.

Let us denote by M F'(T) the set of all minimal forbidden words for 7. In the case
of binary alphabet we have |M F(T)| < 2-|7| — 2 as shown in [3]. To shorten the
representation size of the above triple, we need a way to build a ‘good’ antidictionary
as a subset of M F(T"). Crochemore et al. presented in [4] a simple method in which
antidictionary is the set of forbidden words of length at most k, where k is a parameter.
It is reported in [4] that the compression ratio in practice is comparable to pkzip.

3.2 Decoder without s-moves

Note that the decoder D(M) mentioned above has e-moves. For a simple presentation
of our algorithm, we shall define a generalized sequential machine G(M) obtained by
eliminating the e-moves from the decoder D(M).

Let us partition the set () into four. disjoint subsets M, Qo, 1, and Q2 by

Qi = {u € Q\M | LiveDegree(u) =i} (i =0,1,2).

A state p in @), is called a predict state because of the uniqueness of outgoing arc
when ignoring the arcs into states in M. Namely, there exists exactly one symbol a
such that §(p,a) € M. We denote such symbol a by NextSymbol(p), and denote by
NextState(p) the state 6(p, a).

Consider, for p € @, the sequence p;, ps, . . . of states in @; defined by p; = p and
piv1 = NextState(p;) (i = 1,2,...). There are two cases: One is the case that there
exists an integerm > Osuchthatp; € Q; for: =1,2,...,m—1and p,, € QoUQ>.
The other is the case of no such integer m, namely, the sequence continues infinitely.
Let us call the sequence the predict path of p, and denote by Terminal(p) the last state
Pm. In the infinite case, let Terminal(p) =L1, where L is a special state not in Q).
(Therefore, Terminal(p) € Qo U Q2 U {L1}.) The finite/infinite string spelled out by
the predict path of p € @Q; is denoted by Sequence(p). It is easy to see that:

LEMMA 3.1
For any p € Q1, there exist u,v € B* with |uv| < |Q1] such that

Sequence(p) =uvv - .

Now we are ready to define a generalized sequential machine G(M), where the set
of states is QoUQ@2U{L}; the state transition function is dg : Q2 X B = QoUQ2U{1}

Pattern Matching in Text Compressed 261

0/0100
0/0 1/100

FIG. 3. Decoder G(M) for M = {0000,111,011,0101, 1100}.

defined by
Terminal(6(u,a)), 6&(u,a) € Q;
dg(u,a) = { 6(u,a), ~ otherwise;

the output function is Ag : @2 x B — BT U B> defined by |

Ag(u,a) = a - Sequence(é(u,a)), 6(u,a)€Q1;
G\t =7 a, otherwise,

where B°° denotes the set of infinite strings over B. Figure 3 shows the decoder
G(M) obtained in this way from the automaton A(M) of Fig. 1.

Decompression algorithm using G(M) is shown in Fig. 4. 1t should be emphasized
that, if the decoder G(M) enters a state g and then reads a symbol a such that Ag(q, a)
is infinite, the symbol is the last symbol of the output from the encoder £(M). In this
case the decoder G(M) halts after emitting an appropriate length prefix of A\g(g,a)
according to the value of N. '

4 Main result

Most of text compression methods can be recognized as mechanisms to factorize a text
into several blocks as 7 = ujus . . . uy, and to store a sequence of ‘representations’ of
blocks u;. In the LZW compression, for example, the representation of a block u; is
just an integer which indicates the node of dictionary trie representing the string u;. In
the case of the compression using antidictionaries, the way of representation of block
is slightly complicated.

Consider how to simulate the move of the KMP automaton for a pattern P running
on the uncompressed text 7. Let dxmp : {0,...,m} x B — {0, ..., m} be the state
transition function of the KMP automaton for ’P = P[1 : m]. We extend dxmp to the
domain {0, ...,m} x B* in the standard manner. We also define the function Axmp
on {0,...,m} x B* by ' ’

Xicmp (j,w) = {1 < i < Ju] | P is a suffix of string ’P[l 7l u[l:d] }.

We want to devise a pattern matching algorithm which takes as input a sequence of
representations of blocks us, ..., u, of T and reports all occurrences of P-in 7 in
O(n + r) time, where r = |Occ(P, T)|. Then we need a mechanism for obtaining in

262 J. of Discrete Algorithms, Vol. 1 No. 1, 2000

Input. A compressed representation (M, by ...b,, N} of atext T = T[1: N].
Output. Text 7.
begin
£:=0;
q:=F¢;
for i := 1ton — 1 do begin
U= Ag(q, bz)’
q:= 69 (q7 bz)’
=0+ |ul;
print u
end; . :
print the length N — £ prefix of the (possibly infinite) string Ag(q, b,)
end.

FIG. 4. Decompression by G(M).

O(1) time the value dkwmp (j, u) and a linear size representation of the set Axymp (Jyu).
In the case of the LZW compression such mechanism can be realized in O(m? + n)
time using O(m? + n) space as stated in [2] and [8]. Similar idea can also be applied
to the case of text compression by antidictionaries, except that block u;, which will
be an input to the second arguments of dxmp and Akmp, is represented in a different
manner.

In our case a block u; is represented as a pair of the current state g of G (M) and
the first symbol b; of u;. Therefore we have to keep the state transitions of G(M).
Figure 5 gives an overview of our algorithm. The algorithm makes G (M) run on
b1 ... by, to know inputs uy, .. . ,u, to the KMP automaton being simulated. Figure 6
illustrates the move of the algonthm searching the compressed text 110 for the pattern
P = 0001.

We have the following theorems which will be proved in the next section.

THEOREM 4.1
The function which takes as input (¢,a) € Q2 x B and returns in O(1) time the value
dg(g,a), can be built in O(|| M ||) time using O(||M||) space.

THEOREM 4.2

The function which takes as input a triple (j,q, a) € {0,...,m} x Qs x B such that
u = Ag(q, a) is finite, and returns in O(1) time the value dxmp (5, u), can be built in
O(||M|| + m?) time using O(|| M|| + m?) space. .

THEOREM 4.3

The following function can be built in O(|| M ||+m?) time using O(}| M || +m?) space.

1. Given a triple (4, ¢, a) € {0,...,m} X Q2 x B such that u = Ag (g, a) is finite, it
- returns in O(1) time a linear size representation of the set Axwmp (7, u).

Pattern Matching in Text Compressed 263

Input. A compressed representation (M, by by...b,, N) of atext T = T[1: N],
and a pattern P = P[1 : m].
Output. All positions at which P occursin 7.
begin
/* Preprocessing */
Construct the KMP automata and the suffix tries for P and PFE;
Construct the automaton A(M) from M;
Construct the predict path graph from A(M);
Perform the processing required for dg, dxmp, and Axmp (see Section 5);

/* Text scanning */

{:.=0;

q :=g¢,

state := 0;

for 1 := 1ton — 1 do begin
q:=dg(q,b:);

for each p € Akmp (state, A\g(q,b;)) do
Report a pattern occurrence that ends at position £ + p ;
state := dxmp(state, Ag(q, b;));
£:= 0+ |Ag(q, bs)]
end;
for each p € Akmp (state, u) where u is the length (IV — £) prefix of
the (possibly infinite) string Ag(q, b,,) do
Report a pattern occurrence that ends at position £ + p
end.

F1G. 5. Pattern matching algorithm.

input : ' 1 1 0

state of G(M) : O — 9 — 2 — 2
Uu: 1 10100 0100
state of KMP automaton: 0 — 0 — <2 — 2
output : 0 /n {8}

FIG. 6. Move of pattern matching algorithm when 7 = 1_10100010 and P = 0001.

264 J. of Discrete Algorithms, Vol. 1 No. 1, 2000

FIG. 7. Predict path graph obtained from A(M) of Fig. 1. Rectangles denote the
auxiliary nodes.

2. Given a triple (j,q,a) € {0,...,m} x Q2 x B and an integer t > 0, it returns in
O(1) time a linear size representation of the set Axmp (4, u), where u is the length
t prefix of the (possibly infinite) string Ag(q, a).

Then we have the following result.

THEOREM 4.4
The problem of compressed pattern matching for the text compression using antidic-
tionaries can be solved in O(]|M|| + n + m? + r) time using O(J| M || + m?) space.

5 Algorithm in detail

This section gives a detailed presentation of the algorithm to prove Theorems 4.1,4.2,
and 4.3.

5.1 Proof of Theorem 4.1

For a realization of dg, we have to find, for each ¢ € Qo U @2 U {L}, the pairs
(p,b) € Q2 x B such that §(p,b) = p’' € @, and Terminal(p') = q. First of all, we
mention the graph consisting of the predict paths, which plays an important role in
this proof.

Consider the subgraph of A(M) in which the arcs are limited to the outgoing arcs
from predict nodes. We add auxiliary nodes v = (p, b) and new arcs labelled b from
vto g € Q; such that p € @2, b € B, and §(p,b) = ¢ to the subgraph. We call the
resulting graph predict path graph. Figure 7 shows the predict path graph obtained
from A(M) of Fig. 1.

The predict path graph illustrates, for (p, b) € Q2 x B, the string Ag(p, b) as a path
which starts at the auxiliary node (p, b), passes through nodes in @)1, and either (a)
finally encounters a node in Qo U)2, or (b) flows into a loop consisting only of nodes
in ;. That is, a connected component of the predict path graph falls into two classes:

e A tree which has as root a node in Qo U Q- and has as leaves auxiliary nodes (see
Fig. 8 (a)). '

Pattern Matching in Text Compressed 265

SO

@ O

FI1G. 8. Two types of connected components of predict path graph.

e A loop with trees, each of which has as root a node on the loop and has leaves
auxiliary nodes (see Fig. 8 (b)).

Notice that a general predict path graph could have more than one connected compo-
nent, although the predict path graph of Fig. 7 consists of a single connected compo-
nent.

Now we are ready to prove Theorem 4.1. Construction of d¢ is as follows: First,
we set dg(p, b) = d(p, b) for every (p,b) € Q2 x B with 6(p,b) € Qo U Q2. Next,
for every node ¢ € Qo U Q2 of the predict path graph, we traverse the tree that
has g as root. Note that the leaves of the tree are auxiliary nodes (p,b) such that
Terminal(6(p,b)) = g, and we can set dg(p,b) = g¢. Finally, for every node q on
loops of the predict path graph, we traverse the tree that has g as root. The leaves of
the tree are auxiliary nodes (p, b) such that Terminal(é(p, b)) =L, and hence we set
dg(p,b) =L. The total time complexity is linear in the number of nodes of the predict
path graph, i.e. O(||M||). The proof is complete.

5.2 Proof of Theorem 4.2

In the following discussions, we are frequently faced with the need to get some value
as a function of u, the strings that are spelled out by the paths from auxiliary nodes.
Even when the value for each path can be computed in time proportional to the path
length, the total time complexity is not O(|]|M||) since more than one path can share
common arcs.

Suppose that the value for each path can be computed by making an automaton
run on the path in the reverse direction. Then, we can compute the values for such
paths by traversing every tree in the depth-first-order using a stack. Since this method
enables us to ‘share’ the computation for a common suffix of two strings, the total
time complexity is linear in the number of arcs, i.e. O(||M||). This technique plays a
key role in the following proofs.

For an integer j with 0 < j < m and for a factor u of P, let us denote by N; (j, u)
the largest integer k with 0 < k < j such that P[j — k+1 : j] - u is a prefix of P. Let.

266 J. of Discrete Algorithms, Vol. 1 No. 1, 2000

Ni (7,u) = nil, if no such integer exists. Then, we have:

Secwnp (G, 1) = Ni(j,u) + |u], ifuisa factor of P and Ni(j,u) # nil;
KMPAY) = 6xkmp (0, 1), otherwise.

We assume that the second argument u of IV; is given as a node of the suffix trie for

P. Amir et al. [2] showed the following fact.

LEMMA 5.1 (Amir et al. 1996)
The function which takes as input (j,u) € {0,...,m} x Factor(P) and returns the
value N (§,u) in O(1) time, can be built in O(m?) time using O(m?) space.

We have also the next lemma.

LEMMA 5.2

The function which takes as input (g,a) € Q2 x B and returns u = Ag(q, a) as a node
of the suffix trie for P when u € Factor(P), can be built in O(|| M || +m?) time using
O(||M|| + m?) space.

PROOF. We use the technique mentioned above. We can ignore the infinite strings.
That is, we can ignore the trees in which a root is on a loop. Consider the problem of
determining whether u* is a factor of P®. It can be solved in O(min{|u|,m}) time
using the suffix trie for P®. We build a data structure which subsumes both the suffix
tries for P and P ¥ [6). This is based on the duality that the suffix link tree of a suffix
trie for P is the suffix trie for P, and can be built in O(m?) time using O(m?) space.
Using this data structure, if u® is a factor of P, then the node representing u® in the
suffix trie for P® is the one representing the string u in the suffix trie for . The proof
is complete.

LEMMA 5.3 ‘

The function which takes as input (¢,a) € Q2 x B such that u = Ag(q, a) is finite,
and returns in O(1) time the value dxmp(0,u), can be built in O(J|M|| + m) time
using O(|| M || + m) space.

PROOF. We use the technique mentioned above again. We have to consider the prob-
lem of finding the length of longest suffix of u that is also a prefix of P. This is
equivalent to finding the length of longest prefix of u® that is also a suffix of PE. It is
solved in O(min{|u|,m}) time using the suffix tree for PE. We can ignore the trees
in which a root is on a loop. [|

Theorem 4.2 follows from the lemmas above.

5.3 Proof of Theorem 4.3

According to whether a pattern occurrence covers the boundary between the strings
P[1: j] and u, we can partition the set Axmp (7, u) into two disjoint subsets as follows.

Akmp (7, u) = Akmp (7, 8) U X (u),

Pattern Matching in Text Compressed 267

where
X(u) = {|P| < i< |u| | Pis asuffix of u[l : 1]},

and 4 is the longest prefix of u that is also a proper suffix of P. Let
Y (§,€) = Occ(P,P[1: 4] ’P[m t+1:m))ej,

where e denotes the element-wise subtraction. It is not difficult to see Axmp (4, u)
Y (4, @)). It follows from Lemma 2.1 that the set Y (4, £) has the following property:

LEMMA 5.4
If Y (j, £) has more than two elements, it forms an anthmetlc progression, where the
step is the smallest period of P.

LEMMA 5.5 -

The function which takes as input (j,£) € {0,...,m} x {0,...,m} and returns in
O(1) time an O(1) space representation of the set Y(7,£), can be built in O(m?) time
using O(mz) space.

PROOF. It follows from Lemma 5.4 that Y (4, £) can be stored in O(1) space as a pair
of the minimum and the maximum values in it. The table storing the minimum values
of Y (4, €) for all (j,£) can be computed in O(m?) time as stated in [2]. (Table N
defined in [2] satisfies min(Y (j,£)) = m — Na(7, £).) By reversing the pattern P, the
table the maximum values is also computed in O(m?) time. The smallest period of P
is computed in O(m) time. _ A B

LEMMA 5.6
The function which takes as input (¢, a) € Q2 x B and returns in O(1) time the value
|| with w = Ag(g, a), can be built in O(]| M || + m) time using O(|| M || + m) space.

PROOF. We shall consider the problem of finding the length of longest suffix of u?®
that is also a proper prefix of PE. This can be solved by using the KMP automaton for
PE_But we have to consider the case where u is infinite. In the finite string case, we
make the automaton start at the root of tree with initial state. But in the infinite string
case, we must change the value of the initial state. Let v be the string spelled out by
the loop starting at the root of the tree being considered. We must pay attention to the
case where a pattern suffix is also a prefix of the string vt with £ > 0. To determine
the correct value of the initial state at the root node, we make the automaton go around
the loop exactly £ times and stop it at the root node that is the starting point, where £
is the smallest integer with £ - Jv] > |P|. The state of the automaton at that moment is
the desired value. |

LEMMA 5.7
The following function can be built in O(||M || + m) time using O(|| M || + m) space.

1. Given a pair (g,a) € @2 x B such that u = Ag(q, a) is finite, it returns in O(l)
time a linear size representation of the set X (u).

2. Given a pair (¢,a) € Q2 x B and an integer t > 0, it returns in O(1) time a linear

size representation of the set X (u), where u is the length ¢ prefix of the (possibly
infinite).string Ag(q, a).

268 J. of Discrete Algorithms, Vol. 1 No. 1, 2000

PROOF. By using the KMP automaton for the reversed pattern, we mark the predict
nodes at which the pattern begins. Suppose that every predict node has a pointer to
the nearest proper ancestor that is marked. Such pointers are realized using O(|| M|
time and space. This enables us to get the elements of X (u) in O(| X (u)]) time.

Theorem 4.3 follows from the lemmas above.

6 Concluding remarks

In this paper we focused on the problem of compressed pattern matching for the text
compression using antidictionaries proposed recently Crochemore et al. [4]. We pre-
sented an algorithm which has a linear time complexity proportional to the compressed
text length, when we exclude the pattern preprocessing. However, in practice, com-
ressed files are not reduced in size by more than a constant factor, and linear in the
compressed size would be linear in the original size. Thus a constant factor is crucial
in arunning time comparison with a decompression followed by a simple search algo-
rithm which runs in linear time with respect to the original text length. Unfortunately,
our algorithm seems not to have a lower constant and not to be so faster, although we
have not yet implemented it. In [7] we showed that the Shift-And approach is effec-
tive in the compressed pattern matching for the LZW compression. We think that the
Shift-And approach will be substituted for the KMP automaton approach presented in
this paper and show a good performace in practice when the pattern length m is not
so large, say m < 32.

For a Jong pattern we can also consider the following method. Let k be the length of
the longest forbidden word in the antidictionary. By using the syncronizing property
[4], we obtain:

LEMMA 6.1
If|P| > k — 1, then 6(u, P) = é(e, P) for any state u in Q such that 6(u, P) € M.

Let p = (e, P). Since p € M implies that P cannot occur in 7, we can assume
p € M. Ifpisin Q, then let ¢ = Terminal(p). Otherwise, let ¢ = p. We can monitor
whether the state of A(M) is in state p by using the function dg to check G(M) is in
state g. If so, we shall confirm it. Our preliminary experiments suggest that this search
method is efficient in practice.

Acknowledgments

We would like to thank anonymous referees for their helpful comments and sugges-
tions.

References

[1] A.V. Aho and MLJ. Corasick. Efficient string matching: An aid to bibliographic search. Comm. ACM,
18(6):333-340, 1975.

{2] Amihood Amir, Gary Benson, and Martin Farach. Let sleeping files lie: Pattern matching in Z-
compressed files. Journal of Computer and System Sciences, 52:299-307, 1996.

Pattern Matching in Text Compressed 269

[3] M. Crochemore, F. Mignosi, and A. Restivo. Minimal forbidden words and factor automata. In
L. Brim, J. Gruska, and J. Zlatuska, editors, Proc. 23rd Internationial Symp. on Mathematical Foun-
dations of Computer Science, volume 1450 of Lecture Notes in Computer Science, pages 665-673.
Springer-Verlag, 1998. A '

[4] M. Crochemore, F. Mignosi, A. Restivo, and S. Salemi. Text compression using antidictionaries. In
Proc. 26th International Colloquium on Automata, Languages, and Programming, Lecture Notes in
Computer Science, pages 261-270. Springer-Verlag, 1999.

[5] M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, New York, 1994.

[6] R. Giegerich and S. Kurtz. From Ukkonen to McCreight and Weiner: A unifying view of linear-time
suffix tree construction. Algorithmica, 19:331-353, 1997.

[7] Takuya Kida, Masayuki Takeda, Ayumi Shinohara, and Setsuo Arikawa. Shift-And approach to pattern
matching in LZW compressed text. In Proc. 10th Ann. Symp. on Combinatorial Pattern Matching,
Lecture Notes in Computer Science. Springer-Verlag, 1999. 1-13.

[8] Takuya Kida, Masayuki Takeda, Ayumi Shinohara, Masamichi Miyazaki; and Setsuo Arikawa. Mul-
tiple pattern matching in LZW compressed text. In Proc. Data Compression Conference '98, pages
103-112. IEEE Computer Society, 1998.

[9] Yusuke Shibata, Masayuki Takeda, Ayumi Shinohara, and Setsuo Arikawa. Pattern matchmg in text
compressed by using antidictionaries. In Proc. 10th Ann. Symp. on Combinatorial Pattern Matching,
Lecture Notes in Computer Science. Springer-Verlag, 1999. 37-50.

Received November 15, 1999,

