
DEVELOPING DYNAMIC GAITS FOR FOUR LEGGED ROBOTS

Makoto Toyomasu and Ayumi Shinohara

Department of informatics, Kyushu University
Hakozaki 6-10-1, Fukuoka 812-8581, Japan

ABSTRACT

This paper presents our development of dynamic gaits for
four legged robots. To make design and development of
gaits easier, we developed an interactive tools. A dynamic
model of the leg and wheel-like motion are proposed to
combine both wheeled and legged properties to produce smooth
quadruped motion and high flexibility.

1. INTRODUCTION

We are challenging to the Sony 4-Legged Robot League of
RoboCup Soccer. RoboCup is an international competition
of robots held every year. 4-legged League is one of the
events of this competition. As the name of the league shows,
briefly speaking, the teams compete with each other in the
soccer matches in this league. However, the players are not
human beings but autonomous legged robots. It is provided
that SONY/AIBO ERS-210 is used as players. The teams
develop their programs that run the robots autonomously,
that is, without remote control. Each ERS-210 has 3 degrees
of freedom (3DOF) on its head and four legs. There is also
2DOF for the tail and 1DOF on its mouth. The body length
(not including the head or tail) is approximately 18cm and
the length of the leg (from shoulder to foot) is just under
12cm. On its head, there are a micro-camera, stereo mi-
crophone, infrared range sensor, and touch sensor. There is
also a touch sensor at the bottom of each foot. In addition
to embedded CPU, its body houses a gyroscope and two ac-
celerometers.

Among many aspects of our development for RoboCup
Soccer, this paper focuses on the dynamic gaits for four
legged robots, which is the most fundamental factor to achieve
good performance. Although some ideas were inspired by
the reports and programs of advanced teams [1, 2, 3, 4], we
have dealt almost everything from scratch.

2. DEVELOPING ENVIRONMENT

We use OPEN-R Software Development Kit (OPEN-R SDK) [5]
for programming the robots. OPEN-R is the standard inter-
face for the entertainment robot system that Sony is actively
promoting, and the OPEN-R SDK is the cross development

environment based on gcc (C++) where we can make soft-
ware that works on AIBO. It provides us a low level Ap-
plication Program Interfaces (API), such as making joints
move, getting information from sensors, getting image from
camera, and using wireless LAN via TCP/IP.

The development process typically consists of the fol-
lowing steps: (1) writing a program in C++ language on PC
running Windows or Linux, (2) compile it using the cross-
compiler to the binary for ARM processor, (3) copy it to a
Memory Stick, and (4) slot it into the robot, and switch on
the robot. Then the robot starts moving after a slow boot-
ing process (about 1 minutes). Some debugging output can
be displayed at the console on PC through wireless LAN.
However, the program easily crashes because of bugs before
sending the output to PC, so that the debugging is a consid-
erably heavy task, compared to debug a program running
on PC itself. Moreover, the cross-compiling is also time
consuming. For example, it takes 6 minutes 25 seconds to
compile the whole program of JollyPochie [6], which we
have developed for RoboCup2003, on a PC with Pentium
III 866MHz, 504MB RAM, running WindowsXP. We note
that the size of the program is rather smaller than those by
advanced teams.

Therefore, we need to develop some software tools to
support our programming and debugging tasks, as well as
the programs themselves running on the robots.

3. INVERSE KINEMATICS

OPEN-R SDK provides us only low level functions. For
example, we have to specify twelve angles (three joints for
each leg) for every 8 micro-seconds movement. No higher
level functions, such as standing up nor moving forward
are given. Thus we have to compute everything, in order
to make the robot moved meaningfully, such as walking
around and kicking a ball.

In our program for RoboCup, we classified all motions
into two groups. One is fixed motions, such as shooting a
ball and dancing, and the other is parametric motions, typi-
cally used for walking for arbitrarily specified direction with
an adjustable speed. The rest of the paper will deal with the
second group of the motions.



z

forward

z

side

upward

x y

θθ 21

-θ3

l

l

1

2

l3

side view front view

Fig. 1. Model and coordinate frame for leg kinematics

Let θ1, θ2, andθ3 be angles for rotator, shoulder joint,
and knee joint, and letl1, l2, andl3 be the lengths of shoul-
der, upper limb, and lower limb (Fig. 1). Then the position
(x, y, z) of the paw is represented by the following formu-
lae:

x = l3 sin θ3 cos θ1 + (l2 + l3 cos θ3) cos θ2 sin θ1,

y = l1 + (l2 + l3 cos θ3) sin θ2,

z = l3 sin θ3 sin θ1 − (l2 + l3 cos θ3) cos θ2 cos θ1.

On the other hand, we need their inverse, in order to al-
low a high-level description of the gait, in which we design
the movement of each leg by its position of pow, instead of
these angles. Since our robot has 3 degrees of freedom, we
have the following closed-form inverse kinematics:

θ3 = ± cos−1

(
x2 + z2 + (y − l1)2 − (l22 + l23)

2l2l3

)
,

θ2 = sin−1

(
y − l1

l2 + l3 cos θ3

)
,

θ1 = tan−1

(
x

−z

)
∓ cos−1

(
(l2 + l3 cos θ3) cos θ2√

x2 + z2

)
.

Remark that we have two solutions for any reachable posi-
tion (x, y, z), depending on the angleθ3 of the knee is either
positive or negative. Moreover, ifx = z = 0 thenθ1 can be
arbitrarily chosen.

4. LEG MOTION

In order to create wheel-like leg motions, we specify the
following parameters.

landing positionandleaving position: positions at which the
leg reaches the ground and leaves from it.

Lift height: lift heights of the leg.

Stroke shape: We can choose either rectangle or Hermite
curve interpolation of three points, shown in Fig. 2.
Hermite curve smoothly connects between specified
points.

These parameters determine the spatial trajectory of the paw.
Moreover, additional two parameters determine the position
(x, y, z) of the paw at each time step.

power ratio: time ratio of the paw touches the floor.

time period: total steps of one stroke.

While the paw touches the floor, it moves on the straight
line at a fixed speed.

FrontZ,
BackZ

xx x

x

x

x

x

xx x

(a)rectangle

FrontZ,
BackZ

xx x

x x

x
x x

x

(b)hermite curve

Fig. 2. stroke shapes

5. DESIGNING GAITS

Every gait in our locomotion system is specified by the fol-
lowing parameters.

foot positions: positions at which each leg reaches the ground
and leaves from it.

FH, BH: heights of front and back body. They determines
the position and posture of the body.(50mm ≤ FH,
BH ≤ 150mm).

β: power ratio, defined by the time ratio of each paw touches
the floor.(0 ≤ β ≤ 1.0).

φ: phase difference between the front left leg and the rear
right legs.(0 ≤ φ ≤ 1.0).

α: phase difference between the left and right legs.(0 ≤
α ≤ 1.0).

Phase: period of one stroke.

Stroke type: shape of the stroke, either rectangle or Hermite
curve.



FrontZ, BackZ: lift heights of front legs and rear legs.(0mm ≤
FrontZ,BackZ ≤ 35mm).

By changing the parametersα, β, andφ, we can realize
each gait such as walking and trotting (including pace) in
Fig. 3 [7]. Galloping is unfortunately infeasible due to the
lack of powers of motors relative to the weight of the body.

Trotting Galloping

Time

Walking

Left Front

Right Front

Left Rear

Right Rear

Fig. 3. A timing diagram of various gaits. The function is
zero when the foot is on the ground and nonzero when it is
in the air.

From these parameters, we compute all angles of the
joints in four legs by inverse kinematics, described in the
Section 3. It is a quite time consuming task to select the best
set of the parameters, which requires a lot of trial and error.
As described in Section 2, even one trial might be cumber-
some, if we do it in a naive way. In order to reduce these
tasks, we developed an interactive software tool (Fig. 4),
which can change values for all parameters in the GUI win-
dow executed in PC. These values will be transmitted to
the robot via TCP connection, and change the gaits imme-
diately. Moreover, we have developed a visualizer of the
gaits, which shows the movement of the four legs in 3D-
animation at the screen of PC (Fig. 5). We implemented
it in python programming language [8], with using the vi-
sual module [9]. These were very useful tools for designing,
debugging and evaluating gaits. For the game, we chose a
stable, fast and low stance gaits.

6. COMPOSITE WALKING

For the direction of walking the four legs are more or less
treated as wheels. Turning is done by moving each leg in a
different diagonal direction. Walking and turning can also
be combined resulting in curved walking. This is done by
simple vector addition of three components (forward, side-
ways, turning) for each leg. By vector addition we can drive

Fig. 4. Gaits developing tool

the robot in any direction with different orientations. For-
ward walk, right sideways and right turning are defined pos-
itive vector. Backward walk, left sideways and left turning
are defined negative vector. Composition is made within
step size. Max step size is shown in the figure 7.

7. PERFORMANCE

Using this dynamic gaits developed by our tools, we suc-
ceeded to get a semi-dynamic trotting gait with a maxi-
mum walking speed of 224 mm/sec forward or backward,
200 mm/sec sideways, or 2.2rad/sec turning. As a result,
we took second place (first place was ASURA team) in the
AIBO race at the OPEN-R techno-forum held in Fukuoka
in August 2003.

8. CONCLUDING REMARKS

We have developed these tools and programs, which are the
base for playing soccer by the robots. As a initial step of
our challenge, we are rather satisfied with the performance.
However, apparently we need more efforts to compete with
the advanced teams. We describe our future plan on the
gaits in the sequel.

When we drive the robot, some parameters that control
the walk are hidden to simplify the interface to the locomo-
tion routines. The three parameters that are visible are: For-
ward, Sideways and Turn components for the walk. By ma-
nipulating these parameters we can drive the robot in any di-
rection with different orientations. Our odometry estimates
the displacement and orientation based on these values. If



Fig. 5. Visualizer of the gaits

we change any parameters that affects the walking style, the
odometry may not be able to provide an accurate estimation
for the displacement and orientation. Therefore, odometry
must be recalibrated for different sets of parameters.

When we request the robot to walk straight forward, it
may turn a bit after a few steps, this effect introduces a
slight error in the odometry. The direction of turn varies
with different robots, we suspect that it is due to the differ-
ences in weight distribution, motor strength, etc., that make
it hard to correct by adjusting the requested mapping. The
error becomes serious when a motion contains all of these
three components. It is quite troublesome to adjust odom-
etry manually, because it also depends on the surface of
the floor. In order to reduce the burden to adjust odometry,
we are now developing software tools which support semi-
automatic learning of these parameters from many trials.

9. ACKNOWLEDGEMENTS

The authors thank to our teammates of JollyPochie, for fruit-
ful discussions and cooperation to develop the system.

10. REFERENCES

[1] Manuela Veloso et al., “CMPack-02: CMU’s Legged
Robot Soccer Team,” Tech. Rep., 2002.

[2] Andre Olave et al., “The UNSW RoboCup 2002
Legged League Team,” Tech. Rep., 2002.

[3] Takeshi Kato et al., “The Kyushu United Team 2002
in the Four Legged Robot League,” Tech. Rep., 2002,
<http://www.asura.ac/> .

sideways turning

forward

Fig. 6. Three basic components of walking

max step size of forward

forward

sidemax step size of sideways

Fig. 7. Max step size of a leg

[4] Burkhard et al., “German Team 2002,” Tech.
Rep., 2002, <http://www.robocup.de/
germanteam/> .

[5] Sony Corporation Entertainment Robot Company,
“Open-R,”<http:://openr.aibo.com> .

[6] Ayumi Shinohara et al., “JollyPochie —team for
robocup soccer 4-legged robot league—,”<http::
//www.i.kyushu-u.ac.jp/JollyPochie/> .

[7] Sandro Boccuzzo and Daniel Steiner, “Artificial and
natural walking machines: Rapid Locomotion,” Re-
search note, Seminar Artificial Intelligence, 2002.

[8] Guido van Rossum, “Python,”<http:://www.
python.org> .

[9] David Scherer, “Visual python,”<http:://www.
vpython.org> .


