
Fragmentary Pattern Matching:

Complexity, Algorithms and Applications for
Analyzing Classic Literary Works

Hideaki Hori1, Shinichi Shimozono2�, Masayuki Takeda3,4, and Ayumi
Shinohara3

1 Graduate School of Computer Science and Systems Engineering
Kyushu Institute of Technology, Iizuka 820-8502, Japan

hori@daisy.ai.kyutech.ac.jp
2 Department of Artificial Intelligence, Kyushu Institute of Technology

Iizuka 820-8502, Japan
sin@ai.kyutech.ac.jp

3 Department of Informatics
Kyushu University 33, Fukuoka 812-8581, Japan

{takeda,ayumi}@i.kyushu-u.ac.jp
4 PRESTO, Japan Science and Technology Corporation, Japan

Abstract. A fragmentary pattern is a multiset of non-empty strings,
and it matches a string w if all the strings in it occur within w with-
out any overlaps. We study some fundamental issues on computational
complexity related to the matching of fragmentary patterns. We show
that the fragmentary pattern matching problem is NP-complete, and the
problem to find a fragmentary pattern common to two strings that max-
imizes the pattern score is NP-hard. Moreover, we propose a polynomial-
time approximation algorithm for the fragmentary pattern matching, and
show that it achieves a constant worst-case approximation ratio if either
the strings in a pattern have the same length, or the importance weights
of strings in a pattern are proportional to their lengths.
Keywords: fragmentary pattern, string resemblance, string matching,
NP-completeness, polynomial-time approximation

1 Introduction

Waka is a form of traditional Japanese poetry with 1300-year history. A Waka
poem has five lines and thirty-one syllables, arranged thus: 5-7-5-7-7. Since one
syllable is represented by one Kana character in Japanese, a Waka poem con-
sists of thirty-one Kana characters. In [13], we attempted to discover similar
poems semi-automatically from an accumulation of about 450,000 Waka poems
in a machine-readable form. One of the aims is to find unheeded instances of
Honkadori , a technique based on specific allusion to earlier famous poems. The
� This research is partially supported by Grants-in-Aid for Encouragement of Young

Scientists, Japan Society for the Promotion of Science, No. 12780286.

P. Eades and T. Takaoka (Eds.): ISAAC 2001, LNCS 2223, pp. 719–730, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

720 Hideaki Hori et al.

approach we took is very simple: Arrange all possible pairs of poems in decreas-
ing order of their similarity, and scholarly scrutinize a first part.

The key to success in this approach would be how to develop an appropriate
similarity measure. Traditionally, the scheme of weighted edit distance with a
weight matrix may have been used to quantify affinities between strings (see
e.g. [10]). This scheme, however, requires a fine tuning of quadratically many
weights in a matrix with the size of alphabet, by a hand-coding or a heuristic
criterion. As an alternative idea, we introduced a new framework called string
resemblance systems (SRSs for short) [13]. In this framework, similarity of two
strings is evaluated via a pattern that matches both of them, with the support by
an appropriate function that associates the quantity of resemblance to candidate
patterns. This scheme bridges a gap among optimal pattern discovery (e.g. [12]),
machine learning (e.g. [2,3]) and similarity computation (e.g. [6,10]).

An SRS is specified by (1) a pattern set to which common patterns belong,
and (2) a pattern score function that maps each pattern in the set to the quantity
of resemblance. For example, if we choose the set of patterns with variable-length
don’t-cares (VLDC’s) and define the pattern score to be the number of non-
variable symbols in a pattern, then we obtain one of the traditional measures,
the longest common subsequence (LCS): a common pattern a�d�a� for both
acdeba and abdac, whose score is three. With this framework researchers can
easily design and modify their measures not only for generic purposes but also for
definite usages. In fact, we designed several similarity measures as combinations
of a pattern set and a score function along with this framework, and reported
successful results in discovering instances of Honkadori [13].

Some of the similarity measures employed in [13] base upon a class of frag-
mentary patterns, or order-free patterns. A fragmentary pattern is formally a
multiset of non-empty strings. It matches a string w if all the strings in it oc-
cur within w without any overlaps. Although the computational complexity of
matching a fragmentary pattern had not been clarified, the potential intractabil-
ity to deal with it could be ignored for comparing Waka poems, since the lengths
of the poems are only approximately 31.

However, the computational complexity is crucial and must be paid attention
to when comparing longer texts by a fragmentary pattern. For example, searching
for a fragmentary pattern in long texts arises in detecting instances of Hikiuta.
Hikiuta is a rhetorical device used in Monogatari (tales), which is based on a
specific allusion to a famous poem and appears in the narrative, conversation,
and letters. A prose passage of the tale and the poem, therefore, share a phrase or
part of phrase when this device is used. Other possible applications in molecular
biology require that methods can process efficiently for huge size of sequences.

The purpose of this paper is to settle some fundamental issues on compu-
tational complexity related to the matching of fragmentary patterns and the
string resemblance system adopting them. Firstly, we show that a matching de-
cision of a fragmentary pattern is NP-complete. This indicates that if a pattern
contains strings whose suffices and prefixes can overlap, then finding a set of non-
overlapping occurrences of the strings becomes intractable. Also, we prove that

Fragmentary Pattern Matching 721

the problem to find a fragmentary pattern that is common to two strings and
maximizes the pattern score is NP-hard. Furthermore we present a polynomial-
time approximation algorithm for the maximization version of the fragmentary
pattern matching, and show that the algorithm achieves a constant worst-case
approximation ratio if (i) the strings in a pattern have the same length, or (ii)
the importance weights of strings in a pattern are the lengths of them.

The rest of this paper is organized as follows. Section 2 gives a brief sketch of
the framework of string resemblance systems. Section 3 defines the class of frag-
mentary patterns and then proves that the pattern matching problem for this
class is NP-complete. Section 4 discusses the complexity required for computing
similarity between two strings for SRSs with the fragmentary patterns. Section 5
considers combinatorial optimization versions of the fragmentary pattern match-
ing and gives an approximation algorithm. Section 6 describes applications to
two typical problems arisen in analysis of classic Japanese literary works.

2 A Unifying Framework for String Similarity

This section briefly sketches the framework of string resemblance systems ac-
cording to [13]. Gusfield [10] pointed out that in dealing with string similarity
the language of alignments is often more convenient than the language of edit
operations. Our framework is a generalization of the alignment based scheme
and is based on the notion of common patterns.

Before describing our scheme, we introduce some notations. The set of all
strings over a finite alphabet Σ is denoted by Σ∗. The length of a string s ∈ Σ∗

is denoted by |s|. The empty string ε is the string of length zero. The set Σ+ =
Σ∗ − {ε} thus denotes the set of all non-empty strings.

A pattern system is a triple 〈Σ,Π,L〉 of a finite alphabet Σ, a set Π of
descriptions called patterns, and a function L that maps a pattern π ∈ Π to a
language L(π) ⊆ Σ∗. A pattern π ∈ Π matches w ∈ Σ∗ if w belongs to L(π).
Also, π is a common pattern of w and u for strings w, u ∈ Σ∗, if π matches both
of them. Usually, a set Π of patterns is expressed as a set of strings over an
alphabet Σ ∪X , where X is a finite alphabet which is disjoint to Σ.

Definition 1. A string resemblance system (SRS) is a quadruple 〈Σ,Π,
L,Score〉, where 〈Σ,Π,L〉 is a pattern system and Score is a pattern score
function that maps a pattern in Π to a real number.

The similarity SIM(x, y) between strings x and y with respect to an SRS
〈Σ,Π,L,Score〉 is defined by

SIM(x, y) = max{Score(π) | π ∈ Π and x, y ∈ L(π) }.

When the set {Score(π) | π ∈ Π and x, y ∈ L(π) } is empty or the maximum
does not exist, SIM(x, y) is undefined.

The definition given above regards the similarity computation as optimal
pattern discovery. In this sense, our framework bridges a gap between similarity

722 Hideaki Hori et al.

computation and pattern discovery. In [13], the class of homomorphic SRSs was
defined, and it was shown that the class covers most of the well-known and
well-studied similarity (dissimilarity) measures, including the edit distance, the
weighted edit distance, the Hamming distance, the LCS measure. Also this class
was extended to the semi-homomorphic SRSs in [13], into which for example the
similarity measures for musical sequence comparison developed in [11] falls.

Interestingly, membership problems of homomorphic and semi-homomorphic
pattern systems are assumed reasonably to be polynomial-time solvable, while
membership problems of non-homomorphic pattern systems include NP-complete
one, e.g. the Angluin pattern system [1]. The similarity computation for homo-
morphic and semi-homomorphic SRSs can be performed in polynomial time [13]
by the idea of weighted edit graph (see, e.g., [10]) under the above assumption,
while the similarity computation via the Angluin pattern system is NP-hard in
general [14]. We emphasize that the fragmentary pattern system is included in
the class of non-homomorphic pattern systems.

3 Fragmentary Patterns and Complexity of Their
Matching

We focus on the class of fragmentary patterns in this section, and discuss the
computational complexity of a matching or a searching of an arbitrary large
fragmentary pattern, before looking into SRSs adopting this class.

A fragmentary pattern over Σ is a multiset {p1, . . . , p�} of � > 0 non-empty
strings p1, . . . , p� ∈ Σ+, and is denoted by π[p1, . . . , p�]. The size of a fragmentary
pattern π[p1, . . . , p�] is the total length of strings p1, . . . , p�, and denoted by ‖π‖.

Definition 2 (Fragmentary pattern system). The fragmentary pattern sys-
tem on Σ is a pattern system 〈Σ,Π,L〉 such that (i) Π is the set of all fragmen-
tary patterns over Σ, and (ii) L is the function that maps π[p1, . . . , p�] ∈ Π to
the language L(π[p1, . . . , p�]) that contains all strings expressed by

s0 · pσ(1) · s1 · pσ(2) · s2 · · · s�−1 · pσ(�) · s�,

where s0, s1, . . . , s� are arbitrary strings in Σ∗ and 〈σ(1), . . . σ(�)〉 is an arbitrary
permutation of integers 1, . . . , �.

For example, the language of the pattern π[abc, de] is denoted by a regular ex-
pression

L(π[abc, de]) = Σ∗abcΣ∗deΣ∗ ∪Σ∗deΣ∗abcΣ∗.

In the context of a string pattern matching, the following notions are conve-
nient. Let p and t be strings over Σ∗. An occurrence position i of p in t is an
integer such that p = t[i] · · · t[i+ |p|− 1]. The range [i, i+ |p|− 1] on t represents
the substring t[i] · · · t[i+ |p|−1] and is said to be an occurrence of p in t. A frag-
mentary pattern π[p1, . . . , p�] matches t ∈ Σ∗ if there is a sequence 〈k1, . . . , k�〉
of integers such that (i) every ki for 1 ≤ i ≤ � is an occurrence position of pi

Fragmentary Pattern Matching 723

in t, and (ii) ki + |pi| − 1 < kj holds for any ki < kj , i.e. any pair of occurrences
never overlap. We say such a sequence 〈k1, . . . , k�〉 an occurrence of π in t.

Then the following is a fundamental problem for a fragmentary pattern sys-
tem 〈Σ,Π,L〉 on Σ.

Definition 3. Fragmentary Pattern Matching (Frag-Matching)
Given a fragmentary pattern π ∈ Π and a string w ∈ Σ∗, determine whether w
belongs to L(π).

This may rather seem to be tractable. Actually, if no pair of strings in a
fragmentary pattern shares a common string as a prefix and a suffix, then strings
in a pattern cannot overlap and thus this problem is solvable in polynomial time.
It is a simple ‘AND’ query of multiple string patterns. However, in general, the
following theorem holds.

Theorem 1. Fragmentary Pattern Matching is NP-complete.

Firstly, we prove this theorem by a reduction from 3Sat to Frag-Matching,
with which a reduced instance requires an alphabet whose size depends on the
size of a given 3CNF formula. After showing it, we briefly discuss how those
symbols can be expressed over an alphabet of fixed size. The problem 3Sat
(e.g. [8]) is, given a set C = {c1, . . . , cm} of 3 literal clauses over a set X =
{x1, . . . , xn} of Boolean variables, to determine whether C is satisfiable.

Proof. In the following we show a logspace algorithm that builds an instance
(tC , PC) of Fragmentary Pattern Matching over an alphabet

ΣC = {x1, . . . , xn, c1, . . . , cm,#}

for a 3Sat instance (X,C).
We introduce some gadgets utilized to construct tC and PC . For each 1 ≤ i ≤

n, we define ti1 = xixi c1xi c2xi · · · cmxi xi#, and ti2 = ti2(1) · · · · · ti2(m) where

ti2(j) =

cjcjxicj# if cj contains xi,
cjxicjcj# if cj contains ¬xi,
cjxicj# if neither xi nor ¬xi is in cj ,

for 1 ≤ j ≤ m. With these gadgets, we define t1 = t11 · · · tn1 and t2 = t12 · · · tn2 ,
and as the concatenation tC = t1 · t2. The pattern PC is defined by the union
of P1 = ∪n

i=1{xixi}, P2 = ∪m
j=1{cjcj} and P3 = ∪n

i=1{c1xi, xic1, . . . , cmxi, xicm}.
Note that PC contains only strings of the length two. Clearly, this algorithm runs
with logarithmic space.

The gadgets defined above have the following properties: (i) P1 matches t1,
while any string in it does not match t2; (ii) for each 1 ≤ i ≤ n, the string xixi ∈
P1 is either the prefix of ti1, or the suffix of ti1; and (iii) P2 matches t2, while
any string in it does not match t1. Also, for each 1 ≤ i ≤ n and 1 ≤ j ≤ m,
either cjxi or xicj in P3 matches ti1, and the remaining one matches ti2.

724 Hideaki Hori et al.

Now, we prove that (X,C) is satisfiable if and only if PC matches tC . Firstly,
we show that if there is a truth assignment f : X → {true, false} that satisfies
(C,X), then an occurrence of PC in tC exists.

According to the assignment f , we split P1 ∪ P3 into two sets: we define, for
each 1 ≤ i ≤ n,

Qi
1 = {xixi, c1xi, . . . , cmxi}, Qi

2 = {xic1, . . . , xicm}
if f(xi) is true, and otherwise (if f(xi) = false) define

Qi
1 = {xixi, xic1, . . . , xicm}, Qi

2 = {c1xi, . . . , cmxi}.
Note that Qi

1 and Qi
2 matches ti1 and ti2, respectively, without depending on

whether f(xi) is true or false. Then, since f satisfies C, for each 1 ≤ j ≤ m,
there must be an index 1 ≤ i ≤ n such that either xi or ¬xi satisfies cj .

This can be interpreted with the above definition that for each 1 ≤ j ≤ m
there is a variable index 1 ≤ i ≤ n such that either (a) cjcjxicj# occurs in ti2
and xicj is in Qi

2, or (b) cjxicjcj# occurs in ti2 and cjxi is in Qi
2. Then, in ti2

there remains a substring cjcj to which a string cjcj in P2 of the pattern
matches. This guarantees that P2 can, with all Qi

2’s, match t2, and thus the
whole fragmentary pattern PC matches tC .

Next we show that if PC matches tC then a truth assignment associated with
an occurrence of PC satisfies C.

By the construction of (tC , PC), for each 1 ≤ i ≤ n, either the pattern

{xixi, c1xi, . . . , cmxi}, or {xixi, xic1, . . . , xicm}
must match ti1; otherwise we lose all the possible places where xixi in P1 occurs.
With respect to this choice, we define the set P i

T ⊆ P3 as either {xic1, . . . , xicm}
or {c1xi, . . . , cmxi} for each 1 ≤ i ≤ n. Also, we define PT =

⋃n
i=1 P

i
T and PF =

P3 − PT . Then, P1 ∪ PT matches t1, and this requires that P2 ∪ PF matches t2.
For each 1 ≤ i ≤ m, there is an index 1 ≤ i ≤ n such that either (a) t2
contains cjcjxicj# and xicj is in PF , or (b) t2 contains cjxicjcj# and cjxi is
in PF . Otherwise we have no positions to which cjcj matches without overlaps.

According to the occurrence of PC in tC inspected as above, we define a
truth assignment f as follows: f(xi) = true if P i

T includes cjxi (1 ≤ j ≤ m);
f(xi) = false if P i

T includes xicj (1 ≤ j ≤ m). Then, since PF and P2 must
match t2, like the discussion on Qi

2’s and P2 in above, the assignment f implies
that for each clause in C there is at least one literal having true. Therefore, C
is satisfiable if PC matches tC .

The above two properties complete this proof. ✷

The reduction presented here can be easily modified to one that reduces to
an instance of Frag-Matching over an alphabet consisting of a fixed number
of symbols. For example, an alphabet Σ = {0, 1, $} could be used to represent
finitely many symbols in ΣC by distinguished binary strings of the same length,
followed with the separator symbol ‘$.’ The coding sizes of PC and tC is expanded
only log |ΣC | times the original represented with ΣC . Even the unary coding
scheme can be applied.

Fragmentary Pattern Matching 725

Corollary 1. Fragmentary Pattern Matching is NP-complete even if ei-
ther (i) the size of the alphabet is fixed, or (ii) strings in a pattern are of the
same length, or both.

4 Complexity of Similarity Computation by Fragmentary
Patterns

We now consider the computation of similarity between two strings and its com-
putational complexity. In the following, we assume the values of score function
are integers.

Definition 4. Similarity Computation with SRS 〈Σ,Π,L,Score〉.
Given two strings w1, w2 ∈ Σ∗, find a pattern π ∈ Π with {w1, w2} ⊆ L(π) that
maximizes Score(π).

Let # be a symbol not in Σ, and π a fragmentary pattern π[u1, . . . , u�]
over Σ. For a fragmentary pattern π′ over Σ, we write π′ � π if π′ matches
the string u1# . . . u�# in (Σ ∪ {#})∗. Here, the function L is naturally ex-
tended to one that maps a pattern to the language L(π1) over Σ ∪ {#}. We
write as π1 ≺ π2 if π1 � π2 and the two multisets π1 and π2 are not iden-
tical. A pattern score function Score is strictly increasing with respect to ≺ if
π1 ≺ π2 implies Score(π1) < Score(π2). For example, let Score1(π) = ‖π‖ and
Score2(π[u1, . . . , u�]) =

∑�
i=1 |ui|2. Then, Score2 is strictly increasing, while

Score1 is not.

Theorem 2. Similarity Computation with SRS with the fragmentary pat-
tern system is NP-hard in general.

Proof. We show the NP-completeness of a decision version of Similarity Com-
putation with the class of pattern score functions that are strictly increasing:
Given two strings w1, w2 ∈ Σ∗ and a nonnegative integer k, determine whether
a pattern π ∈ Π satisfying {w1, w2} ⊆ L(π) and Score(π) ≥ k exists.

We give a reduction from Fragmentary Pattern Matching 〈Σ,Π,L〉 to
Similarity Computation with SRS 〈Σ′, Π ′, L′,Score〉. A triple 〈Σ′, Π ′, L′〉
is the fragmentary pattern system on Σ′ = Σ∪{#}, and Score is a pattern score
function defined on the set of fragmentary patterns Π ′ over Σ′, whose limitation
to Π ⊆ Π ′ is strictly increasing with respect to ≺.

For a given instance π = π[u1, . . . , u�] ∈ Π and w ∈ Σ∗ of Fragmen-
tary Pattern Matching, we construct an instance (w′

1, w
′
2, k) of Similarity

Computation by letting w′
1 = u1# . . . u�#, w′

2 = w, and k = Score(π). Since
does not occur in w′

2, there is a pattern π′ ∈ Π ′ with {w′
1, w

′
2} ⊆ L′(π′) and

Score(π′) ≥ k if and only if w ∈ L(π). This completes the proof. ��
On the other hand, there are pattern score functions that are not trivial and

with which similarity can be efficiently computed. For example, with the pattern
score function that can be considered as an order-free version of LCS, we can
readily show that:

726 Hideaki Hori et al.

Theorem 3. Similarity Computation with respect to SRS with the
fragmentary pattern system is solvable in linear time using O(|Σ|) space for
the pattern score function Score(π) = ‖π‖.

5 Maximization of Fragmentary Pattern Matching

More than a powerful pattern class for the similarity computation, fragmen-
tary patterns can be used as a conjunction of queries for texts in which word-
boundaries are not evident. By viewing the matching problem as a combinatorial
optimization problem, a fragmentary pattern can be thus applied like an at-
least-k-of-m rule. It is regarded as a generalization of the membership problem
of fragmentary patterns, to classify noisy inputs with a specified robustness.

So now we consider the problem to find a maximal subset of a given set
of strings that matches a text as a fragmentary pattern. Firstly, we introduce
some notions of combinatorial optimization problems. In the following we only
deal with and thus define ‘maximization versions’ of combinatorial optimization
problems. (See e.g. [4,5] for details.)

A maximization problem P is specified by (i) the set IP of instances, (ii) the
set SP (x) of solutions of each instance x ∈ I, and (iii) the measure mP (x, s) that
maps a pair of an instance x and a solution s of x to a nonnegative integer. The
ultimate goal of a maximization problem is to find an optimum solution, that
is, a solution whose measure is maximum. An approximation algorithm A for P
is an algorithm that produces for any instance x ∈ IP a solution s ∈ SP (x).
Furthermore, for a rational number r > 1, A is said to be an r-approximation
algorithm for P if A always produces a solution whose measure is no less than
1/r times the measure of an optimum solution. A maximization problem P is in
class APX if there is a polynomial-time r-approximation algorithm for P with
some constant r.

A maximization version of our pattern matching problem is formalized as
follows.

Definition 5. Maximum Fragmentary Pattern Matching (Max Frag-
Matching)
Given a weighted instance of Frag-Matching, i.e. a triple (π,w, t) of a frag-
mentary pattern π ∈ Π, a weight w : π → Z+ and a string t ∈ Σ∗, find
a fragmentary pattern π′ ⊆ π that matches t and maximizes the total weight∑

u∈π′ w(u) in π′.

For this maximization problem, let us consider the following simple poly-
nomial-time algorithm.
Algorithm Greedy
Input: An instance triple (π,w, t);
Output: A fragmentary pattern π′ ⊆ π that matches t.
1. Let π′ = ∅, and let I be an empty list of occurrences.
2. For each u ∈ π, in the weight-descending order with respect to w, do the

following:

Fragmentary Pattern Matching 727

a. Find an occurrence of u in t, say [k, �], which does not overlap any
occurrences in I; If no such an occurrence can be found, then continue
to the next iteration to proceed to the next string in π.

b. Add u to π′, and add the occurrence [k, �] to I.
3. Output π′.

This algorithm runs in O(n logn + m) time with the number n of strings in
π and the length m of string t, by employing appropriate sorting, set managing
and string matching algorithms. Furthermore, with certain kinds of restrictions
on input strings or weight functions, the following lemmas hold:

Lemma 1. If all the strings in π have the same length, then the algorithm
Greedy is a 3-approximation algorithm, i.e. guarantees an output whose total
weight is at least 1/3 times the total weight of an optimum solution.

Proof. Let π∗ ⊆ π be an optimum fragmentary pattern for t. An addition of
string u to π′ with some occurrence, in an iteration at the step 2-b, can interfere
at most two strings in π∗ matching t. For these two strings, there are following
three cases: (i) each of the two strings has the weight less than w(u), (ii) the two
strings are already chosen in π′, or (iii) the two strings are interfered by some
string already chosen in π′. Therefore the addition of u disables the contributions
of weights from π∗ no more than 2w(u), while in π∗ the two strings and u may
contribute totally at most 3w(u). By repeating this process, we finally obtain a
solution whose total weight is at least 1

3 times the optimum. ✷

Lemma 2. If the weight of each string is the length of it, then the algorithm
Greedy is a 4-approximation algorithm.

Proof. This can be shown by a discussion similar to the previous proof. An
addition of u to π′ at each iteration of the Step 2-b may block some strings
in π∗ occurring in the text. Since |u| = w(u) contiguous symbols are occupied
by the occurrence of u, the total weight of those blocked strings is at most
w(u) − 2 + 2w(u) < 3w(u). The string u may also be included in π∗, so the
algorithm is guaranteed to choose a fragmentary pattern whose total weight is
no less than 1

4 = w(u)
w(u)+3w(u) times the optimum. ✷

Note that the restricted subproblem considered in lemma 1 includes instances
constructed in the reduction presented in Section 3. Also the case dealt with
lemma 2 seems likely to occur in practical applications, since shorter strings
may have less meaning in general, and in automated pattern discovery some
automatic weighting scheme will be requested.

Corollary 2. Max Fragmentary Pattern Matching is in the class APX
[5] if strings in a fragmentary pattern have the same length. Also the problem is
in APX if the weight function is equal to or stronger than the length of string.

728 Hideaki Hori et al.

6 Applications for Classic Literary Works

Honkadori is a technique of composing a Waka poem as an allusive-variation of
a model poem. In [13], we developed a similarity measure appropriate for finding
instances of Honkadori, based on a measure to quantify affinities between two
lines which falls into the class of semi-homomorphic SRSs mentioned in Sec-
tion 2. With this measure we have succeeded to discover instances of Honkadori
which have never been pointed out in the long research history of Waka po-
etry. In [13] we also showed two similarity measures, which are defined as SRSs
with fragmentary pattern systems. The difference of the two measures lies in the
pattern score functions. Each of the pattern score functions can be described as

Score(π[u1, . . . , u�]) =
�∑

i=1

f(ui) (1)

with a function f that maps a string in Σ to a real number. One measure is
obtained by letting

f(u) =
{ |u|, if |u| > �;

0, otherwise, (2)

where � is a threshold in ignoring short fragments in a common pattern. In [13],
we set � = 1. This measure is suitable for discovering instances of Honkadori
with word-order alternations, as shown in Fig. 1.

Poem alluded to. (Kokin-Shū #125)
ka-ha-tsu-na-ku/i-te-no-ya-ma-fu-ki/chi-ri-ni-ke-ri

ha-na-no-sa-ka-ri-ni/a-ha-ma-shi-mo-no-wo

Allusive-variation. (Shin-Kokin-Shū #1162)
a-shi-hi-ki-no/ya-ma-fu-ki-no-ha-na/chi-ri-ni-ke-ri

i-te-no-ka-ha-tsu-ha/i-ma-ya-na-ku-ra-mu

Fig. 1. An instance of Honkadori with word-order alternations

Although Similarity Computation for this score function is NP-hard, the
length of Waka poems we dealt with was approximately 31. Thus we could have
performed the computation in feasible time.

The other measure is obtained by letting f(u) be the rarity of string u, that is,
f(u) is the logarithm of inverse of the probability of occurring u in database. The
idea of rarity was shown to be effective in identifying only close affinities which
are hardly seen elsewhere, possibly excluding known stereotype expressions [13].

Hikiuta is a poetic device used in tales, which is based on a specific allusion to
a famous poem. We wish to find a portion of a tale which alludes to a poem. We
use an SRS with fragmentary pattern system to quantify the affinities between

Fragmentary Pattern Matching 729

a substring of a tale and a poem. For this purpose, the length of a substring
to be compared to a poem has to be limited by an appropriate threshold called
window size, as in the episode matching (e.g. [9]). Our problem is then formalized
as follows:

Given a short string, called poem, a long string, called tale, a window
size k > 0, and a threshold t, to find all substrings of the tale that are of
length k and resemble the poem with a similarity value higher than t.

Preliminary experimental results suggest that the pattern score function de-
fined by Eq. 1 and Eq. 2 with a relatively large value of � might be suitable
for effectively detecting instances of Hikiuta within a tale. A practically efficient
approach would be a filtering technique based on searching of fragments of the
poem that are of length greater than the threshold � within the tale, in which
such index structures as the directed acyclic word graphs (e.g. [7]) will play a
key role, and verification of candidate areas of the tale.

Acknowledgments

The authors would be grateful to the anonymous referees for their careful reading
of the draft and useful comments.

References

1. D. Angluin. Finding patterns common to a set of strings. J. Comput. Sys. Sci.,
21:46–62, 1980. 722

2. D. Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75(2):87–106, 1987. 720

3. D. Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, 1988.
720

4. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and
M. Protasi. Complexity and Approximation. Springer-Verlag, Berlin, 1999. 726

5. G. Ausiello, P. Crescenzi, and M. Protasi. Approximate solution of NP optimization
problems. Theor. Comput. Sci., 150: 1–55, 1995. 726, 727

6. A. Z. Broder. On the resemblance and containment of documents. In Proc. Com-
pression and Complexity of Sequences (SEQUENCES’97), pages 21–29, 1997. 720

7. M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, New
York, 1994. 729

8. M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman &
Co., New York, 1979. 723

9. G. Das, R. Fleischer, L. Gasieniec, D. Gunopulos, and J. Karkkainen. Episode
Matching. In Proc. 8th Annual Symposium on Combinatorial Pattern Matching
(CPM’97), pages 12–27, 1997. 729

10. D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, New York, 1997. 720, 721,
722

730 Hideaki Hori et al.

11. T. Kadota, M. Hirao, A. Ishino, M. Takeda, A. Shinohara, and F. Matsuo. Musical
sequence comparison for melodic and rhythmic similarities. In Proc. 8th Interna-
tional Symposium on String Processing and Information Retrieval (SPIRE2001),
2001, to appear. 722

12. S. Shimozono, H. Arimura, and S. Arikawa. Efficient discovery of optimal word-
association patterns in large databases. New Gener. Comput., 18(1):49–60, 2000.
720

13. M. Takeda, T. Fukuda, I. Nanri, M. Yamasaki, and K. Tamari. Discovering in-
stances of poetic allusion from anthologies of classical Japanese poems. Theor.
Comput. Sci., 2001, to appear. 719, 720, 721, 722, 728

14. K. Yamamoto, M. Takeda, A. Shinohara, T. Fukuda, and I. Nanri. Discovering
repetitive expressions and affinities from anthologies of classical Japanese poems.
In Proc. 4th International Conference on Discovery Science (DS2001), 2001, to
appear. 722

	Fragmentary Pattern Matching: Complexity, Algorithms and Applications for Analyzing Classic Literary Works
	Introduction
	A Unifying Framework for String Similarity
	Fragmentary Patterns and Complexity of Their Matching
	Complexity of Similarity Computation by Fragmentary Patterns
	Maximization of Fragmentary Pattern Matching
	Applications for Classic Literary Works

