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Knowledge Acquisition from Amino Acid Sequences by
Machine Learning System BONSAI ‘

SHINICHI SHIMOZONO," AYUMI SHIN’OHARA,TT TAKESHI SHINOHARA, '
SATORU MIYANO," SATORU KUHARA' and SETSUO ARIKAWA''

We present a machine learning system, called BONSALI, for knowledge acquisition from positive
and negative examples of strings, and report some experiments on protein data using the PIR and
GenBank databases. This learning system is constructed with an algorithmic learning theory for
decision trees over regular patterns, which is newly developed for this work. As a hypothesis, the
system tries to find a pair of a classification of symbols'called an alphabet indexing and a decision
iree over regular patterns, which' classifies given examples with high accuracy. Through the
experiments, the system discovered very simple hypotheses that exhibit important knowledge about
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transmembrane domains and signal peptides.

1. Introduction

Algorithmic learning is a process carried out
by a computer program that receives examples
and guesses the unknown rule that generates the
examples. In general words, therefore, it is
considered as a computational model of induc-
tion. - When guessed rules-are represented in a
way suitable for human understanding, learning

* processes can also be viewed as a kind of knowl-
edge acquisition.

This paper shows that the research based on
algorithmic. learning theory that made a great
success in practical applications in‘ Molecular
Biology. As is well known, most important
information such as genes and proteins are
coded ‘in sequences of symbols from a finite
alphabet. Therefore Molecular Biology should
be one of the most important and suitable fields
to apply algorithmic learning.

The hydropathy index of amino acid residues
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has ‘been shown to play an essential role in
transmembrane domain identification.»2:921) In
Ref. 1), 2), we classified 20 symbols of amino
acid - residues to' three- categories {%,+, —}
according to the hydropathy index of Kyte and
Doolittle.” - Then we transformed amino acid
sequences ‘to ‘those consisting of three symbols
and used them as examples for our.learning
algorithms. = Interestingly, after this transforma-
tion, there are only a few overlaps -between
transmembrane. "domain sequences  and non-
transmembrane domain sequences. - By ‘experi-
ments ‘using the learning algorithm in Ref. 1),
10), we have verified that this transformation is
very useful for the transmembrane domain
identification problem. In Ref 2), we also
developed another learning system that produces
a hypothesis from a small set P-of strings called
positive examples and a small set. N ‘of strings
called negative examples. As'a hypothesis, the
system searches for a decision tree over regular
patterns that classfies P and N completely. The
system' discovered a very small hypothesisthat
distinguishes all ‘transmémbrane domain
sequences in the PIR .database'? from other
parts with accuracy more than 91%. With this
system, we: have seen that the transformation by
the hydropathy index is very successful. In this
paper ‘we consider -a transformation from an
alphabet to-a smaller alphabet which :does not
lose any positive and negative-information of the
original examples. We shall call such a transfor-
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mation an alphabet indexing or simply an in-
dexing.

Without using the indexing technique, we
have seen in Ref. 2) that the learning system has
found hypotheses with sufficiently high accuracy.
However, the biological knowledge on the
hydropathy index greatly increases the accuracy
and simplifies hypotheses.
inspired us to discover such an indexing itself
without any explicit help of biological knowl-
edge just by a learning algorithm with data.

This paper presents a machine learning system
BONSALI that has succeeded in discovering such
an indexing together with a decision tree that
attains very high accuracy. Given positive and

negative examples, BONSAI will find an alpha- ‘

bet indexing providing “good” decision trees
over regular patterns. The idea behind our
method is to combine the local search technique
for alphabet indexings and the learning algo-
rithm developed in Ref. 2). The learning algo-
rithm produces a decision tree over regular
patterns for positive and negative examples and
the other part works to find a good alphabet
indexing. ~ This system is developed with an
algorithmic learning theory for decision: trees
over regular patterns and combinatorial ‘optim-
ization schemes for alphabet indexings on sym-
bols of strings. :

An alphabet indexing is a transformation of
symbols to reduce the size of the alphabet for the
positive and negative examples, without missing
important information in original data. In the
case of amino acid residues, an alphabet index-
ing can be regarded as a classification of
20 kinds of amino acid residues to a few catego-
ries. In the experiment on transmembrane do-
main identification from the PIR database; this
system has found an alphabet indexing that is
nearly the same as the hydropathy index of Kyte
and Doolittle, without any knowledge on the
hydropathy index. It has also discovered
hypotheses with high  accuracy for- recogni-
tion of signal regions on' .coding se-
quences.S),S),l1),16)——18),20) X

First we present a learning algorithm for
decision trees over regular patterns, and then we
describe a local search algorithm for optimizing
the alphabet indexing to produce good hypoth-
eses. Finally, we report some experiments of our
system'® on transmembrane domain sequences

This observation
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and signal peptide sequences by using the PIR
and GenBank databases.

2. Learning Algorithm and Combinatorial
Optimization Scheme for BONSAI Sys-
tem AT,

This section gives algorithms for constructing
decision trees over regular patterns and finding
indexings that are implemented in our machine
learning system.

The whole algorithm consists of two parts:
one for constructing a decision tree and the other
for finding a better indexing (Fig. 1). The first
part is almost the same as one which we devel-

_oped in Ref. 2). The only difference is that our

new algorithm can deal with inconsistent train-
ing examples. In our previous work,? we
assumed that the sets of positive examples P and
negative examples N are mutually disjoint, and
the algorithm may not terminate if the examples
are not consistent. However, in this approach
combined with searching for an indexing, the
sets of indexed examples may have some over-
laps though these overlaps should be small.
Thus, our new algorithm is designed to break off
the recursion when it recognizes that it is impos-
sible. to divide the positive and negative exam-
ples into smaller fractions.

2.1 Learning Decision Trees over Regular

Patterns

First we briefly review how to construct deci-
sion trees over regular patterns from positive
and negative examples. :

A regular pattern r is a string of the form 7
= WoX1 W1 X1 WoXp* ==X, Wy, Where each w; is a con-
stant string and each x; is a variable that
matches any string. -Hence the above pattern
defines any string containing substrings wy, wi,

**, Wyp.in that order. L(x) denotes the set of
those strings.

A decision tree over regular - patterns is a
procedural definition of rules to determine the
class for any given string. Each internal node is
labeled with a regular pattern-and each leaf is
labeled with a name of a class (the class name is
‘Positive’ or ‘Negative’). An internal node has
two successors called the left and right children.
To classify a given string, we start from the root.
The pattern on the current internal node exam-
ines whether the string matches the pattern or
not. Then according to its answer ‘yes’ or ‘no’,
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Fig.1 The BONSAI system. As an input, the system
takes a pair of the sets of the positive and the
negative examples, and computes an indexing, a
decision tree and the accuracy. The first part
builds a decision tree and evaluates its accuracy
for the examples transformed by the indexing ¢.
The second part searches a better indexing by
using the accuracy computed in the first part.
The interaction of these two parts repeats until
the system reaches to a locally optimal indexin

and a decision tree.

one of the children is chosen to continue the
classification. This continues until the process
reaches a leaf. Then we get the classification of
the string by the name of that leaf. For a
decision tree T over.regular patterns, we define
L(T) to be the set of all strings that are recog-
nized as ‘Positive’ by T.

The machine learning system produces - deci-
sion trees over regular patterns. On each trial, it
chooses a sample called positive examples and
negative examples randomly, and produces a
hypothesis described by a decision tree over
regular patterns that classifies those examples
perfectly. To find a small decision tree, accord-
ing to the widely believed principle “a smaller
decision tree involves an essential knowledge,”

we employed and modified ID3 algorithm by
Quinlan.'® The ID3 algorithm assumes examples
specified with explicit attributes in ‘advance. On
the other hand, our approach assumes a space of
regular patterns which are simply generated by
given positive and negative examples. = Our
algorithm tries to find appropriate regular pat-
terns from this space dynamically during the
construction of a decision tree in a feasible
amount of time. This is'a point which is very
suited for our empirical research.

Let P and N be finite sets of strings. Notice
that P and N may have some intersection.
Using P and N, we deal with regular patterns of
the form ayX;@1 X+ Xz, such that o, ***, Qp are
substrings of some strings in PIJN. Let I1 (P,
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N) be some family of such regular patterns o

made from P and N. The family I] (P, N) is
appropriately given and used as a space of
attributes.
For a regular pattern <[] (P, N), the cost
E(x, P, N) is the one defined in Ref. 13) by
E(x, P, N) =B Lo m)
1—,—[—(5"1'}& 1(po, mo),
where p;(resp. 7;) is the number of positive
examples in P (resp. negative examples in N)
that match 7, ie, pi=|PNL(7)]|, m=|NN
L(n)|, and py (resp. m) is the number of posi-
tive examples in P (resp..negative examples in
N) that do not match 7, i.e., pp=
=|NNL(7)|, L(7) =2*~
I(x, y) _
{0 (if x=0 or y=0)

L(rx), and

X
_x+y1°g xgl}—ylcéx}}]—y
(otherwise).

Algorithm DecisionTree (P, N) sketches the

decision tree algorithm for J] (P, N); where

Tree(m, Ty, Ti) returns a new tree with a root

labeled with 7 whose left and right subtrees are

To and T, respectively.

x+y

function DecisionTree (P, N: sets of strings):
node;
begin
if N =@ then return Tree (“P”, null, null) /
* leaf labeled with “P”*/

else if P=f then return Tree (‘“N”, null, '

null) /* leaf labeled with “N”*/
else begin
Find a shortest pattern 7 in TI(P, N)
that minimizes E (x, P, N);
P\ —P(\L(7); Pys—P—Py;
Ni—NNL(7); No—N—Ny;
if (P,=P and N,=N)
or (P,=P and N,=
return Tree (“P”, null, null)
else
return Tree (7, DecisionTree (P,
No), DecisionTree (P, N;))

N) then

end
end

Algorithm 1: DecisionTree

[POL(x)|, no

“ g (N)=p.
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2.2 Finding Alphabet Indexing by Local
Search

In Ref. 2), we have seen that the learning
algorithm described in the previous section has
found-hypotheses with sufficiently high accuracy.
However, the biological knowledge on the
hydropathy index® used for classifying amino
acid residues- greatly increases the accuracy and
simplifies hypotheses, even the classified cate-
gories are only three.»? Inspired by this obser-
vation, we consider the problem of discovering
such an indexing itself without any explicit help
of biological knowledge just by a learning algo-
rithm with data. In this section, we define an
indexing for transforming sequences as a map-
ping from an alphabet with the large number of
symbols to another alphabet with fewer symbols
without losing any positive and negative infor-
mation of the original examples.

Generally, an indexing of an alphabet 3 by
another alphabet I" is a2 mapping from 3 to T'.
For‘disjoint sets P and'N of strings over 2, an
indexing ¢ of X for P and N by T' is a
mapping . ¢: 1T satisfying ¢ (P) (¢ (N) =4,
where the homomorphism ¢ (s) for a string s€

LD s de~ﬁned by the transformation of each
»symbols ¢ (¢

cn)=¢(c) ¢ (cn).

In the above definition, the indexing ¢ for the
sets of the positive examples P and the negative
examples N miust satisfy the condition ¢ (P)
‘Although the hydropathy index
which we used in Ref. 1), 2) satisfied the above
condition, this is a too strong condition for
practical . applications since the problem of
finding an indexing is shown NP-hard.'¥ Thus,
in practice, we may relax the condition so that
¢(P) and ¢(N) have a few overlaps.

Now we describe the second part of the sys-
tem, the algorithm FindGoodlndex, that finds
better indexings. ‘It is a local search algorithm
that uses a function Score (¢) calling Decision-
Tree. Let ¥ be the set of indexings from > by
I.. We can consider ¥=T"2! by assuming an
indexing ¢ as the string ¢ (61) ¢ (02) -+ ¢ (0») for
D={01, >+, ox}: Let POS be aset of positive
examples and NEG be a set of negative exam-
ples. First, the algorithm randomly chooses two
small subsets pos of POS and neg of NEG, and
begins with an indexing ¢ randomly generated.
Then it searches an-indexing ¢from its neigh-
bors such that its score is the best among the
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neighbors of ¢. The neighbors of ¢ are the
indexings whose distance from ¢ is one, where
the distance between ¢ and ¢ in ¥ is defined by
d (¢, ¢)=l{o€Z¢(0)*+¢(0)}|. To evaluate
the Score (¢) of an indexing ¢, it constructs a
tree 7 by running the procedure DecisionTree
(¢ (pos), ¢ (neg)) and then evaluates the suc-
cess rate that T explains ¢ (POS) and ¢ (NEG)
correctly. Then Score (¢) is determined: by

1L(T)N¢(POS)| [L(T) N¢(NEG)]

|¢ (POS)| ¢ (NEG)|
which ‘represents the geometric mean of the
success rates of the decision tree T for positive
examples ¢ (Pos) and negative examples
¢ (Neg). This search process continues until no
better indexing is found from its neighbors. The
strategy of the algorithm is sketched in Algo-
rithm FindGoodIndex.

function FindGoodIndex (POS, NEG: sets of
strings): indexing; -
begin
Select small subsets pos of POS and neg of
NEG randomly;
Generate randomly ¢ in ¥;
repeat :
Find ¢'e{¢=¥|d (¢, ¢") =1} that maxi-
mizes Score(¢’);
if Score (¢’) <Score(¢) then return ¢;
=4’
forever;
end
Algorithm 2: FindGoodIndex

In order to find good indexings, other
methods than local search may be successfully
applied. The techniques of simulated annealing
and genetic algorithms are candidates for good
searching methods. k

However, finding a locally optimal indexing is
computationally hard. This can be shown by
investigating our local search strategy as a
polynomial-time local .search .problem (PLS-
problem for short), which has been defined by
Johnson et al.® to formulate and analyze the
local search algorithms (see the Ref. 8) for the
details) . -

For our problem, we have obtained the result
that finding locally optimal indexing for the
general weighted problem is PLS-complete.!®

Even in the unweighted case, findirig an indexing
by our algorithm is P-complete. This fact asserts
that the algorithm cannot be efficiently parallel-
izable unless NC=P.% ’

3. Experiments

In this section, We report our experiments on
identification - problems -for' transmembrane
domains and signal peptides.

3.1 Method of Experiments

The sets POS and NEG denote the sets of
positive and negative examples used as inputs to
the system.  In applying our machine learning
system to these data sets, we also:have to specify
the size of the small sets pos and neg which shall
be chosen from POS and NEG: at random.
Moreover, we have’ to ‘specify the size of the
indexing alphabet. If we specify |pos|, |neg| and
the size of the indexing alphabet, the system with
POS and NEG will produce a hypothesis (T,
¢) consisting of a"decision tree T' over regular
patterns and an indexing ¢. The accuracy of
(T, ¢) for POS and NEG is represented by a
pair (p%, n%), where p% (resp. n%) of POS
(resp. NEG) are recognized as positive (resp.
negative). The score of the hypothesis (T, ¢) is
defined by

|L(T) "¢ (POS)|, [L(T) N¢(NEG)|

|¢ (POS)| |¢ (NEG) | '

The system tries to search a hypothesis with a

higher score by changing the initial indexing ¢

and the sets pos and neg randomly. After some

amount of time, the system shall give the hypoth-
eses with the highest scores.

In experiments, we assume the size of pos and

"neg to be

|pos|=|neg|=10

‘and the indexing alphabet T" has 2~3 symbols.

Moreover, in order to avoid combinatorial
explosions, we also assume that the regular
patterns attached to the nodes of decision trees
are of the form

xay,

.where x and y are variables and « is a substring

taken from pos and neg. There is no other
special reason why we used only these regular
patterns.

3.2 Positive and Negative Examples

First, we describe the positive and negative
examples used for our experiments. The data for
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transmembrane domains™'?®  are. amino acid
sequences taken from the PIR database.!? For
signal peptides,®1110-1820) we yse the' Gen-
Bank database.®

Since the PIR database and the GenBank
database are not at all complete, the data we
shall mention below may contain some noise.

3.2.1 Transmembrane Domains.

We use the PIR database, which contains the
amino acid sequences with FEATURE field
where transmembrane domains are indicated. In
this experiment, positive examples are the amino
acid sequences of transmembrane- domains. As
negative examples, we use the amino acid
sequences located in other parts than transmem-
brane domains. Since a transmembrane domain
consists of around 30 residues, we selected

Transactions of Information Processing Society of Japan
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sequence w[46..75] is a possible negative exam-
ple, while w[40..60] is not, because the initial
segment of w[40..60] is located in a transmem-
brane domain w[10. .45].

We collect all the positive examples from the
PIR database (Table-1). The number of posi-
tive examples is 689. We use 19256 negative
examples randomly chosen.

3.2.2 Signal Peptides

We use the GenBank database which contains

Tablel Examples taken from PIR database.

Positive
689

Sequences ‘Negative

19256

Transmembrane

Table 2 Examples taken from GenBank database,

sequences of length 30 for negative examples. Sequences Positive Negative
For example, if there is an amino acid Viral 120 4882
sequence w in the PIR database whose FEA- Bacterial 495 7330
TURE field indicates that two transmembrane Invertebrate 263 1927
domains are contained: Primate 1032 3162
10-45 # Domain transmembrane Rodent 1018 3158
100-126 # Domain transmembrane Other Mammalian 235 588
Then the substrings w([10..45] and w[100. . Other Vertebrate 207 1056
126] are taken as positive examples. The Plant 370 3074
Indéxing v
Amino Acid ACDEFGHTIZKLMNZPI QRS STVWY
New Symbol 0011001010001 110000 O
Hydropathy Index|1.8 2.5 -3.5 3.5 2.8 -0.4 -3.2 45 3.9 38 1.9 -3.5 -1.6 3.5 -45 -0.8 -0.7 4.2 0.9 -1.3
Decision tree
N yes
Q1[0 — D
no ? ¥ [4:5%, 86.6%)
@ [fa]—

[86.2%, 4.0%)]

¥

“[2.2%, 5.8%]

[7.1%, 3.6%)]

(total: 93.3%, 92.4%)

Fig.2 Transmembrane domains. The indexing alphabet is {0, 1}
of size 2. We can see that the indexing is closely related to
the hydropathy. The leaf label P (resp. N) is the class

name of

transmembrane

domains = (resp. non-

transmembrane domains). The pair [p%, n%] attached to
a leaf means that p% of 689 positive (resp. n% of 19256

. negative) examples reached the leaf. The pair (total: p%,
n%) means that p% of 689 positive (resp. n% of 19256
negative) examples - are recognized as transmembrane
domains (resp. non-transmembrane domains).
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DNA and RNA sequences with information
about their features. Signal peptides are indicat-
ed in the FEATURE field.

A signal peptide is located at N-terminal
region, that is at the initial segment of an amino
acid sequence. We collected the signal peptide
sequences beginning with a Methionine (M) and
of length at most 32. Such sequences constitute

the set of positive examples.: Thus, for the
negative examples, we take N-terminal regions
of length 30 obtained from complete sequences
that have no signal peptide and begin with a
Methionine. :

We made experiments on the following items
(Table 2). The entries in the second and third
columns contain the numbers of positive and

Sequences Indexing Tree \
ACDEFGH IKLMNPQ RSTVWY X G) yes CD)
Viral 0022011 0000220 101002 2 (1) o 20.3% 85.4%
Bacterial 1022000 1000011 111000 2 (2) no y [20-3%, 85.4%]
Invertebrate 0122022 0210211 011011 2 - (3)
Primate 0022012 0201210 010012 2 (4) @ . o@) .
Rodent 0122011 1202122 210002 0 (5) (64.3%, 9.9%] [15.4%, 4.7%]
Other Mammalian 0122022 0211211 000010 (6)
Other Vertebrate 0022002 0200012 200100 0 (7) (total:.79.7%, 85.4%)
Plant 0022002 1001220 000102 2 (8)
yes
“a © [E2zoF— D
m yes @™ no%, [8.5%, 67.5%)]
no ‘ [10.0%, 72.5%] @
Foozl— D % [3.4%, 14.8%]
‘ [0.8%, 10.6%] '
@ [88.1%, 17.7%)]

(89.2%, 16.9%]
(total: 89.2, 83.1)

yes

N
?—» @
. nod [13.7%, 90.6%] :

D)
[86.3%, 9.4%]

@

(total: 86.3%, 90.6%)

\ yes .

no%

3)
[11.4%, 85.2%)]

[52.5%, 4.3%)] [36.1%, 10.5%)]
(total: 88.6%, 85.2%)

AN yes
“ T——* T-’ (€D)
nol T [11.3%, 71.9%)] ¥
P2e D @

: [4.0%, 8.0%] [15.9%, 6.7%]

(P
(68.8%, 13.4%)
(total: 84.7%, 79.9%)

> (toral: 88.1%, 82.3%)

yes
(@D
noé . [10.1%, 78.7%]

[2020] —[22]+ ()
} ISR

O

D)
[85.1%, 13.5%] [2.9%, 6.0%)]
(total: 87.0%, 84.7%)
yes
(8) 2 ’
no ? [13.3%, 67.1%)

[50903—+ 252 — (1D

L [1.1%, 8.1%]
[zo02]—+ D
[60.8%, 10.5%] ; [0.5%, 2.6%]
[24.3%, 1.7%)]

(total: 85.1%, 77.8%)

Fig.3 Signal peptides. Indexings for amino acid residues and decision trees classifying
signal peptides obtained by the Bonsai system. Each decision tree numbered from
(1) to (8) with indexings in the table describes the rule (see Fig.2) for various
kinds of signal sequences. The amino acid residues corresponding to symbol 2 are -
important ‘in classification in this result. .
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negative examples.

3.3 Results . ‘

The following figures show good indexings
and decision trees that: our ML system found
from the examples explained in the above :sec-
tion. In the figures, the node label,-for example,
11 is an abbreviation of x11y that tests if a given
sequence contains the sequence 11.

3.3.1 Transmembrane Domains

The result is shown in Fig. 2.

In Ref. 2), we obtained a decision tree over
regular patterns from raw sequences which has
three nodes and accuracy (84.8%, 86.9%). This
-was improved to accuracy (91.4%, 94.8%) in Ref.
2) by using an indexing by three symbols
according to the hydropathy index of Kyte and
Doolittle.” The decision tree in Fig.2 has
almost the same accuracy as the latter. The
interesting point of the indexing in Fig. 2 is that
all amino acid residues of hydropathy greater
than —1.0 are mapped to 1 and the other amino
acid residues are mapped to.0 except Asparagine
(N). Thus it almost exactly corresponds to the
hydropathy indices of amino acid residues. Of
course, the system does not assume the hydropa-
thy of amino acid residues inside its program.

3.3.2 Signal Peptides

The results are shown in Fig. 3.

As is seen, the indexings in Fig. 3 are similar.
Decision trees in Fig. 3 show that the amino acid
residues corresponding to symbol 2 are impor-
tant in classification. :

3.4 Validity of Hypotheses

Since the hypotheses produced - by our
machine learning system may be largely affected
by training sets POS and NEG, we may claim
that the results shown in the above section
would be no more accurate for unknown exam-
ples. Coping with this claim, we made the
following experiments ~that will support the
validity of the hypotheses even for unknown
examples. .

Instead of taking- all examples, we divided
them into training and testing sets. Formally, let
AlIPOS be the set of all known positive exam-
ples and A/INEG be the set of all negative
examples we have collected. For experiments,
we choose, at random, subsets POS and NEG of
AlIPOS and AIINEG, respectively. We assume
that |POS|/|AlIIPOS|=|NEG|/| AINEG|=R.
These sets POS and NEG shall be used as
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Fig.4 Experiment for bacterial sequences. Each point
(x, y) represents a result of an experiment with
ratio R. x is the score for training sets and y is
the score for testing sets.

inputs to our system for finding hypotheses.
The sets TestPOS =AIlPOS —POS and Test-
NEG=AIINEG— NEG are used for testing the
validity of the hypotheses. For the ratios R=
0.1, 0.3, 0.5, 0.7, we made experiments for bacte-
rial and primate sequences. For the hypotheses
produced by the system with POS and NEG, we
compared the scores for training sets with those
for testing sets TestPOS and TestNEG.

Figure 4 shows the result of the experiments.
We see that the scores for training sets and
testing sets are nearly the same for the ratio R>
0.3. In such case, we can say that the accuracy
of the hypothesis is preserved very well for
unknown examples. Even for R=0.1, the situa-
tion is not so bad.

4. Conclusion

We have presented an approach to bioinfor-
matical "knowledge acquisition by using a
machine- learning system ‘and confirmed the
effectiveness of this approach by some experi-
ments on identification problems of transmem-
brane domains and signal peptides.

As shown in Ref. 1), 2), hypotheses discover-
ed by our system can be used successfully to
predict-transmémbrane domains. " In contrast, for
predicting regions " of signal peptides, some
modifications. on the setting will be naturally
needed. .In our experiments, the positive exam-
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ples are amino acid sequences of signal peptides
and the negative examples are N-terminal
-regions of length 30.' Therefore, a hypothesis
produced by our machine learning system can
say whether an N-terminal region contains sig-
nal peptides, but cannot say how long the signal
peptide is. This is a drawback in our system
since the view to data is expressed by regular
patterns. :
The strength of our method is that the system
provides a hypothesis in the form of an indexing
and a small decision tree over regular patterns,
which may be more understandable and suggest
key items in classification. It gives a possibility
of discovering important knowledge expressed
in the indexing and the decision’tree over regular
patterns.. We observed that this is the case in
transmembrane domain identification. :
We believe that our approach will provide a
way to evaluate the studies of biology and can
open a new frontiers for biologists to study.
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