
Vol. 42 No. 3 IPSJ Journal Mar. 2001

IPSJ 40th Anniversary Award Paper

Speeding Up String Pattern Matching by Text Compression:

The Dawn of a New Era

Masayuki Takeda,† Yusuke Shibata,†,☆ Tetsuya Matsumoto,†

Takuya Kida,† Ayumi Shinohara,† Shuichi Fukamachi,††

Takeshi Shinohara†† and Setsuo Arikawa†

This paper describes our recent studies on string pattern matching in compressed texts
mainly from practical viewpoints. The aim is to speed up the string pattern matching task, in
comparison with an ordinary search over the original texts. We have successfully developed (1)
an AC type algorithm for searching in Huffman encoded files, and (2) a KMP type algorithm
and (3) a BM type algorithm for searching in files compressed by the so-called byte pair
encoding (BPE). Each of the algorithms reduces the search time at nearly the same rate as
the compression ratio. Surprisingly, the BM type algorithm runs over BPE compressed files
about 1.2–3.0 times faster than the exact match routines of the software package agrep, which
is known as the fastest pattern matching tool.

1. Introduction

String pattern matching is one of the most
fundamental operations in string processing.
The problem is to find all occurrences of a given
pattern in a given text. It becomes more im-
portant to find a pattern in text files efficiently,
as files become large. Recently, the compressed
pattern matching problem attracts special con-
cern, in which the aim is to find pattern occur-
rences in compressed text without decompres-
sion. It has been extensively studied for vari-
ous compression methods by many researchers
in the last decade from both theoretical and
practical viewpoints. See Table 1.
One important goal of studies on this prob-

lem is to perform a faster search in compressed
files in comparison with a decompression fol-
lowed by an ordinary search (Goal 1). Al-
though the prices of storage devices are com-
ing down year by year, the data to be stored
increase even more rapidly and we still tend
to store them in a compressed form. Typical
examples of such situations are mobile devices
such as notebook computers and personal digi-
tal assistants (PDAs), where a user is often ea-
ger to insert any available information up to a
possible limitation. Goal 1 is indeed attractive
for this reason.
A more ambitious goal is to perform a faster

† Department of Informatics, Kyushu University
☆ Presently with NTT Comware
†† Department of Artificial Intelligence, Kyushu Insti-

tute of Technology

search in compressed files in comparison with
an ordinary search in the original files (Goal 2).
In this case, the aim of compression is not only
to reduce disk storage requirement but also to
speed up string searching task. Let td, ts, and
tc be the CPU times for a decompression, for
searching in uncompressed files, and for search-
ing in compressed files, respectively. Goal 1
aims for td + ts > tc while Goal 2 for ts > tc.
Thus, Goal 2 is more difficult to achieve than
Goal 1.
The searching time is the sum of the file I/O

time and the CPU time for pattern matching.
In this paper, we focus on the reduction of the
CPU time. Of course, text compression reduces
the file I/O time at the same rate as the com-
pression ratio, but it may increase the CPU
time. When the data transfer is slow, e.g., net-
work environments, the CPU time is negligible
compared with the file I/O time. In this case,
the elapsed time for searching in compressed
files would be shorter than that for searching in
the original files☆☆. On the other hand, this is
not necessarily true when the data transfer is
relatively fast, in such situations as a worksta-
tion with local disk storage or a notebook per-
sonal computer. If we achieve Goal 2, however,
we can perform a faster search in compressed
files in the elapsed time than an ordinary search
in the original files even in such a situation.

☆☆ Even a naive method of decompression followed by
a search can be faster than an ordinary search in the
original files.

370

Vol. 42 No. 3 Speeding Up String Pattern Matching by Text Compression 371

Table 1 Compressed pattern matching.

Compression method Compressed pattern matching algorithms

Run-length Eilam-Tzoreff and Vishkin10)

Run-length (two dim.) Amir, et al.6); Amir and Benson2),3); Amir, et al.5)

LZ77 Farach and Thorup11); Ga̧sieniec, et al.14)

LZ78/LZW Amir, et al.4); Kida, et al.19); Navarro and Raffinot 28); Navarro and
Tarhio29); Kärkkäinen, et al.16)

Straight-line programs Karpinski, et al.17); Miyazaki, et al.25); Hirao, et al.15)

Huffman Fukamachi, et al.12); Miyazaki, et al.24)

Finite state encoding Takeda35)

Word based encoding Moura, et al.27)

Pattern substitution Manber22); Shibata, et al.32)

Collage systems Kida, et al.18); Shibata, et al.33); Matsumoto, et al.23)

Let n and N denote the compressed text
length and the original text length, respec-
tively. Theoretically, the best compression has
n =

√
N for the Lempel-Ziv-Welch (LZW) en-

coding37), and n = logN for LZ77 39). Thus an
O(n) time algorithm for searching directly in
compressed text is considered to be better than
a simple O(N) time algorithm for searching in
the original text☆. However, in practice n is lin-
early proportional to N for real text files. For
this reason, an elaborate O(n) time algorithm
for searching in compressed text is often slower
than a simple O(N) time algorithm running
on the original text. For example, as shown
in Refs. 19), 28), searching in LZW compressed
files is slower than searching in the original files,
although it is faster than a decompression fol-
lowed by an ordinary search.
In order to achieve the above two goals, es-

pecially Goal 2, we have to choose an appro-
priate compression method paying attention
to the constant factors hidden behind the O-
notation. Thus, we shall re-estimate the per-
formances of the existing compression methods
in the light of the new criterion: efficiency of
compressed pattern matching. It is considered
that a compression method which has received
little attention against the traditional crite-
ria (i.e., the compression ratio and the com-
pression/decompression time) will be estimated
good against the new criterion.
In this paper we describe our recent stud-

ies on this research theme. Text compression
methods fall into two classes: character-wise
compression and dictionary-based compression.
For the former class, we focused on the Huffman
☆ The O(n) time algorithm requires an extra O(r)
time in order to report all pattern occurrences,
where r is the number of them, and r could be linear
in N . But, we here ignore the O(r) factor.

encoding and the higher-order Huffman encod-
ing, and developed run-time efficient algorithms
for searching files compressed by these meth-
ods. The one dealing with Huffman encoded
files runs faster than the Aho-Corasick (AC)1)
algorithm over the original files at the same rate
as the compression ratio.
For the latter class, we introduced collage sys-

tem, a unifying system which abstracts vari-
ous dictionary-based compression methods. We
showed two general pattern matching algo-
rithms for text strings in terms of collage sys-
tem, which simulate the Knuth-Morris-Pratt
(KMP)20) and the Boyer-Moore (BM)8) al-
gorithms, the most important algorithms for
searching in uncompressed files. Within the
framework of collage system, we re-estimated
the existing dictionary-based methods from the
viewpoint of compressed pattern matching, and
concluded that the byte-pair encoding (BPE)13)
is most suitable for our purpose. We special-
ized the algorithms for dealing with BPE com-
pressed files. Experimental results show that
each of the obtained algorithms runs faster than
the one being simulated. The searching time is
reduced at nearly the same rate as the com-
pression ratio. Surprisingly, the one simulating
the move of the BM algorithm is about 1.2–3.0
times faster than the exact match routines of
the software package agrep38), which is known
as the fastest pattern matching tool. Text com-
pression thus accelerates string matching.
It should be mentioned that Manber22) pro-

posed a simple compression scheme that accel-
erates the string matching. The approach is
rather straightforward: to encode a given pat-
tern and to apply any search routine in order
to find the encoded pattern within compressed
files. The reductions of space and search time
are not very good compared with BPE.

372 IPSJ Journal Mar. 2001

It should also be emphasized that Moura, et
al.27) proposed a compression scheme that uses
a word-based Huffman encoding with a byte-
oriented code. They presented an algorithm
which runs twice faster than agrep. However,
the compression method is not applicable to
such texts as DNA sequences, which cannot be
segmented into words. For the same reason, it
cannot be used for natural language texts writ-
ten in Japanese in which we have no blank sym-
bols between words.

2. Preliminaries

Let Σ be a finite set of character symbols,
called an alphabet. Denote by Σ∗ the set of
strings over Σ. Strings x, y, and z are said
to be a prefix, factor, and suffix of the string
u = xyz, respectively. The length of a string u
is denoted by |u|. The empty string is denoted
by ε, that is, |ε| = 0. The ith symbol of a
string u is denoted by u[i] for 1 ≤ i ≤ |u|, and
the factor of a string u that begins at position
i and ends at position j is denoted by u[i : j]
for 1 ≤ i ≤ j ≤ |u|. For a convenience, let
u[i : j] = ε for i > j. Let u be a string in Σ∗,
and let i be a non-negative integer. Denote by
[i]u (resp. u[i]) the string obtained by removing
the length i prefix (resp. suffix) from u.

3. For Character-wise Compression
Methods

Text compression methods fall into two cate-
gories: the character-wise compression and the
dictionary-based compression. In this section,
we discuss the problem of compressed pattern
matching in which text files are compressed us-
ing character-wise compression methods, such
as the Huffman encoding.
3.1 Pattern Matching in Huffman En-

coded Text
Pattern matching in Huffman encoded text

seems not so difficult. A naive solution would
be to encode a given pattern and to apply
any favorite string search routine to find the
encoded pattern within the compressed text.
Searching with this approach, however, is very
slow because of the following reasons: (1) An
extra work for ‘synchronization’ is needed, i.e.,
the starting bit of each encoded symbol needs to
be determined; (2) Bit-wise processing is rather
slow. These problems can be solved as stated
in the sequel.
3.1.1 Synchronization
As shown in Ref. 12), the first problem can

0

0

0

0

1

1

1

1

A B

C

D

E

(a) Huffman tree

0

0

0

0

1

1

1

1

(b) DFA

Fig. 1 Huffman tree and DFA accepting the set of
codewords.

be overcome by incorporating a deterministic
finite-state automaton (DFA) that accepts the
set of codewords into the pattern-matching ma-
chines (PMMs, in short) of the AC algorithm.
Assume that Σ = {A,B,C,D,E} and text
strings over Σ are encoded according to the
Huffman tree of Fig. 1 (a). Figure 1 (b) is a
DFA accepting the set of codewords, which is
obtained directly from the Huffman tree. The
smallest DFA accepting the same language can
be built in only linear time with respect to the
size of the Huffman tree, by using the minimiza-
tion technique31).
Suppose that we are given two patterns EC

and CD. PMM for finding the encoded pat-
terns 1001 and 00101 within a text compressed
by the Huffman code is shown in Fig. 2 (a).
For a comparison, we also show PMM with-
out DFA for synchronization in Fig. 2 (b), which
may lead a false-detection of patterns.
By using PMM with DFA for synchroniza-

tion, we can process a Huffman encoded text
bit-by-bit without any extra work for determin-
ing the starting bit of each encoded symbol.
The size of PMM, namely, the number of states
in it, is approximately m · R + �, where m is
the total length of patterns, R is the average
codeword length, and � is the size of DFA for
synchronization, respectively.
3.1.2 Avoiding Bit-wise Processing
The second problem can be avoided by con-

verting PMM into a new one so that it runs in
byte-by-byte manner, as shown in Ref. 24). Al-
though the machine size is larger than that of
the usual PMM, the two-dimensional array im-
plementation can be adopted. The new PMM
runs on a Huffman encoded file faster than the
usual PMM running on the original file, as will
be shown in Section 6. The searching time is

Vol. 42 No. 3 Speeding Up String Pattern Matching by Text Compression 373

1 2 3

6 7 8

4 5

9 10

1 0 0 1

0

0 1 0 1

EC

CD

1 1

1

1

1

0 1

0 1

0
1

0 1

11

12

13

14

(a) PMM with DFA for synchronization.

1 2 3

6 7 8

4 5

9 10

1 0 0 1

0

0 1 0 1

EC

CD

(b) PMM without DFA for synchronization.

Fig. 2 PMMs for searching in Huffman encoded text. The circles denote
the states. The solid and the broken arrows represent the goto and
the failure functions, respectively. The strings adjacent to the states
mean the outputs from them. The thick line circles correspond to the
starting bits of encoded symbols.

reduced at nearly the same rate as the compres-
sion ratio.
3.2 Searching in Files Compressed by

Finite-state Encoder
Since the compression ratio is not very good

in the Huffman encoding, we shall use the finite-
state model in which the probability distribu-
tion is conditioned by the current state, of-
ten referred to as the context. The compres-
sion based on this model can be formalized as
a finite-state encoder (FSE, in short). Fig-
ure 3 shows an example of FSE with two states,
where Σ = {A,B,C,D} and the code alphabet
is ∆ = {0, 1}. The code-trees for the two states
1 and 2 are shown in Fig. 4.
3.2.1 Compression Using FSE
An FSE is formally a 6-tuple 〈Q, q0,Σ,∆, δ, λ〉,

where Q is a finite set of states; q0 in Q is the
initial state; Σ is a source alphabet; ∆ is a code
alphabet; δ : Q × Σ → Q is a state-transition
function; and λ : Q×Σ→ ∆∗ is a coding func-
tion which satisfies the condition that, for any
q ∈ Q and any a, b ∈ Σ, if λ(q, a) is a prefix of
λ(q, b), then a = b. Define for a state q ∈ Q
the function ϕq : Σ → ∆∗ by ϕq(a) = λ(q, a)
(a ∈ Σ). Then, the above condition implies
that ϕq is a one-to-one mapping and the set of

A/111
B/10
C/110

A/00
D/11

1

D/0B/01
C/10

2

Fig. 3 Finite-state encoder with two states.

01

0

0

1

10

0 1

1

1A B C D 0

A

B

C

D

for state 1 for state 2

Fig. 4 Code-trees.

codewords Codewordq = {ϕq(a)|a ∈ Σ} has the
prefix property for any state q.
Extend δ into the function from Q×Σ∗ to Q

by

δ(q, ε) = q,
δ(q, xa) = δ(δ(q, x), a),

374 IPSJ Journal Mar. 2001

01

0 1

0 1

2 1 1 2

0 1

0 1

10

1

1

1

2

1

1

1

0

0

1

1

BD AB 1

1

1

1

1

1

0

0

2

BD

AB

0

Fig. 5 PMM for searching in FSE compressed files.

and then extend λ into the function fromQ×Σ∗
to ∆∗ by

λ(q, ε) = ε,
λ(q, xa) = λ(q, x) · λ(δ(q, x), a),

where q ∈ Q, x ∈ Σ∗, and a ∈ Σ. The encoding
of a text T ∈ Σ∗ by an FSE is then defined
to be the string λ(q0, T). For example, FSE
of Fig. 3 takes as input the text DBBDCAB,
makes state-transitions of 1 → 2 → 1 → 1 →
2→ 1→ 2→ 1, and emits as output the string
λ(1, DBBDCAB) = 11 10 01 11 110 00 10.
3.2.2 PMMs for Searching in FSE

Compressed Text
Suppose that we are given two patterns AB

and BD. In state 1 we shall search for the
strings λ(1, AB) = 0010 and λ(1, BD) = 0111,
and in state 2 the strings λ(2, AB) = 11101 and
λ(2, BD) = 10 11. As shown in Ref. 35), PMM
for searching in FSE compressed text can be
constructed from the code-trees of Fig. 4 and
from the tries representing the encodings of the
patterns for two states. See Fig. 5.
The size of PMM is linearly proportional to

the number of states of the underlying FSE.
Therefore, we cannot use a large FSE. The
problem is how to build a reasonably small FSE
which has a relatively high compression ratio.
Miyazaki26) proposed an approach to reduce

the size of FSE, based on alphabet indexing. He
showed a local search method which finds not

[00-7F]

[00-FF]

[80-FF]

Fig. 6 DFA accepting Japanese texts (for EUC).
Although the first and second 8-bits of each
16-bits codeword are in fact in [A1-FE], this
DFA is enough for a correct Japanese text.

the best but a ‘good’ alphabet indexing which
yields a relatively high compression ratio.
3.3 Searching in Japanese Text Files
Since an 8-bit code such as the ASCII

code cannot represent many characters used in
Japanese texts, a 16-bit code is used to repre-
sent such characters. Thus, a text file written
in Japanese is a mixture of 8-bit codewords and
16-bit codewords. Automata-oriented approach
to the string pattern matching in Japanese text
seems to be unrealistic because the alphabet
size is very large. However, we can build a
PMM which runs on a Japanese text in a byte-
by-byte manner.
In both of the Extended-Unix-Code (EUC)

and the Shifted-JIS (SJIS), the first 8-bits of
each of the 16-bit codewords is not identical to
any of the 8-bit codewords. Thus the set of
codewords satisfies the prefix property. Assum-
ing the code alphabet is ∆ = {00, 01, . . . , FF}
(i.e., the set of byte codes), DFA accepting the
set of codewords is as shown in Fig. 6. By in-
corporating this DFA into PMMs, we can pro-
cess Japanese text files in a byte-by-byte man-
ner. The synchronization technique mentioned
in Section 3.1.1 is thus applicable to any code
satisfying the prefix property.

4. For Dictionary-based Methods

In this section we discuss the problem of com-
pressed pattern matching for the dictionary-
based methods. In a dictionary-based compres-
sion, a text string is described by a pair of a dic-
tionary and a sequence of tokens, each of which
represents a phrase defined in the dictionary.
We introduced in Ref. 18) a unifying framework,
named collage system, which abstracts various
dictionary-based compression methods, such as
the Lempel-Ziv family, the SEQUITUR 30), the
Re-Pair21), and the static dictionary methods.
In Ref. 18) we presented a general compressed

Vol. 42 No. 3 Speeding Up String Pattern Matching by Text Compression 375

pattern matching algorithm for texts described
in terms of collage system. Consequently, any of
the compression methods covered by the frame-
work has a compressed pattern matching algo-
rithm as an instance. The algorithm essentially
simulates the move of the KMP algorithm. On
the other hand, we also presented in Ref. 33) a
BM type algorithm for collage systems.
4.1 Collage System
A collage system is a pair 〈D,S〉 defined as

follows: D is a sequence of assignments X1 =
expr1; X2=expr2; · · · ;Xn=exprn, where each
Xk is a variable (or a token) and exprk is any
of the form:

a for a ∈ Σ ∪ {ε}, (primitive assignment)
XiXj for i, j < k, (concatenation)
[j]Xi for i < k and an integer j,

(prefix truncation)

X
[j]
i for i < k and an integer j,

(suffix truncation)
(Xi)j for i < k and an integer j.

(j times repetition)
Each variable represents a string obtained by

evaluating the expression as it implies. We
identify a variable Xi with the string repre-
sented by Xi in the sequel. The size of D is the
number n of assignments and denoted by ||D||.
The syntax tree of a variable X in D, denoted
by T (X), is defined inductively as follows. The
root node of T (X) is labeled by X and has:

no subtree, if X = a ∈ Σ ∪ {ε},
two subtrees T (Y) and T (Z),

if X = Y Z,
one subtree T (Y),

if X = Y i, [i]Y, or Y [i].

Define the height of a variable X to be the
height of the syntax tree T (X). The height of
D is defined by height(D) = max{height(X) |
X in D}. It expresses the maximum depen-
dency of the variables in D.
On the other hand, S = Xi1 , Xi2 , . . . , Xik

is a
sequence of variables defined in D. We denote
by |S| the number k of variables in S. The
collage system represents a string obtained by
concatenating strings Xi1 , Xi2 , . . . , Xik

. Essen-
tially, we can convert any collage system 〈D,S〉
into the one where S consists of a single vari-
able, by adding a series of concatenation op-
erations into D. The fact may suggest that S
is unnecessary. However, by separating a dic-
tionary D which only defines phrases, from S

which intends for a sequence of phrases, we can
capture a variety of compression methods natu-
rally. Both D and S can be encoded in various
ways. The compression ratios therefore depend
upon the encoding sizes of D and S rather than
upon ||D|| and |S|.
A collage system is said to be truncation-free

if D contain no truncation operation. A collage
system is said to be regular if D contain neither
repetition nor truncation operation.
4.2 KMP Type Algorithm for Collage

Systems
Let us denote by t.u the phrase represented

by a token t. The problem is:
Given: a pattern π = π[1 : m] and a collage
system 〈D,S〉 with S = S[1 : n].
Find: all locations at which π occurs within
the original text S[1].u · S[2].u · · · S[n].u.
In Ref. 18) we presented a KMP type algo-

rithm solving this problem. Figure 7 gives an
overview of the algorithm, which processes S
token-by-token. The algorithm simulates the
move of the KMP automaton running on the
original text, by using two functions JumpKMP

and OutputKMP, both take as input a state and
a token. The former is used to substitute just
one state transition for the consecutive state
transitions of the KMP automaton caused by
each of the phrases, and the latter is used to
report all pattern occurrences found during the
state transitions. Thus the definitions of the
two functions are as follows.

JumpKMP(q, t) = δ(q, t.u),
OutputKMP(q, t)

=
{
|v|

∣∣∣∣ v is a non-empty prefix of t.usuch that δ(q, v) is the final state

}
,

where δ is the state transition function of the
KMP automaton.
This idea is essentially based on the algorithm

for searching in LZW compressed text due to
Amir, et al.4) which finds only the leftmost pat-
tern occurrence. The extension to find all pat-
tern occurrences was achieved by Kida, et al.19),
together with an extension to the multiple pat-
tern problem.
Let ||D|| and height(D) respectively denote

the number of assignments in D and the max-
imum dependency in D. Let r be the number
of all occurrences of π in the text. The time
and space complexities of the algorithm are as
follows.
Lemma 1 (Kida, et al.18)) The function

JumpKMP can be realized inO(||D||·height(D)+

376 IPSJ Journal Mar. 2001

Input: Pattern π and collage system consisting of D and S = S[1 : n].
Output: All occurrences of π in the original text.
begin
/* Preprocessing */

Compute the functions JumpKMP and OutputKMP from the pattern π
and the dictionary D;

/* Main routine */
state := 0; � := 0;
for i := 1 to n do begin

for each d ∈ OutputKMP(state,S[i]) do
Report a pattern occurrence that ends at position � + d;

state := JumpKMP(state,S[i]); � := � + |S[i].u|
end

end.

Fig. 7 KMP Type algorithm for searching in a collage system.

m2) time using O(||D||+m2) space, so that it
responds in constant time. For a truncation-
free collage system, the time complexity be-
comes O(||D||+m2).
Lemma 2 (Kida, et al.18)) The procedure

to enumerate the set OutputKMP(q, t) can be
realized in O(||D|| · height(D) + m2) time us-
ing O(||D||+m2) space, so that it responds in
O(height(t) + �) time, where � is the size of the
set. For a truncation-free collage system, it can
be realized in O(||D||+m2) time and space, so
that it runs in O(�) time.
Theorem 1 (Kida, et al.18)) The prob-

lem of compressed pattern matching can be
solved in O((||D||+n) ·height(D)+m2+r) time
using O(||D||+m2) space. For a truncation-free
collage system, the time complexity becomes
O(||D||+ n+m2 + r).
The idea can also be applied to compressed

pattern matching for other compression meth-
ods that are not contained in the collage sys-
tem. For instance, we developed in Ref. 34) an
algorithm, which is based on the similar idea,
for searching in texts compressed using anti-
dictionaries9).
4.3 BM Type Algorithm for Collage

Systems
We first briefly sketches the BM algorithm,

and then show a BM type algorithm for search-
ing in collage systems.
4.3.1 BMAlgorithm on Uncompressed

Text
The BM algorithm performs the character

comparisons in the right-to-left direction, and
slides the pattern to the right using the so-
called shift function when a mismatch occurs.

Input: Pattern π and text T = T [1 : N].
Output:All occurrences of π in T .
begin
/* Preprocessing */

Compute the functions g and σ from the pattern π;

/* Main routine */
T [0] := $; /* $ never occurs in pattern */
i := m;
while i ≤ N do begin

state := 0; � := 0;
while g(state, T [i − �]) is defined do begin

state := g(state, T [i − �]); � := � + 1
end;
if state = m then report a pattern occurrence;
i := i + σ(state, T [i − �])

end
end.

Fig. 8 BM algorithm on uncompressed text.

The algorithm for searching in text T [1 : N]
is shown in Fig. 8. Note that the function g is
the state transition function of the (partial) au-
tomaton that accepts the reversed pattern, in
which state j represents the length j suffix of
the pattern (0 ≤ j ≤ m).
Although there are many variations of the

shift function, they are basically designed to
shift the pattern to the right so as to align a text
substring with its rightmost occurrence within
the pattern. Let

rightmost occ(w)

= min

{
� > 0

∣∣∣∣ π[m − � − |w|+ 1 : m − �] = w,

or π[1 : m − �] is a suffix of w

}
.

The following definition, given by Uratani and
Takeda36) (for multiple pattern case), is the one
which utilizes all information gathered in one
execution of the inner-while-loop in the algo-

Vol. 42 No. 3 Speeding Up String Pattern Matching by Text Compression 377

Input: Pattern π and collage system consisting of D and S = S[1 : n].
Output: All occurrences of π in the original text.
begin
/* Preprocessing */

Compute the functions JumpBM, OutputBM and Occ from the pattern π
and the dictionary D;

/* Main routine */
focus := an appropriate value;
while focus ≤ n do begin

Step 1: Report all pattern occurrences that are contained in the phrase S[focus].u
by using Occ;

Step 2: Find all pattern occurrences that end within the phrase S[focus].u
by using JumpBM and OutputBM;

Step 3: Compute a possible shift ∆ based on information gathered in Step 2;
focus := focus +∆

end
end.

Fig. 9 Overview of BM type compressed pattern matching algorithm.

Compressed text

Original text

Pattern occurrences

focus

Fig. 10 Pattern occurrences.

rithm of Fig. 8.
σ(j, a) = rightmost occ(a ·π[m−j+1 : m]).

The two-dimensional array realization of this
function requires O(|Σ| ·m) memory, but it be-
comes realistic due to recent progress in com-
puter technology. Moreover, the array can be
shared with the goto function g. This saves not
only memory requirement but also the number
of table references.
4.3.2 Algorithm for Collage System
Now, we show a BM type algorithm for

searching in collage systems. Figure 9 gives
an overview of our algorithm. For each itera-
tion of the while-loop, we report in Step 1 all
the pattern occurrences that are contained in
the phrase represented by the token we focus
on, determine in Step 2 the pattern occurrences
that end within the phrase, and then shift our
focus to the right by ∆ obtained in Step 3. Let
us call the token we focus on the focused token,
and the phrase it represents the focused phrase.
For Step 1, we shall compute during the pre-

processing, for every token t, the set Occ(t) of
all pattern occurrences contained in the phrase
t.u. The time and space complexities of this
computation are as follows.
Lemma 3 (Kida, et al.18)) We can build

in O(height(D) · ||D||+m2) time using O(||D||+
m2) space a data structure by which the enu-
meration of the set Occ(t) is performed in
O(height(t) + �) time, where � = |Occ(t)|. For
a truncation-free collage system, it can be built
in O(||D||+m2) time and space, and the enu-
meration requires only O(�) time.
In the following we discuss how to realize Step 2
and Step 3.
Figure 10 illustrates pattern occurrences

that end within the focused phrase. A candi-
date for pattern occurrence is a non-empty pre-
fix of the focused phrase that is also a proper
suffix of the pattern. There may be more
than one candidate to be checked. One naive
method is to check all of them independently,
but here we take another approach. We shall

378 IPSJ Journal Mar. 2001

procedure Find pattern occurrences(focus : integer);
begin

if JumpBM(0,S[focus]) is undefined then return;
state := JumpBM(0,S[focus]); d := state; � := 1;
repeat

while JumpBM(state,S[focus − �]) is defined do begin
state := JumpBM(state,S[focus − �]); � := � + 1

end;
if OutputBM(state,S[focus − �]) = true then report a pattern occurrence;
d := d − (state − f(state)); state := f(state)

until d ≤ 0
end;

Fig. 11 Finding pattern occurrences in Step 2.

start with the longest one. For the case of un-
compressed text, we can do it by using the par-
tial automaton for the reversed pattern stated
in Section 4.3.1. When a mismatch occurs, we
change the state by using the failure function
and try to proceed into the left direction. The
process is repeated until the pattern does not
have an overlap with the focused phrase. In or-
der to perform such processing over compressed
text, we use the two functions JumpBM and
OutputBM defined in the sequel.
Let lpps(w) denote the longest prefix of a

string w that is also a proper suffix of the pat-
tern π. Extend the function g into the domain
{0, . . . ,m} × Σ∗ by g(j, aw) = g(g(j, w), a), if
g(j, w) is defined and otherwise, g(j, aw) is un-
defined, where w ∈ Σ∗ and a ∈ Σ. Let f(j)
be the largest integer k (k < j) such that the
length k suffix of the pattern is a prefix of the
length j suffix of the pattern. Note that f is
the same as the failure function of the KMP
automaton. Define the functions JumpBM and
OutputBM by

JumpBM(j, t)

=

g(j, t.u), if j �= 0;
|lpps(t.u)|, if j=0 and lpps(t.u) �= ε;
undefined, otherwise.

OutputBM(j, t)

=

true, if g(j, w) = m and w is

a proper suffix of t.u;
false, otherwise.

The procedure for Step 2 is shown in Fig. 11.
We now discuss how to compute the possible

shift ∆ of the focus. Let

Shift(j, t)
= rightmost occ(t.u · π[m− j + 1 : m]).

Assume that starting at the token S[focus], we

encounter a mismatch against a token t in state
j. Find the minimum integer k > 0 such that

Shift(0,S[focus])

≤
k∑

i=1

∣∣∣S[focus+ i].u∣∣∣, or (1)

Shift(j, t)

≤
k∑

i=0

∣∣∣S[focus+ i].u∣∣∣−∣∣∣lpps(S[focus].u)∣∣∣.
(2)

Note that the shift due to Eq. (1) is possi-
ble independently of the result of the procedure
of Fig. 11. When returning at the first if-then
statement of the procedure in Fig. 11, we can
shift the focus by the amount due to Eq. (1).
Otherwise, we shift the focus by the amount
due to both Eq. (1) and Eq. (2) for j = state
and t = S[focus − �] just after the execution
of the while-loop at the first iteration of the
repeat-until loop.
Lemma 4 (Shibata, et al.33)) The func-

tions JumpBM, OutputBM, and Shift can be
built in O(height(D) · ||D|| + m2) time and
O(||D||+m2) space, so that they answer in O(1)
time. The factor height(D) can be dropped if
the collage system is truncation-free.
Theorem 2 (Shibata, et al.33)) The al-

gorithm of Fig. 9 runs in O(height(D) · (||D||+
n) + n ·m+m2 + r) time, using O(||D||+m2)
space. For a truncation-free collage system, the
time complexity becomes O(||D||+n ·m+m2+
r).
4.4 Practical Aspects
Theorem 1 suggests that a compression

method described as a collage system with no
truncation might be suitable for the speed-up of
pattern matching. In fact the collage systems

Vol. 42 No. 3 Speeding Up String Pattern Matching by Text Compression 379

for LZ77 have truncation and LZ77 is not suit-
able as shown in Ref. 28). On the other hand,
the collage systems for LZW are truncation-
free. However, searching in LZW compressed
files are rather slow in comparison with search-
ing in the original files, as shown in Refs. 19),
28). We have two reasons. One is that in LZW
the dictionary D is not encoded explicitly: it
will be incrementally re-built from S. The pre-
processing of D is therefore merged into the
main routine (see Fig. 7 again). The other rea-
son is as follows. Although JumpKMP can be
realized using only O(||D||+m) space so that it
answers in constant time, the constant factor is
relatively large. The two-dimensional array im-
plementation of JumpKMP would improve this,
but it requires O(||D|| ·m) space, which is un-
realistic because ||D|| is linear with respect to
n in the case of LZW.
From the above observations the desirable

properties for compressed pattern matching can
be summarized as follows.
• The dictionary D contains no truncation.
• The dictionary D is encoded separately
from the sequence S.

• The size of D is small enough.
• The tokens of S are encoded using a fixed
length code.

The compression scheme called the byte pair
encoding (BPE)13) is the one which satisfies all
of the properties. It is regarded as a simplified
version of the compression method called Re-
Pair21). The basic operation of the compression
is to substitute a single character which did not
appear in the text for a pair of consecutive two
characters which frequently appears in the text.
This operation will be repeated until either all
characters are used up or no pair of consecu-
tive two characters appears frequently. Thus,
||D|| ≤ 256. In the next section, we show com-
pressed pattern matching algorithms for BPE
compressed files, which are very fast in prac-
tice.

5. Searching in BPE Compressed Files

We specialized the KMP type and the BM
type algorithms, presented in the last section,
for dealing with only BPE compressed files.
5.1 KMP (AC) Type Algorithm
We can take the two-dimensional array real-

ization of JumpKMP, which is realistic since the
array size is only 256 · (m+ 1).
Lemma 5 (Shibata, et al.32)) For a reg-

ular collage system, the two-dimensional tables

storing JumpKMP and OutputKMP can be built
in O(||D|| ·m) time and space.
The searching time is reduced at almost the

same rate as the compression ratio, as will be
seen in Section 6. BPE compresses Japanese
texts nearly the same ratio as English texts, and
therefore the method can be applied to search-
ing in BPE compressed Japanese texts. This is
a big advantage of this method. Moreover, the
algorithm can be extended to the multipattern
searching problem so that it simulates the AC
algorithm.
5.2 BM Type Algorithm
Lemma 6 (Shibata, et al.33)) For a reg-

ular collage system, the tables storing JumpBM,
OutputBM, and Shift can be built in O(||D|| ·m)
time and space.
By using the BM type algorithm presented

in the previous section, we cannot shift the
pattern without knowing the total length of
phrases corresponding to skipped tokens. This
slows down the algorithm in practice. To do
without such information, we assume that the
skipped phrases are all of length C, the maxi-
mum phrase length in D, and divide the shift
value by C. The value of C is crucial in this
approach.
We estimated the change of compression ra-

tios depending on C. The text files we used
are:
Medline. A clinically-oriented subset of Med-

line, consisting of 348,566 references. The
file size is 60.3Mbyte and the entropy☆ is
4.9647.

Genbank. The file consisting only of ac-
cession numbers and nucleotide sequences
taken from a data set in Genbank. The file
size is 17.1Mbyte and the entropy is 2.6018.

Table 2 shows the compression ratios of
these texts for BPE, together with those for the
Huffman encoding, gzip, and compress, where
the last two are well-known compression tools
based on LZ77 and LZW, respectively. Remark
that the change of compression ratios depend-
ing on C is non-monotonic. The reason for this
is that the BPE compression routine we used
builds a dictionary D in a greedy manner only
from the first block of a text file. It is observed
that we can restrict C with no great sacrifice of
compression ratio. Thus we decided to use the
BPE compressed file of Medline for C = 3, and

☆ By entropy is meant the order-0 entropy, namely the
classical Shannon entropy.

380 IPSJ Journal Mar. 2001

Table 2 Compression ratios (%).

Huffman
BPE

compress gzip
C = 3 C = 4 C = 5 C = 6 C = 7 C = 8 unlimit.

Medline 62.41 59.44 58.46 58.44 58.53 58.47 58.58 59.07 42.34 33.35
Genbank 33.37 36.93 32.84 32.63 32.63 32.34 32.28 32.50 26.80 23.15

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

5 10 15 20 25 30
pattern length

(sec)

KMP

uncompress+KMP

gunzip+KMP

AC on LZW

Shift-Or on LZW

unBPE+KMP

AC on Huffman
AC on BPE
agrep
UT
BM on BPE

0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20 25 30
pattern length

(sec)

uncompress+KMP

AC on Huffman

AC on BPE
BM on BPE

agrep
UT

KMP

unBPE+KMP

Shift-Or on LZW

AC on LZW

gunzip+KMP

(a) Medline (b) Genbank

Fig. 12 Running times (in CPU time).

that of Genbank for C = 4 in our experiment
in the next section.
For the BPE compression, we observed that

putting a restriction on C makes no great sac-
rifice of compression ratio even for C = 3, 4.

6. Experimental results

We estimated the performances of the follow-
ing programs:
(A) Decompression followed by ordinary search.

We tested this approach with the KMP
algorithm for the compression meth-
ods: gzip, compress, and BPE. We
did not combine the decompression pro-
grams and the KMP search program us-

ing the Unix ‘pipe’ because it is slow.
Instead, we embedded the KMP routine
in the decompression programs, so that
the KMP automaton processes the de-
coded characters ‘on the fly’. The pro-
grams are abbreviated as gunzip+KMP,
uncompress+KMP, and unBPE+KMP,
respectively.

(B) Ordinary search in original text.
KMP, UT (the Uratani-Takeda vari-
ant36) of BM), and agrep.

(C) Compressed pattern matching.
AC on LZW 19), Shift-Or on LZW 19),
AC on Huffman24), AC on BPE 32), and
BM on BPE 33).

Vol. 42 No. 3 Speeding Up String Pattern Matching by Text Compression 381

The automata in KMP, UT, AC on Huffman,
AC on BPE, and BM on BPE were realized as
two-dimensional arrays of size � × 256, where
� is the number of states. The texts used
are Medline and Genbank mentioned in Sec-
tion 5, and the patterns searched for are text
substrings randomly gathered from them. Our
experiment was carried out on an AlphaSta-
tion XP1000 with an Alpha21264 processor at
667MHz running Tru64 UNIX operating sys-
tem V4.0F. Figure 12 shows the running times
(CPU time). We excluded the preprocessing
times since they are negligible compared with
the running times. We observed the following
facts.
• The differences between the running times
of KMP and the three programs of (A) cor-
respond to the decompression times. De-
compression tasks for LZ77 and LZW are
thus time-consuming compared with pat-
tern matching task. Even when we use
the BM algorithm instead of KMP, the ap-
proach (A) is still slow for LZ77 and LZW.

• BM on BPE is faster than all the others.
Especially, it runs about 1.2 times faster
than agrep for Medline, and about 3 times
faster for Genbank.

7. Concluding Remarks

The aim of compression was traditionally to
save space requirement of data files. Instead
of saving space, we must bear an extra time
for expanding files when processing them. For
this reason, we did not want to compress data
files in the case that the available space was
sufficient. However, we now have a new reason
to compress data files, in which the compression
is regarded as a means of speeding up the exact
string matching task, which we call Goal 2. The
results presented in this paper thus have raised
the curtain on a new era in the history of string
pattern matching and data compression.
The work by Manber22) (1994) is recognized

as the first attempt to Goal 2. However, an
attempt was made by our research group in
Ref. 12) early in 1992. In this work, we incorpo-
rated the Huffman tree into the pattern match-
ing machine for syncronization, as described in
Section 3. This idea was obtained as a general-
ization of the one used for bytewise-processing
of Japanese text files, which are mixtures of
one-byte and two-byte codes. A naive method
of processing such a text file would be to con-
vert the text into a sequence of 16-bit integers,

each of which represents one character, and
then process it by an ordinary search routine.
Notice that the naive method is similar to the
decompression-then-search method, and on the
other hand, the bytewise-processing seems like
a compressed pattern matching. The require-
ment to efficiently process Japanese text files
forced us to distinguish a text from its represen-
tation. Most interestingly, we have proposed in
1984 in Ref. 7) an efficient realization of the pat-
tern matching machine which processes a text
file 4-bit by 4-bit, in order to reduce the size of
the state-transition table into 1/8. Thus, before
the 1990’s we had almost finished preparing for
studies on the compressed pattern matching.
The string pattern matching is simple but the

basis of other string processings. To speed up
more complicated string processings, such as
the approximate string matching or the regular
expression matching, by using text compression
will be our future work.

References

1) Aho, A.V. and Corasick, M.: Efficient string
matching: An aid to bibliographic search,
Comm.ACM, Vol.18, No.6, pp.333–340 (1975).

2) Amir, A. and Benson, G.: Efficient two-
dimensional compressed matching, Proc. Data
Compression Conference, p.279 (1992).

3) Amir, A. and Benson, G.: Two-dimensional
periodicity and its application, Proc. 3rd Ann.
ACM-SIAM Symp. on Discrete Algorithms,
pp.440–452 (1992).

4) Amir, A., Benson, G. and Farach, M.: Let
sleeping files lie: Pattern matching in Z-
compressed files, J. Computer and System Sci-
ences, Vol.52, pp.299–307 (1996).

5) Amir, A., Benson, G. and Farach, M.: Opti-
mal two-dimensional compressed matching, J.
Algorithms, Vol.24, No.2, pp.354–379 (1997).

6) Amir, A., Landau, G.M. and Vishkin, U.: Ef-
ficient pattern matching with scaling, J. Algo-
rithms, Vol.13, No.1, pp.2–32 (1992).

7) Arikawa, S. and Shinohara, T.: A run-time
efficient realization of Aho-Corasick pattern
matching machines, New Generation Comput-
ing, Vol.2, No.2, pp.171–186 (1984).

8) Boyer, R.S. and Moore, J.S.: A fast string
searching algorithm, Comm. ACM, Vol.20,
No.10, pp.62–72 (1977).

9) Crochemore, M., Mignosi, F., Restivo, A. and
Salemi, S.: Text compression using antidic-
tionaries, Proc. 26th Internationial Colloquim
on Automata, Languages and Programming,
pp.261–270, Springer-Verlag (1999).

10) Eilam-Tzoreff, T. and Vishkin, U.: Match-

382 IPSJ Journal Mar. 2001

ing patterns in strings subject to multi-linear
transformations, Theoretical Computer Sci-
ence, Vol.60, No.3, pp.231–254 (1988).

11) Farach, M. and Thorup, M.: String-matching
in Lempel-Ziv compressed strings, Algorith-
mica, Vol.20, No.4, pp.388–404 (1998). (Previ-
ous version in: STOC’95).

12) Fukamachi, S., Shinohara, T. and Takeda,
M.: String pattern matching for compressed
data using variable length codes (in Japanese),
Proc. Symposium on Informatics 1992, pp.95–
103 (1992).

13) Gage, P.: A new algorithm for data compres-
sion. The C Users Journal, Vol.12, No.2 (1994).

14) Ga̧sieniec, L., Karpinski, M., Plandowski,
W. and Rytter, W.: Efficient algorithms for
Lempel-Ziv encoding, Proc. 4th Scandinavian
Workshop on Algorithm Theory, pp.392–403,
Springer-Verlag (1996).

15) Hirao, M., Shinohara, A., Takeda, M. and
Arikawa, S.: Fully compressed pattern match-
ing algorithm for balanced straight-line pro-
grams, Proc. 7th International Symp. on String
Processing and Information Retrieval, pp.132–
138, IEEE Computer Society (2000).

16) Kärkkäinen, J., Navarro, G. and Ukkonen, E.:
Approximate string matching over Ziv-Lempel
compressed text, Proc. 11th Ann. Symp. on
Combinatorial Pattern Matching, pp.195–209,
Springer-Verlag (2000).

17) Karpinski, M., Rytter, W. and Shinohara,
A.: An efficient pattern-matching algorithm for
strings with short descriptions, Nordic Journal
of Computing, Vol.4, pp.172–186 (1997).

18) Kida, T., Shibata, Y., Takeda, M., Shinohara,
A. and Arikawa, S.: A unifying framework for
compressed pattern matching, Proc. 6th Inter-
national Symp. on String Processing and Infor-
mation Retrieval, pp.89–96, IEEE Computer
Society (1999).

19) Kida, T., Takeda, M., Shinohara, A., Miyazaki,
M. and Arikawa, S.: Multiple pattern match-
ing in LZW compressed text, J. Discrete Al-
gorithms (to appear). (Previous versions in:
DCC’98 and CPM’99).

20) Knuth, D.E., Morris, J.H. and Pratt, V.R.:
Fast pattern matching in strings, SIAM J.
Comput, Vol.6, No.2, pp.323–350 (1977).

21) Larsson, N.J. and Moffat, A.: Offline dictionary-
based compression, Proc. Data Compression
Conference ’99, pp.296–305, IEEE Computer
Society (1999).

22) Manber, U.: A text compression scheme that
allows fast searching directly in the compressed
file, ACM Trans. Information Systems, Vol.15,
No.2, pp.124–136 (1997). (Previous version in:
CPM’94).

23) Matsumoto, T., Kida, T., Takeda, M.,
Shinohara, A. and Arikawa, S.: Bit-parallel ap-
proach to approximate string matching in com-
pressed texts, Proc. 7th International Symp. on
String Processing and Information Retrieval,
pp.221–228, IEEE Computer Society (2000).

24) Miyazaki, M., Fukamachi, S., Takeda, M.
and Shinohara, T.: Speeding up the pattern
matching machine for compressed texts (in
Japanese), Trans. IPS Japan, Vol.39, No.9,
pp.2638–2648 (1998).

25) Miyazaki, M., Shinohara, A. and Takeda, M.:
An improved pattern matching algorithm for
strings in terms of straight-line programs. J.
Discrete Algorithms (to appear). (Previous ver-
sion in: CPM’97).

26) Miyazaki, T.: Studies on speed-up of string
pattern matching by text compression using
statistical model (in Japanese), Master’s The-
sis, Kyushu Institute of Technology (1996).

27) Moura, E., Navarro, G., Ziviani, N. and
Baeza-Yates, R.: Fast and flexible word search-
ing on compressed text, ACM Trans. Informa-
tion Systems (2000). (Previous Versions in: SI-
GIR’98 and SPIRE’98).

28) Navarro, G. and Raffinot, M.: A general prac-
tical approach to pattern matching over Ziv-
Lempel compressed text, Proc.10th Ann.Symp.
on Combinatorial Pattern Matching, pp.14–36,
Springer-Verlag (1999).

29) Navarro, G. and Tarhio, J.: Boyer-Moore
string matching over Ziv-Lempel compressed
text, Proc. 11th Ann. Symp. on Combinatorial
Pattern Matching, pp.166–180, Springer-Verlag
(2000).

30) Nevill-Manning, C.G., Witten, I.H. and
Maulsby, D.L.: Compression by induction of
hierarchical grammars, DCC94, pp.244–253,
IEEE Press (1994).

31) Revuz, D.: Minimisation of acyclic determin-
istic automata in linear time, Theoretical Com-
puter Science, Vol.92, No.1, pp.181–189 (1992).

32) Shibata, Y., Kida, T., Fukamachi, S., Takeda,
M., Shinohara, A., Shinohara, T. and Arikawa,
S.: Speeding up pattern matching by text com-
pression, Proc. 4th Italian Conference on Algo-
rithms and Complexity, pp.306–315, Springer-
Verlag (2000).

33) Shibata, Y., Matsumoto, T., Takeda, M.,
Shinohara, A. and Arikawa, S.: A Boyer-Moore
type algorithm for compressed pattern match-
ing, Proc. 11th Ann. Symp. on Combinatorial
Pattern Matching, pp.181–194, Springer-Verlag
(2000).

34) Shibata, Y., Takeda, M., Shinohara, A. and
Arikawa, S.: Pattern matching in text com-
pressed by using antidictionaries, J. Discrete

Vol. 42 No. 3 Speeding Up String Pattern Matching by Text Compression 383

Algorithms (to appear). (Previous version in:
CPM’99).

35) Takeda, M.: Pattern matching machine for
text compressed using finite state model, Tech-
nical Report DOI-TR-CS-142, Department of
Informatics, Kyushu University (Oct. 1997).

36) Uratani, N. and Takeda, M.: A fast string-
searching algorithm for multiple patterns. In-
formation Processing & Management, Vol.29,
No.6, pp.775–791 (1993).

37) Welch, T.A.: A technique for high per-
formance data compression, IEEE Comput.,
Vol.17, pp.8–19 (1984).

38) Wu, S. and Manber, U.: Agrep – a fast approx-
imate pattern-matching tool, Usenix Winter
1992 Technical Conference, pp.153–162 (1992).

39) Ziv, J. and Lempel, A.: A universal algo-
rithm for sequential data compression, IEEE
Trans. Inform. Theory, Vol.23, No.3, pp.337–
349 (1977).

(Received June 30, 2000)
(Accepted September 27, 2000)

Masayuki Takeda was born
in 1964. He is an Associate Pro-
fessor in the Department of In-
formatics at Kyushu University.
He received his B.S. in 1987 in
Mathematics, his M.S. in 1989
in Information Systems, and his

Dr.Eng. degree in 1996 all from Kyushu Uni-
versity. His present research interests include
pattern matching algorithms, text compression,
discovery science, and information retrieval.

Yusuke Shibata was born
in 1975. He receieved his B.E.
and M.E. from Kyushu Institute
of Technology in 1998 and from
Kyushu University in 2000, re-
spectively. His research inter-
ests include pattern matching al-

gorithms and text compression. Presently, he
works at NTT Comware.

Tetsuya Matsumoto was
born in 1977. He is a student of
the master course in the Depart-
ment of Informatics at Kyushu
University. He receieved his B.S.
in Physics from Kyushu Uni-
versity in (1999). His research

interests include pattern matching algorithms
and text compression.

Takuya Kida was born in
1974. He is a student of the
doctor course in the Department
of Informatics at Kyushu Uni-
versity. He obtained his B.S. in
1997 in Physics, his M.A. in 1999
from Kyushu University. His re-

search interests include pattern matching algo-
rithms and text compression.

Ayumi Shinohara was born
in 1965. He is an Associate Pro-
fessor in the Department of In-
formatics at Kyushu University.
He obtained his B.S. in 1988 in
Mathematics, his M.S. in 1990
in Information Systems, and his

Dr.Sci. degree in 1994 all from Kyushu Uni-
versity. His current research interests include
discovery science, bioinformatics, and pattern
matching algorithms.

Shuichi Fukamachi was
born in 1967. He is a researcher
in the Department of Artificial
Intelligence at Kyushu Institute
of Technology. He received his
B.E. and M.E. from Kyushu In-
stitute of Technology in 1991

and 1993, respectively. His research interests
include pattern matching algorithms and infor-
mation retrieval.

Takeshi Shinohara was born
in 1955. He is a Professor in
the Department of Artificial In-
telligence at Kyushu Institute
of Technology. He obtained
his B.S. in Mathematics from
Kyoto University in 1980, and

his Dr.Sci. degree from Kyushu University in
1986. His research interests are in computa-
tional/algorithmic learning theory, information
retrieval, and approximate retrieval of multime-
dia data.

384 IPSJ Journal Mar. 2001

Setsuo Arikawa was born
in 1941. He is a Professor in
the Department of Informatics
at Kyushu University and the
Director of University Library at
Kyushu University. He received
his B.S. in 1964, his M.S. in 1966

and his Dr.Sci. degree in 1969 all in Mathe-
matics from Kyushu University. His research
interests include discovery science, algorithmic
learning theory, logic and inference/reasoning
in AI, pattern matching algorithms and library
science.

