IEICE TRANS. INF. & SYST., VOL. E75-D, NO. 4 JULY 1992

405

INVITED PAPER Special Issue on Algorithmic Learning Theory

Algorithmic Learning Theory with Elementary Formal

Systems

Setsuo ARIKAWAT, Nonmember, Satoru MIYANO', Member,

SUMMARY The elementary formal system (EFS, for short)
is a kind of logic program which directly manipulates character
strings. This paper outlines in brief the authors’ studies on
algorithmic learning theory developed in the framework of
EFS’s. We define two important classes of EFS’s and a new
hierarchy of various language classes. Then we discuss EFS’s as
logic programs. We show that EFS’s form a good framework for
inductive inference of languages by presenting model inference
system for EFS’s in Shapiro’s sense. Using the framework we also
show that inductive inference from positive data and PAC-
learning are both much more powerful than they have been
believed. We illustrate an application of our theoretical results to
Molecular Biology.

key words : algorithmic learning theory, computational learn-
ing theory, elementary formal system

1. Introduction

The elementary formal system (EFS, for short) is
a logical system introduced by Smullyan®® in 1960 for
describing the recursive function theory over character
strings. The systems were shown to be a kind of gram-
mars for generating formal languages like Chomsky
grammars”. Smullyan expressed an axiom in a form
Ay—-—A,— B, where A,, *-, A,, B are atoms. This
axiom is equivalent to a definite clause B<—A,, **-, A,.
Hence, EFS is also a kind of logic program which
directly manipulates character strings, and thus we can
make use of the resolution principle®® for recognizing
formal languages.

Machine learning has been attracting much atten-
tion in Computer Science and Artificial Intelligence.
From a lot of contributions to machine learning for
more than 25 years"®~®Y has emerged a new field of
Theoretical Computer Science, that is, algorithmic
learning theory. The algorithmic learning theory
includes three major paradigms, inductive inference®,

Manuscript received March 9; 1992.
Manuscript revised March 25, 1992.

T The authors are with the Research Institute of Funda-
mental Information Science, Kyushu University, Fukuoka-
shi, 812 Japan.

1 The author is with the Faculty of Computer Science
and Systems Engineering, Kyushu Institute of Technology,
lizuka-shi, 820 Japan.
1t The author is with the Faculty of Engineering, Hok-
kaido University, Sapporo-shi, 060 Japan.

Ayumi SHINOHARAT, Takeshi SHINOHARA 11,

and Akihiro YAMAMOTO{11, Nonmembers

learning with minimally adequate teacher (MAT)®,
and probably approximately correct (PAC) learn-
ing(39)' .

These learning paradigms have often been devel-
oped in terms of formal language theory so that they
have dealt with various types of formal grammars and
automata. These theories heavily depend on their own
frameworks, and consequently it is sometimes difficult
to compare the powers and efficiencies between
different learning paradigms.

Most learning algorithms need procedures for
testing the consistency or validity of guessed hypoth-
eses. When we deal with, say regular expressions in
inductive inference, we need to devise a procedure for
converting a guessed regular expression into a finite
automaton or something like that to test whether or
not it is consistent with the examples given so far. And
for context-free grammars, we need a procedure for
making pushdown automata. In this way, we are forced
to have special procedures depending on target expres-
sions.

The algorithmic learning theory on formal lan-
guages can employ EFS’s as a unifying framework. We
can define a new hierarchy of various language classes
with EFS’s. In fact, it includes as a kernel the class of
pattern languages that played an important role in
inductive inference from positive data®©3@4 Tt also
includes the four classes in Chomsky hierarchy, and
many others“»("8.(29,(0.37 The resolution principle
for EFS’s works as a uniform procedure for testing
guessed hypotheses. Thus EFS’s work as grammars to
generate languages, as automata to recognize lan-
guages, and as logic programs on character strings. In
developing algorithmic learning theory with EFS’s, we
can take full advantage of the fruitful results ac-
cumulated in the fields above.

The present paper outlines in brief the
authors’ studies on algoritmic learning theory with
EFS’s®-ME9.G9.67 First we define the EFS’s and
important subclasses. Then, we discuss them from the
aspects of logic programming. In Sect. 3 we describe
model inference for EFS’s in Shapiro’s sense, and show
that they form a good framework for inductive infer-
ence of formal languages. Using this framework, we

406

show that inductive inference from positive data is
much more powerful than it has been believed for
many years. In Sect. 4, again due to our framework, we
also show that EFS’s have a powerful series of PAC-
learnable classes. In Sect. 5 we illustrate an application
of our theory with EFS’s to Molecular Biology.
Finally we refer to works on MAT-learning and learn-
ing by analogy developed in the framework of EFS’s
by the other researchers.

2. Elementary Formal Systems

Let 2 be a finite alphabet, X be a countable set of
variables, and II be a set of predicate symbols. We

assume these three sets X, X, I] are mutually disjoint. .

The arity, a positive integer, is associated with each
predicate symbol. We use x, y, X1, Xz, -+ to denote
variables and p, q, p1, p», -+ to denote predicate sym-
bols. By 2J*, 2*, X=" we denote the sets of all strings
over %, all nonempty strings, all strings of length »n or
less, respectively.

A pattern is an element in (XU X)*. A pattern 7
is said to be regular if each variable appears at most
once in 7. For example, a pattern “xy” is regular but
not “xx”. An afom is an expression of the form p (7,
-++,), Where p is a predicate symbol with arity » and

m, ***, 7n are patterns. A definite clause is a clause of
the form

A<By, -+, Bn
where A, B,, :+*, B, are atoms. The atom A is called the

head and the part By, -+, By the body of the definite
clause. We identify an atom 4 with a clause A<—. A
clause is called ground if it contains no variable. The
set of all ground atoms is called the Herbrand base
and denoted by HB.
Definition 1: An elementary formal system (EFS,
for short) is a finite set of definite clauses.

A substitution is a homomorphism from patterns
to patterns that maps each symbol a€X to itself. A
substitution that maps some variables to empty string
is called an e-substitution. In this paper we do not deal
with the e-substitution if stated otherwise. By 76, we
denote the image of a pattern 7 by a substitution 4.
For an atom A=p(m, ***, 7») and a clause C =A<—B,,
-+, Bn, we define A0=p(m0, -, m0) and Cd=AO—
B4, -+, Brf. ‘

Definition 2: A definite clause C is provable from an

EFS I', denoted by I'C, if C is obtained by finitely
many (possibly 0) applications of substitutions and
modus ponens.

Definition 3: Let /" be an EFS and p be a unary
predicate symbol. The language L (I, p) is the set {w
eX*I'tp(w)}. If such I' and p exist, the language L
is definable by an EFS I' or called an EFS language.
The set of ground atoms provable from [is denoted
by PS(I).

IEICE TRANS. INF. & SYST., VOL. E75-D, NO. 4 JULY 1992

The class of pattern languages was introduced by
Angluin®”. The language L(7x) of a pattern x is
defined as the set of strings obtained by substituting
nonempty strings for variables in 7, that is, L () ={w
eX*|lw=r0, @ is a substitution}. Here we should note
that a pattern language L () is an EFS language L (I,
p) with I'={p(7r)}.

2.1 Subclasses of Elementary Formal Systems

We introduce several subclasses of EFS’s, called
variable-bounded EFS’s, length-bounded EFS’s, sim-
ple EFS’s, regular EFS’s, and linear EFS’s, and show
the relations of their languages to Chomsky hierarchy.

The set of variables contained in an atom A is
denoted by v(A4). The length of a pattern x is denoted
by |z|. For an atom, |p(m, ==, m)|=|m|++|ml.
The number of all occurrences of a variable x in a
pattern 7 is denoted by o(x, 7). For an atom o(x, p
(m, =,) =o0(x, m)+-+o(x, m).

Definition 4: A definite clause A<—B, **+, By is said
to be variable-bounded if

v(A4) 2v(B) U+ Uv(Bn)

Definition 5: A definite clause A<—B,, **+, By is said
to be length-bounded if

|A0|=|B,6|+ -+ +|Bn0|

for any substitution 4.

We can easily characterize the length-boundedness
as in the following lemma, from which we know that
a length-bounded clause is variable-bounded and we
can effectively determine if a given clause is length-
bounded or not.

Lemma 1:” A definite clause A<B;, -, Bp is
length-bounded if and only if | 4| =|Bi|+ - +|Bn| and
o(x, A)=o0(x, By) ++++o0(x, Bn) for any variable x.
Definition 6: A simple clause is a clause of the form
p(m)—q(x1), ", gn(xn), where p, qi, ***, gm are unary
predicate symbols and xi, -+, x, are mutually distinct
variables appearing in 7.

Definition 7. A simple clause is called regular if the
pattern in its head is regular. »
Definition 8: A regular clause is called right (left)-
linear if the pattern in the head is of the form xw (wx)
for some string we X'*,

An EFS [' is called variable-bounded (resp.
length-bounded, simple, regular, right-linear, left-
linear) if all clauses in I are variable-bounded (resp.
length-bounded, simple, regular, right-linear, left-
linear).

Example 1:
(1) The context-sensitive language {a"b"c"|n=1} is
definable by a length-bounded EFS

ARIKAWA et al: 'ALGORITHMIC LEARNING THEORY WITH EFS

EFS

variable-bounded

Grammar
phrase structure

context-sensitive length-bounded

context-free

regular regular

finite left (right) linear

LB-EFS(m)

LB-EFS(2)

LB-EFS(1)
(pattern languages)

Fig. 1 Hierarchy of EFS languages. There is no pattern lan-
guage which is context-free but not regular.

p(xyz)—q(x, y, z)
Ii=4q(ax, by, cz)—q(x, y, z)
q(a, b, c)
(2) The language {a*"|n=0} is definable by a simple
EFS
p(xx)—p(x)
ri= }
p(a)
(3) The context-free language {a”b"|n=1} is
definable by a regular EFS
__{p(axb)efp(x)}
p(ab)

For these classes of EFS languages, the following
theorems hold.
Theorem 1:” A language is recursively enumerable
(resp. context-sensitive, context-free, regular) if and
only if it is definable by a variable-bounded (resp.
length-bounded, regular, right/left-linear) EFS.

From the theorem, we can only deal with variable-
bounded EFS’s, that is, the variable-boundedness is

not a restriction, because in this paper we are only

interested in EFS’s as language defining devices.
Theorem 2:>® The class of languages definable by
simple EFS’s is properly located between the classes of
context-free languages and context-sensitive languages.

Let LB-EFS(m) be the class of all languages
definable by length-bounded EFS’s each of which has
at most m clauses. Then together with the theorems
above, we have a hierarchy in Fig. 1.

2.2 Elementary Formal Systems as Logic Programs

As seen in Theorem 1, EFS’s are natural devices to
generate formal languages. The EFS’s can be consid-

407

«— p(aabbcc) p(zyz) < q(z,y,2)

{z :=aa,y := bb,z := cc}

« q(aa, bb, cc) g(az, by, cz) « q(z,y,2)

« ¢(a,b, c)\/q(a,b, c)
a

Fig. 2 Refutation of «—p(aabbcc) in I3.

ered as logic programs and a refutation procedure can
be applied to the variable-bounded EFS’s. Hence we
can also consider EFS’s as acceptors.

Let @ and 8 be patterns or atoms. Then a substitu-
tion @ is called a unifier of @ and B if a§=p46. If a=
B0 and af’ =p for some substitutions 4 and &', @ is
called a variant of 3. In usual logic programming
languages, any pair of terms or atoms has a unique
most general unifier. However, there may be infinitely
many maximally general unifiers for a pair of patterns.
Let ¥ ={a, b}. Then {x :=a’} for every i is the unifier
of patterns ax and xa. All the unifiers are maximally
general.

Hence, we need to define a new derivation for an
EFS with no requirement that every unifier should be
most general. A goal is a clause of the form «B, -+,
B, (m=0). We assume a computation rule R to select
an atom from a goal.

Definition 9: Let I” be an EFS, and G be a goal. A

derivation from G is a (finite or infinite) sequence of

triplets (G;, 6:;, C;) (i=0, 1, -++) that satisfies the fol-

lowing conditions :

(1) G;isagoal, §; is a substitution, C; is a variant
of a clause in I', and Go=G.

(2) v(CH)Nv(C)=¢ (i=*])), and v(C;) Nv(G) =
¢ for every i.

(3) If G;is<A,, -+, Ax and A, is the atom selected
by R, then C; is A«Bi, **, Bg, and 0; is a
unifier of 4 and An, and G4, is

("—Al, ooy Am-1, By, ***, Bg, Amsr, *+, Ak) 6;

An is called the selected atom in G;, and Gy, is

called a resolvent of G; and C; by 6;.
Definition 10: A refutation is a finite derivation
ending with empty goal [].

Figure 2 depicts an example of a refutation in the

EFS I} in Example 1.
Proposition 1: Let ¢ and 3 be a pair of patterns or
atoms. If one of them is ground, then every unifier of @
and @ is ground and the set of all unifiers is finite and
computable, where a unifier {x;:=#, -+, xn:=1,} is

408

ground if all the ;,(1=i=<n) are ground.

By this proposition, for variable-bounded EFS’s,
all goals in a derivation from a ground goal are kept
ground. We can implement the derivation procedure in
nearly the same way as in the traditional logic pro-
gramming languages.

Now we describe the semantics of refutation
according to Jaffar et al.*¥ The unification in the
EFS’s can be considered as an equality theory E with
an associative law.

The first semantics for an EFS [is its model. To
interpret formulas we can restrict the domains to the
models of E. Then

M (I')=N{M CHB|M is an Herbrand model of
r}

is an Herbrand model of I', and every ground atom in
M (I') is true in any model of I". The second semantics
is the least fixed point Ifp (Tr) of the function Ty : 278
—2"8 defined by

Tr(I)={A€ HB| there is a ground instance A«
By, -+, B, of a clause in I such that B,&
I for 1£k<n}
The third semantics using refutation is defined by
SS(I') ={A= HB |there exists a refutation from
—A}

These three semantics are shown to be identical®.
Hence we have the following theorem.

Theorem 3:“? For every EFS I', M (I") =Ilfp(Tr) =
SS(IN)=PS(I').

By this theorem the refutation is complete as a
procedure of accepting EFS languages.

Now we discuss the inference of negation. In the
traditional logic programming, the negation as failure
rule is complete under the completion of definite
programs, but it is not the case for EFS’s.

A derivation is finitely failed with length n if its
length is » and there is no clause which satisfies the
condition (3) in Definition 9 for the selected atom in
the last goal. A derivation (G;, 6;, C;) (i=0, 1, --+) is
fair if it is finitely failed or, for each atom 4 in G,
there is a k =i such that 40; -+ G, is the selected atom
in G,. We assume that any computation rule R makes
all derivations fair. Such a computation rule is said to
be fair.

The negation as failure rule is the rule that infers
— A when a ground atom A4 is in

FF (I') ={A€ HB| for any fair computation rule,
there is an integer » such that all deriva-
tions from «— A are finitely failed within

length n}

IEICE TRANS. INF. & SYST., VOL. E75-D, NO. 4 JULY 1992

Put E(9)=(xi=n/A" Ax,=r1,) for a substitu-
tion §={xi:=mn, ***, X» := 1}, and E (0) =true for an
identity substitution §. Negation as failure for EFS’s is
complete if the following two are satisfied'*:

(4) There is a theory E* such that, for every two

k
patterns 7 and 7, (7= r)—*}_/lE (6;) is a logical conse-

quence, where 6, :+*, G, are all unifiers of 7 and r, and
the disjunction means [] if k=0.
(5) FF(I') is identical to the set

GF (I') ={A= HB| for any fair computation rule,
all derivations from <A are finitely
failed}

In case of traditional logic program, it is known
that FF (I") = GF (I") since the most general unifier is
uniquely determined"”. However, we can easily con-
struct an EFS I" such that FF (I") = GF (I") because a
pair of patterns may have infinitely many maximally
general unifiers. Note that such an EFS I" may not be
variable-bounded.

We show that negation as failure rule for variable-
bounded EFS is complete, for which we need the set

GGF(I')={A=HB| for any fair computation
rule, all derivations from «—A4 such
that all goals in them are ground are
finitely failed}

The inference rule that infers — 4 for a ground atom
A if A4 is not in GGF (I') is called the Herbrand
rule!”.

Theorem 4:“? For any variable-bounded EFS I,

FF(I')=GF (I') =GGF (I")

Thus the negation as failure is complete and iden-
tical to the Herbrand rule for variable-bounded EFS’s.
Hence we have the following theorem.

Theorem 5:“? Let I" be a variable-bounded EFS and
A be a ground atom. Then A4 is provable from " if and
only if there is a refutation from <4 in .

3. Inductive Inference with Elementary Formal
Systems

First, we discuss the theory of inductive inference
developed with EFS’s. Inductive inference is one of the
mathematical models of algorithmic learning.
Identification in the limit is a notion of successful
inference introduced by Gold®?.

3.1 Identification in the Limit

Let U be a set, which we call a universal set. A
rule is a subset RS U. An indexed family of recursive

ARIKAWA et al: ALGORITHMIC LEARNING THEORY WITH EFS

rules is a class of rules C=R;, Ry, -+- for which there
exists a computable function f : N X U—{0, 1} such
that f (i, s)=1 or 0 if s is in R; or not, respectively.

For EFS languages, the universal set U is the set
2'*. For EFS models, U is the set of all ground atoms.
We can consider an EFS as the index of a rule. For any
length-bounded EFS I', any predicate symbol p and
any string w, we can effectively determine whether

p(w) is provable from I". Therefore, models or lan-
guages definable by a length-bounded EFS constitute
an indexed family of recursive rules.

A complete presentatzon of a rule R is an 1nﬁn1te
sequence (s, 41), (s, %), *** such that ¢ is 0 or 1, {s;|#
=1}=R and {s)|t;=0}= U R. A positive presentation
of a nonempty rule R is an infinite sequence sy, s, ***
such that {s;]i=1, 2, ---}=R.

An inference machine is an effective procedure

that requests input and produces output from time to
time. We call an output produced by an inference
machine a guess. Let g=s, s, - be an infinite
sequence and gi, gz, ‘- be the sequence of guesses
produced by an inference machine M when elements
in ¢ are successively given to M. Then we say that M
on input ¢ converges to g, if all but finitely many
guesses out of g, g, '+ are equal to g.
Definition 11: A class of rules C=R;, Ry, --- is said
to be inferable from complete (resp. positive) data if
there exists an inference machine M such that for any
index i and any complete (resp. positive) presentation
of R;, M on input ¢ converges to g with R,=R,. We
also say that the machine M identifies C in the limit
from complete (resp. positive) data.

3.2 Model Inference System for Elementary Formal
Systems

Model inference system (MIS, for short) de-
veloped by Shapiro® is a kind of automatic program
synthesis system for Prolog programs. From other
systems, MIS is distinguished by fully utilizing the
tight relationship between syntax and semantics of
logic programs. Since the variable-bounded EFS’s
have nearly the same properties as the usual logic
programs as we have seen in the previous section, we
can naturally consider a learning algorithm for them
based on the Shapiro’s theory of model inference.

In model inference, examples are given as a com-
plete presentation of the model of an EFS. Therefore,
positive examples of an EFS ' are ground atoms
provable from I”, and negative examples are the rest. A
hypothesis H is said to be too strong if H proves some
negative examples. H is said to be too weak if H fails
to prove some positive examples.

The following procedure MIS outlines the model
inference system.

409

Procedure MIS;
begin
H:= {0}
repeat
read next example;
while H is too strong or too weak do
begin
while H is too strong do
begin
apply CBA to H and detect a false clause C in H ;
remove C from H;
end;
while H is too weak do
add a refinement of a clause removed
end;
output H;
forever
end;

In order for MIS to correctly infer EFS models, we
devise two algorithms, the contradiction backtracing
algorithm CBA and the refinement operator.

Given a refutation claiming that a hypothesis H is
too strong, CBA finds a false clause from H by tracing
selected atoms backward. To test the truth value of a
selected atom, CBA calls an oracle ASK that receives
a ground atom and returns its truth value. We can
easily simulate ASK since examples are given as a
complete presentation. However, CBA must take a
ground instance of a tested atom that is not ground,
since ASK can answer only ground atoms. Fortunate-
ly, all the selected atoms in a refutation from a ground
goal in a variable-bounded EFS are ground. Hence we
can simplify CBA for variable-bounded EFS’s as fol-
lows.

Procedure CBA for_EFS;
input: (Go = G, 0, Co),(G1,61,Ch),..., (G = 0, 0k, Ci);
{a refutation of a ground goal G false in M}
output: a clause C; false in M;
begin
for i := k downto 1 do begin
let A; be the selected atom of G;_;;
if ASK(A;) is false then return C;_;;
end
end

Theorem 6:” Let M be a model of a variable-
bounded EFS I, and (Go=G, 6, G), (G, 6, C1), -,
(Gx=[], Cs, 6:) be a refutation by " of a ground goal
G true in M. If CBA is given the refutation, then it
makes i oracle calls and returns C;_; false in M for
some i=1, 2, -+, k.

Now we consider the refinement operator. First we
need the notion of size.
Definition 12: We define the size of an atom 4 by

410

size(A) =2X|A|—# v(A), and size (C) =2 X (|4|+|B|
+-++|Ba|) —# v(C) for a clause C=A<—B,, -, By.

For a binary relation R, R(a) denotes the set {b
|(a,) ER} and R* denotes the reflexive transitive
closure of R. A clause D is called a refinement of C if
D is a logical consequence of C and size(C) <
size(D). A refinement operator p is a subrelation of
refinement relation such that the set {DEp(C)|
size(D) < n} is finite and computable. A refinement
operator p is complete for a set S if p*((J)=S. A
refinement operator p is locally finite if o(C) is finite
for any clause C.

Now we introduce refinement operators for the
classes of EFS’s. All refinement operators defined
below have a common feature. They are constructed by
two types of operations, application of a substitution
and addition of an atom.

Definition 13: A substitution @ is basic for a clause

C if

(1) ={x:=y}, where x&v(C), yev(C) and x=+
¥, ‘

(2) ={x:=a}, where x€v(C) and a€JX, or

(3) ={x:=yz}, where x€v(C), y&Ev(C), z&
v(C) and y=*z.

Definition 14: Let 4 be an atom. Then an atom B is

in ps(A) if and only if

(4) A=[J and B=p(xy, -+, x») for p€ Il with arity
n and mutually distinct variables x;, **+, x5, or

(5) AG=B for a substitution & basic for 4.

For p, we have the following completeness theo-
rem.

Theorem 7:” o, is a locally finite and complete

refinement operator for atoms. ‘

Definition 15: Let C be a variable-bounded clause.

Then a clause D is in 0,,(C) if and only if (4) or (5)

in Definition 14 holds, or C=A<—B,, ***, B,_; and D

=A<B,, -+, B,_1, B, is variable-bounded. Similarly

we define p;, for length-bounded clauses.

Theorem 8:7

(1) po is a complete refinement operator for
variable-bounded clauses.

(2) puw is a locally finite and complete refinement
operator for length-bounded clauses.

Note that p,, is not locally finite because the
number of atoms B, possibly added by p. is infinite,
while o4 is locally finite. We can also define
refinement operators for simple or regular clauses
which are locally finite and complete. For simple
clauses, applications of the basic substitutions are
restricted only to clauses without any bodies, and for
regular clauses, substitutions of the form {x :=y} are
not allowed.

3.3 Inductive Inference from Positive Data

Gold"® showed that any indexed family of recur-
sive languages is inferable from complete data while it

IEICE TRANS. INF. & SYST., VOL. E75-D, NO. 4 JULY 1992

is not always inferable from positive data. For exam-
ple, even the class of regular languages can not be
identified in the limit from positive data.

However, Angluin® showed some interesting clas-
ses inferable from positive data such as pattern lan-
guages. Shinohara® and Wright“? showed that the
class consisting of unions of pattern languages is infer-
able from positive data. Shinohara® proved the infer-
ability of languages from positive data, when they are
definable by a simple EFS with just two clauses.

More explicitly exploiting the framework of
EFS’s, we can reveal the existence of rich classes infer-
able from positive data. Since we deals with EFS
languages, we can assume that every EFS contains a
unary predicate symbol p and simply denote L (I, p)
by L(I") without any loss of generality.

Definition 16: An EFS I is reduced with respect to
aset SSIX*¥if SSL(I') but SELI") forany IS
I.

The key property that many classes of length-

bounded EFS’s are inferable from positive data is
given in the following lemma. An EFS [is said to be
equivalent to I, if we can identify I7 and I up to
renaming of variables and predicate symbols. Clearly,
if T is equivalent to I3, then L(J7) =L (I3).
Lemma 2:®” For any m=0 and any finite set S of
strings, there exist only finitely many inequivalent
length-bounded EFS’s with at most m clauses that are
reduced with respect to S.

In the context of PAC-learning, we will again
count the number of reduced EFS’s more precisely. By
using the lemma above and the notion of finite elastic-
ity, which is a sufficient condition for inferability from
positive data?, we have the following theorem.
Theorem 9:®” The class LB-EFS(m) is inferable
from positive data.

Since we can designate the m arbitrarily, the
classes inferable ' from positive data unlimitedly
increase as shown in Fig. 1.

4. PAC-Learnable Elementary Formal Systems
4.1 Probably Approximately Correct Learning

For an alphabet Y, a subset ¢ of X* is called a
concept. Obviously, we can regard a concept ¢ as its
characteristic function ¢ : X*—{0, 1} defined by c(x)
=1(xEc), c(x)=0 (x€c). A concept class is a
nonempty set § S2%* of concepts. For a concept ¢, an
example of ¢ is a pair {x, c(x)) for xEX*. An
example <x, c¢(x)> is said to be positive (resp. nega-
tive) if c(x)=1 (resp. ¢(x)=0). We say that a con-
cept ¢ is consistent with examples <xi1, a1>, <Xz, az>, ***,
{xn, any if c¢(x;)=a; for all 1=i<n. For a concept
class &, we assume a representation system of concepts
in 6. For example, the class of regular sets has finite
automata as representations of its concepts. A concept

ARIKAWA et al: ALGORITHMIC LEARNING THEORY WITH EFS

need not be uniquely represented.
The following notion of PAC-learnability is due

tO(lo)'(ZS).

Definition 17: A concept class € is polynomial-time

learnable if there exists an algorithm s which satisfies

the following conditions :

(1) s runs in polynomial-time with respect to the
input length. ‘

(2) There is a polynomial p(+, -, +) such that for any
integer n=0, any concept ¢cE ¢, any real numbers
&, 0(0<e, §<1), and any probability distribu-
tion P on XY=", if « takes p(n, 1/¢, 1/8) exam-
ples which are generated randomly according to
P, then & outputs a representation of a hypothe-
sis & such that P(c@h) < e with probability at
least 1—9, where @ means the symmetric
difference.

Definition 18:**®® For a concept c€¥ and an

integer n=0, we define dim 6 ,=log; | € .|, where €,

={cN2="|ce €}. We say that a concept class € is of

polynomial dimension if there exists a polynomial

d(n) such that dim €,<d (n) for all n=0.

Example 2: The class of all finite subsets of I* is not

of polynomial dimension. In the same way, the class of

all regular sets is not of polynomial dimension.

Definition 19:'? Let ¢ be a concept class. A ran-

domized polynomial-time hypothesis finder for € is a

randomized polynomial-time algorithm that takes a

sequence of examples of a concept in ¢ as input, and

produces a hypothesis in ¢ that is consistent with the

examples, with probability at least y for some y >0. A

polynomial-time hypothesis finder for € is a deter-

ministic polynomial-time algorithm which finds a

hypothesis consistent with the examples.

The polynomial-time learnability is characterized

as follows :

Lemma 3:""®» Tet ¢ be a concept class. Consider

the following conditions (a)-(c) :

(a) € is of polynomial dimension.

(b) There is a polynomial-time hypothesis finder for
6.

(c) There is a randomized polynomial-time hypothe-
sis finder for &.

Then the following statements hold :

(1) If g is polynomial-time learnable, then (a) and
(¢) hold.

(2) If (a) and (b) hold, then € is polynomial-time
learnable.

4.2 Polynomial-Time Learnable Classes

Lemma 3 (1) asserts that a polynomial-time learn-
able concept class € must be of polynomial dimen-
sion. We have the following theorem :

Theorem 10:*® LB-EFS(m) is of polynomial dimen-
sion for any m=1.

The class LB-EFS of all length-bounded EFS

411

languages contains all finite sets. Therefore, in order to
obtain a polynomial-time learnable concept class of
length-bounded EFS languages, the number of definite
clauses must be bounded by a constant even if no
variables appear in definite clauses.

Although LB-EFS(m) is of polynomial dimen-
sion, this class is not polynomial-time learnable under
a reasonable assumption. We discuss this matter in the
sequel. We consider the following class of length-
bounded EFS’s.

Definition 20: A definite clause

Q(ﬂ'l, IR ﬂ'n)‘—’QI(TI, "t rtl)) QZ(Tt1+1> R th)y Y

q: ((27T VAR Tt;)

is said to be hereditary if, for each j=1, -+, t,, pattern
z; is a substring of some 7;. We say that an EFS [is
hereditary if each definite clause in I is hereditary.
All languages in Example 1 are defined by length-
bounded hereditary elementary formal systems. By
definition, a simple EFS is also hereditary.
Definition 21: For m, k=1, we denote by LB-H-EFS
(m, k) the class of languages definable by length-
bounded hereditary EFS’s with at most m definite
clauses such that the number of variable occurrences in
the head of each clause is bounded by k and the
number of atoms in the body is also bounded by k.
Obviously the class LB-H-EFS(m, k) contains
infinitely many languages for any m and k. Further-
more, ”gl LB-H-EFS (m, 2) contains all context-free

languages and L_zjl LB-H-EFS(m, 1) contains all linear
m

context-free languages, therefore, all regular languages.
Thus we can say that LB-H-EFS (m, k) is large enough
when m is appropriately chosen.

Since LB-H-EFS (m, k) is a subclass of LB-
EFS(m), it is of polynomial dimension. By Lemma 3
(2), we proved the following theorem by showing a
polynomial-time hypothesis finder for LB-H-EFS (m,
k).

Theorem 11:*® LB-H-EFS(m, k) is polynomial-
time learnable for any m, k=1. ‘

Vitter and Lin“? introduced the notion of NC-

‘learnability by employing NC algorithms instead of

polynomial-time algorithms. We also proved the fol-
lowing theorem :
Theorem 12:®

for any m, k=1.

LB-H-EFS(m, k) is NCZ?learnable

4.3 Classes Hard to Learn in Polynomial Time

Any subclass § of LB-EFS(m) is of polynomial
dimension. Therefore, if we can find a polynomial-time
hypothesis finder for §, it is a polynomial-time learn-
ing algorithm satisfying the conditions of Definition
17. We put a bound on the number of variable occur-
rences in defining the class LB-H-EFS(m, k). This

412

section provides a reason why this restriction is neces-
sary to obtain polynomial-time learnable classes.

For a concept class §, we consider the following
problem:

Consistency Problem for &

Instance: Finite sets P, NS JX*.

Question : Is there a concept A€ § consistent with the
positive examples in P and the negative examples in N,
ie, P<hand NSX*—h?

If the consistency problem for ¢ is NP-hard, it
can be shown that ¢ is not polynomial-time learnable
under the assumption RP+NP. Ko and Tzeng"®
showed that the consistency problem for the class of
pattern languages is Yf-complete. Schapire®” also
showed that the -class of pattern languages is not
polynomial-time learnable regardless of the representa-
tion under some reasonable assumption. Thus even
LB-EFS(1) is hard to be polynomial-time learnable.

The following result asserts that the polynomial-
time learnability requires a constant bound on the
number of variable occurrences even for the class of
regular pattern languages.

Theorem 13:*® The consistency problem for the class
of regular pattern languages is NP-complete.

By allowing e-substitutions to a regular pattern 7,
we define a language L () called an extended regular
pattern language®. The problem of finding a
sequence a*-*a, which is common to all positive
examples but not common to any of negative examples
is equivalent to finding a regular pattern =X
Xn-1 @nXn such that the extended regular pattern lan-
guage L () is consistent with the positive and negative
examples. This is slightly different from the longest
common subsequence problem that is shown NP-
complete *®®. The common subsequence can be
expressed as a regular pattern of the form xoa1x1@2xz:
Xn_1Gn Xn With @;€2X for 1=i=n.

As to this matter, we have the following results
that also imply the hardness of polynomial-time learn-
ability. »

Theorem 14:*®

(1) The consistency problem for the class of
extended regular pattern languages is NP-
complete.

(2) The consistency problem for the class of com-
mon subsequence languages is NP-complete.

5. Application to Molecular Biology

It is important to combine theory and pragmatism
for the sound development of algorithmic learning
theory. We present an application of the theory
introduced in the former section.

We have applied learning algorithms to knowl-
edge acquisition from amino acid sequences and
shown that these approaches are very successful®®.
This section shows a method which employs a learning

IEICE TRANS. INF. & SYST., VOL. E75-D, NO. 4 JULY 1992

algorithm for EFS’s by following Ref.(5). The prob-
lem we considered in Ref.(5) is to identify transmem-
brane domains in proteins from their amino acid
sequences.

Regular patterns have been used to describe some
features of amino acid sequences in PROSITE
database®®. For example, the zinc-finger motif is
described as x; Cx, CxsHx4Hxs with some length con-
straints on X, Xs, Xs. We view amino acid sequences
through such regular patterns.

The class LB-H-EFS(m, k) is polynomial-time
learnable in the sense of PAC-learning (Theorem 11).
Although the learning algorithm for Theorem 11 runs
in polynomialtime, it requires a large amount of time
and space, and cannot be used directly in practical
applications.

In order to make the computation feasible, we
restrict our attention to the class of languages definable
by EFS’s of the form

{P(ﬁl), p(m), -, P(?Tn)}

where n<m and m, m, -**, 7, are regular patterns with
at most k variables. In other words, a language in this
class is a union of at most m languages defined by
regular patterns with at most k variables.
Furthermore, instead of applying the exact
polynomial-time learning algorithm, we devised an
algorithm (procedure find_union) which finds, from
given sets P and N of positive and negative training
examples, an EFS covering P and excluding N.

procedure find_union(P, N: strings);
begin
S« 0;
foreach pattern = with 76 = w
for some w € P and some substitution 6;
if L(x)N N =0 then S « SU{r};
Find a subset T’ of S covering P which is minimal
with respect to set-inclusion;
output I';

end;

The procedure find_union (P, N) produces a col-
lection of regular patterns made from P which covers
P and excludes N.

In procedure find_union we employ the greedy
approximation algorithm for the minimum set cover
problem by Johnson®. This greedy algorithm has
been shown to find a set cover of size at most M log M
in polynomial time, where M is the size of the mini-
mum set cover. Hence procedure find_union may not
produce the smallest hypothesis, but it is guaranteed to
construct a small enough hypothesis.

Assuming that the sequences corresponding to
transmembrane domains of proteins are describable by
an EFS of the above form with small m and k, we
made experiments using PIR database®® and obtained
very acceptable hypotheses.

ARIKAWA et al: ALGORITHMIC LEARNING THEORY WITH EFS

6. Discussion

We have overviewed in brief our studies on algo-
rithmic learning theory in the framework of EFS’s, and
shown that the framework is convenient for studying
inductive inference and PAC-learning. There remain
another main paradigms in this particular field, MAT-
learning and learning by analogy.

As for MAT-learning, Sakakibara®” introduced
an interesting subclass of variable-bounded EFS’s
called extended simple EFS’s by generalizing the sim-
ple EFS’s in Ref. (4), and proved that the class can be
MAT-learnable via equivalence and membership
queries plus some additional information. He also
presented some results on classes of EFS’s from the
viewpoint of formal language theory. As for learning
by analogy, Miyahara®® discussed analogical reason-
ing using EFS’s with mismatch in the sense of string
pattern matching. His study was motivated by genome
knowledge acquisition and based on the theory of
analogical reasoning by Haraguchi and Arikawa®®.

Apart from algorithmic learning, we can easily
define many extensions of context-free grammars in a
very natural way. Saeki and Arikawa® proved that
the Earley’s parsing algorithm? can be extended to
such classes of EFS’s which include context-free gram-
mars. EFS’s have aspects of logic programming as we
have seen. So we can make good use of results on logic
programming. Conversely the results on EFS’s are
reflected into the usual logic programming as in
Arimura®,

References

(1) Angluin D.: “Finding patterns common to a set of
strings”, Proc. 11th ACM Symposium on Theory of
Computing, pp. 130-141 (1979).

(2) Angluin D.: “Queries and concept learning”, Machine
Learning, 2, pp. 319-342 (1988).

(3) Angluin D. and Smith C. H.: “Inductive inference : the-
ory and methods”, ACM Computing Surveys, 3, pp. 237-
269 (1983).

(4) Arikawa S.: “Elementary formal systems and formal
languages — Simple formal systems”, Memoirs of Faculty
of Science, Kyushu University, Ser. A., Mathematics, 24,
pp. 47-75 (1970).

(5) Arikawa S., Kuhara S., Miyano S., Shinohara A. and
Shinohara T.: “A learning algorithm for elementary
formal systems and its experiments on identification of
transmembrane domains”, Proc. 25th Hawaii Int. Conf.
System Sciences, pp. 675-684 (1992).

(6) Arikawa S., Kuhara S., Miyano S., Mukouchi Y., Shino-
hara A. and Shinohara T.: “A machine discovery from
amino acid sequences by decision trees .over regular
patterns”, Proc. Fifth Generation Computing Systems
1992, pp. 618-625 (1992).

(7) Arikawa S., Shinohara T. and Yamamoto A.: “Elemen-
tary formal system as a unifying framework for language
learning”, Proc. 2nd Workshop on Computational Learn-
ing Theory, pp.312-32 (1989). (also in Theoretical

(8)

(20)

20

(25)
(26)
27
(28)

(29)

(31)

413

Computer Science, 95, pp. 97-113 (1992)).

Arimura H.: “Completeness of depth-bounded resolu-
tion for weakly reducing programs”, RIFIS-TR-CS-21,
Research Institute of Fundamental Information Science,
Kyushu University (1990).

Bairoch A.: “PROSITE: a dictionary of sites and pat-
terns in proteins”, Nucleic Acids Res., 19, pp. 2241-2245
(1991).

Blumer A., Ehrenfeucht A., Haussler D. and Warmuth M.
K.: “Learnability and the Vapnik-Chervonenkis dimen-
sion”, J. ACM, 36, 929-965 (1989).

Earley J.: “An efficient context-free parsing algorithm”,
Commun. ACM, 13, pp. 94-102 (1970).

Gold E.M.: “Language identification in the limit”,
Information and Control, 10, pp. 447-474 (1967).
Haraguchi M. and Arikawa S.: “A formulation of rea-
soning by analogy : analogical union of logic programs”,
Lecture Notes in Computer Science, 264, pp. 58-69
(1987).

Jaffar J., Lassez J. L. and Mahr M. J.: “Logic program-
ming scheme”, Logic Programming: Functions, Rela-
tions, and Equations, pp. 211-233 (1986).

Johnson D.S.: “Approximation algorithms for com-
binatorial problems”, J. Comput. System Sci., 9, pp. 256~
278 (1974).

Ko K. and Tzeng W.: “Three Yf-complete problems in
computational learning theory”, preprint (1990).

Lloyd J. W.: “Foundations of Logic Programming, Sec-
ond, Extended Edition”, Springer-Verlag (1987).

Mair D.: “The complexity of some problems on subse-
quences and supersequences”, J. ACM, 25, pp. 322-336
(1978).

Michalski R. S., Carbonell J. G. and Mitchell T. M.
(eds) : “Machine Learning: An Artificial Intelligence
Approach, Vol. I”, Tioga Publishing Company (1983).
Michalski R. S., Carbonell J. G. and Mitchell T. M.
(eds) : “Machine Learning: An Artificial Intelligence
Approach, Vol. II”, Morgan Kaufmann (1986).
Michalski R. S., Kodratoff Y. (eds) : “Machine Learn-
ing: An Artificial Intelligence Approach, Vol. III”, Mor-
gan Kaufmann (1990).

Miyahara T.: “Analogical reasoning using elementary
formal system with mismatch”, Proc. 2nd Workshop on
Algorithmic Learning Theory, pp. 224-230 (1991).
Miyano S., Shinohara A. and Shinohara T.: “Which
classes of elementary formal systems are polynomial-time
learnable?”, Proc. 2nd Workshop on Algorithmic Learn-
ing Theory, pp. 139-150 (1991).

Natarajan B. K. : “On learning boolean functions”, Proc.
19th ACM Symposium on Theory of Computing, pp. 296
-304 (1987). ‘
Natarajan B. K.: “On learning sets and functions”,
Machine Learning, 4, pp. 67-97 (1989).

Protein Identification Resource, National Biomedical
Research Foundation.

Plotkin G. D.: “Building in equational theories”,
Machine Intelligence, 7, pp. 132-147 (1972).

Robinson J. A.: “A machine-oriented logic based on the
resolution principle”, J. ACM, 12, pp. 23-41 (1965)
Saeki I. and Arikawa S.: “Polynomial time parsers for
elementary formal systems”, SIG-FAI-9001-6, pp. 55-64
(1990).

Sakakibara Y.: “On learning Smullyan’s elementary for-
mal systems: towards an efficient learning method for
context-sensitive languages”, Advances in Software Sci-
ence and Technology, 2,pp. 79-101 (1990).

Schapire R. E.: “Pattern languages are not learnable”,

414

(32)

(33)

(34)

(35)

(36)

(37

(38)

(39)

(40)

(41)

(42)

Proc. 3rd Workshop on Computational Learning Theory,
pp. 122-129 (1990).

Shapiro E.: “Inductive inference of theories from facts”,
Technical Report 192, Department of Computer Science,
Yale University (1981).

Shinohara T.: “Polynomial time inference of pattern
languages and its applications”, Proc. 7th IBM Symp. on
Mathematical Foundations of Computer Science, pp. 191
-209 (1982).

Shinohara T.: “Polynomial time inference of extended
regular pattern languages”, Proc. RIMS Symposia on
Software Science and Engineering, (Lecture Notes in
Computer Science, 147), pp. 115-127 (1983).

Shinohara T.: “Inferring unions of two pattern lan-
guages”, Bull. Inf. Cybern., 20, pp. 83-88 (1983).
Shinohara T.: “Inductive inference of formal systems
from positive data”, Bull. Inf. Cybern., 22, pp.9-18
(1986).

Shinohara T.: “Inductive inference from positive data is
powerful”, Proc. 3rd Workshop on Computational Learn-
ing Theory, pp. 97-110 (1990). (to appear in Information
and Computation)

Smullyan R. M. : “Theory of Formal Systems”, Princeton
University Press (1961).

Valiant L. : “A theory of the learnable”, Commun. ACM,
27, pp. 1134-1142 (1984).

Vitter J. S. and Lin J.: “Learning in parallel”, Proc. 1st
Workshop on Computational Learning Theory, pp. 83-96
(1988).

Wright K. : “Identification of unions of languages drawn
from an identifiable class”, Proc. 2nd Workshop on
Computational Learning Theory, pp. 328-333 (1989).
Yamamoto A.: “Elementary formal system as a logic
programming language”, Proc. Logic Programming Con-
ference ’89, pp. 123-132(1989). (also in J. Logic Program-
ming, 13, pp. 89-97 (1992))

Setsuo Arikawa was born in Kago-
shima, Japan in 1941. He received the B.S.
degree in 1964, the M.S. degree in 1966
and the Dr. Sci. degree in 1969 all in
Mathematics from Kyushu University,
Fukuoka, Japan. Presently, he is a Profes-
sor of Research Institute of Fundamental
Information Science, Kyushu University.
His research interests include algorithmic
learning theory, logic and inference in Al,
and information retrieval systems.

matics.

IEICE TRANS. INF. & SYST., VOL. E75-D, NO. 4 JULY 1992

Satoru Miyano was born in Oita,
Japan in 1954. He received the B.S. degree
in 1974, the M.S. degree in 1979 and the
Dr.Sci. degree in 1984 all in Mathematics
from Kyushu University, Fukuoka,
Japan. Currently, he is an Associate Pro-
fessor of Research Institute of Fundamen-
tal Information Science, Kyushu Univer-
sity. His present interests are parallel
algorithms, computational complexity,
algorithmic learning theory and bioinfor-

Ayumi Shinohara was born in Fu-
kuoka, Japan in 1965. He received the
B.S. degree in 1988 in Mathematics and
M.S. degree in 1990 in Information Sys-
tems from Kyushu University, Fukuoka,
Japan. He is presently an Assistant of
Research Institute of Fundamental Infor-
mation Science, Kyushu University. His
research interests are algorithmic learning
theory and its applications.

Takeshi Shinohara was born in Fu-
kuoka, Japan in 1955. He received the
B.S. degree in 1980 from Kyoto Univer-
sity, Kyoto, Japan, and the M.S. and Dr.
Sci. degrees from Kyushu University,
Fukuoka, Japan in 1982 and 1986, respec-
tively. Currently, he is an Associate Pro-
fessor of Department of Artificial Intelli-
gence, Kyushu Institute of Technology,
Fukuoka, Japan. His present interests
include information retrieval, string pat-

tern matching algorithms and algorithmic learning theory.

Akihiro Yamamoto was born in
Kyoto, Japan in 1960. He received the
B.S. degree from Kyoto University,
Kyoto, Japan in 1985, and the M.S.
degree and Dr. Sci. degrees from Kyushu
University, Fukuoka, Japan in 1987 and
1990, respectively. Presently, he is a Lec-
turer of Department of Electrical Engi-
neering, Hokkaido University, Hok-
kaido, Japan. His interests are in logic
programming and unification algorithms.

