
A System to Find Genetic Networks

Using Weighted Network Model

Tomohiro Moriyama 1 Ayumi Shinohara 1 Masayuki Takeda 1

moriyama@i.kyushu-u.ac.jp ayumi@i.kyushu-u.ac.jp takeda@i.kyushu-u.ac.jp

Osamu Maruyama 2 Takao Goto2 Satoru Miyano 2

maruyama@ims.u-tokyo.ac.jp takao@ims.u-tokyo.ac.jp miyano@ims.u-tokyo.ac.jp

Satoru Kuhara 3

kuhara@grt.kyushu-u.ac.jp
1 Department of Informatics, Kyushu University 33, 6-10-1 Hakozaki, Higashi-ku,

Fukuoka 812-8581, Japan
2 Human Genome Center, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo

108-8639, Japan
3 Graduate School of Genetic Resources Technology, Kyushu University,

6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan

Abstract

We are developing a system which finds a genetic network from data obtained by multiple gene
disruptions and overexpressions. We deal with a genetic network as a weighted graph, where each
weight represents the strength of activation from a gene to another gene. In this paper, we explain
the overview of our system, and our strategy to visualize the weighted network. We also study the
computational complexity related to the visualization.

1 Introduction

Analyzing the interactions between genes by systematic gene disruptions and gene overexpressions is
getting more important in Genome Science. DNA microarray technology [6, 14] enabled us to produce
time series of gene expression patterns. Our research group have launched a project whose purpose is
to reveal the gene regulatory networks among the 6,200 genes of Saccharomyces cerevisiae while many
laboratories have also started similar project.

Some methods have been proposed to identify the gene regulatory networks from gene expression
patterns [1, 4, 11, 13]. In our previous work [9, 10], we have introduced a weighted network model
as an edge-weighted graph, where each weight reflects the strength of the interaction. We analyzed
its computational complexity [9]. The simulation results showed that our algorithm to adjust weights
incrementally predicts more accurate than the algorithm whose worst case performance is theoretically
guaranteed [10].

In this paper, we explain the overview of our system. The core module of the system is to produce
a genetic network as a weight matrix from given gene expression profiles. We have implemented
our incremental weight adjusting algorithm, whose practical behaviors have verified in our previous
work [10]. The problem here is that the size of the produced network is quite large. If we directly
apply our system for gene expression profiles consisting of 6,200 genes, the output is a weight matrix
of size 6, 200 × 6, 200. Unfortunately, there is no guarantee that the network is sparse. Thus it will
be quite hard for the users to understand the connections among genes in the network. The standard
graph drawing techniques [2] will not work effectively.

We introduce two modules in our system in order to reduce the problem. The first one is the
correlation analyzer of gene activations. It analyzes not only the standard correlation coefficient of



gene activations, but also the correlation coefficient through some functions specified by the users. We
can use it to condense the gene expression profile data, with respect to the users’ interests.

The second module is to visualize the weighted network. We propose two views to capture the
connections in the network. One is the global view, which rearranges a weight matrix by permuting
columns and rows so that similar genes locate closely and dissimilar genes far from each other. The
goal is related to other methods of visualization, such as the Self-Organizing Map (SOM) [7] and
the Multi-Dimensional Scaling (MDS) [8]. We analyze the computational complexity to rearrange the
weight matrix optimally. We show that the problem can be reduced to the traveling salesman problem
and vice versa. These results imply that the problem is computationally intractable to optimize, while
some heuristic methods may be applicable.

The other view is called the local view, which shows how strongly a specified gene activates other
genes, and how strongly it is activated by other genes on the Cartesian coordinates. Through the local
view, the users can observe the behavior of each gene separately.

The rest of the paper is organized as follows. In Section 2, we review the weighted network model.
Section 3 explains the modified weighted majority algorithm, which makes the weighted network from
the gene expression profile data. Section 4 shows the method for selecting correlating genes. In
Section 5, we consider how to visualize the network effectively, and investigate the computational
complexity of the problems related to the visualization.

2 Weighted Network Model

We first explain the format of a gene expression profile data, which will be the input of our system
(Fig. 1). An example of the profile is shown in Fig. 2, where the number of genes is n = 6153 and the
number of experiments is m. Each experiment corresponds to three rows in the table. The first row
represents the strength of the green (control), and the second row represents that of red. We denote
by green(i, j) (red(i, j), resp.) the strength of green (red, resp.) value of gene gi at j-th experiment.
The third row represents the disruption or overexpression. We denote flag(i, j) = 1 if gene gi at jth
experiment is either disrupted or overexpressed, flag(i, j) = 0 otherwise.

We now briefly review our genetic network model by following [9]. We denote by R the set of
all real numbers. A genetic network G = (V,E,W, T ) is a weighted directed graph with the set V
of nodes (genes), the set E ⊆ V × V of directed edges, the weight mapping W : E → R, and the
threshold mapping T : V → R. We assume that the graph has no self-loop, i.e, (gi, gi) 6∈ E for any
gi ∈ V , although the graph may contain cycles.

For each edge e = (gi, gk) ∈ E, the value W (e) represents the strength of activation from gi to gk.
Note that the value W (e) may be negative, which means gi inactivates gk. The value T (gi) expresses
the threshold associated with a gene gi, explained later. Each gene is assumed to be in an active state
or an inactive state. For convenience, we denote a(gi) = 1 if a gene gi is active, a(gi) = −1 if inactive.
A gene regulation rule assigned to a gene gi is expressed by the balance between the weighted sum
sum(gi) =

∑
(gk,gi)∈E a(gk) · W ((gk, gi)) and the threshold value T (gi). If sum(gi) > T (gi), the gene

gi should be active state, if sum(gi) < T (gi), the gene gi should be inactive state, We do not care if
the sum is equal to the threshold.

For example, consider the gene network in Fig. 3, where T (g5) = 0. The gene g5 should be active if
g1 and g3 are active and g4 is inactive, since the weighted sum 1 ·3+1 ·4+(−1) ·(−2) = 9 > 0 = T (g5).
On the other hand, g5 should be inactive if g1 is active and g3 and g4 is inactive, since the weighted
sum 1 · 3 + (−1) · 4 + 1 · (−2) = −5 < 0 = T (g5). The state of g5 is independent of the state of g2,
since there is no edge from g2 to g5. Hereafter, we represent the weight mapping W as an n×n weight
matrix W = (wik) where n = |V |, so that each element wik expresses the strength of activation from
gi to gk.



Input :gene express profile data

Correlation Analyzer
(Section 4)

Weighted Majority Algorithm
(Section 3) Weighted Matrix  (Section 2)

Global View Local View

Visualization
(Section 5)

gene number 49 50 51 52 53 54
1 0 0 0 0 0 0.981862 x 
2 0 0 0 0 0 0
3 0 0 0 0 0 0
18 0 0 0 0.973458 lo 0 0.973098 lo
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
7 0 0 0 0 0 0
8 0 0.973458 lo 0 0 0 0
9 0 0 0 0 0.979855 lo 0
10 0 0 0 0 0 0
11 0 0 0.973458 lo 0 0 0
12 0 0 0 0 0 0
13 0 0 0 0 0 0
14 0 0 0 0 0 0
15 0 0 0 0 0 0
16 0 0 0 0 0 0
17 0 0 0 0 0 0
18 0 0 0 0.973458 lo 0 0.973098 lo

experment1 experment2 expermentm
gene name gen green red flag green redflag green redflag
YHR007C ERG11 1 6825 11920 0 6028 6741 0 7703 8380 0
YBR218C PYC2 2 5238 6837 0 9361 11070 0 3897 3795 0
YAL051W FUN43 3 4353 3448 0 3443 3338 0 3291 4006 0
YAL053W 4 2895 5743 0 4655 5323 0 3769 3199 0
YAL054C ACS1 5 948 479 0 733 460 0 415 358 0
YAL055W 6 3102 2836 0 1170 794 0 786 628 0
YAL056W 7 2066 1716 0 2240 2262 0 1781 1725 0
YAL058W CNE1 8 2500 2997 0 1530 1571 0 835 682 0
YOL109W 9 5080 6516 0 6523 10071 0 7811 10544 0

YCR084c TUP1 703 3535 339 1 4490 5507 0 6509 5837 0

YPR016C 6153 6044 8048 0 7244 6842 0 3775 2711 0

Figure 1: Overview of the system.



�ÊË�w¼ÏÇ� �Å»�w¼ÏÇ� ÄË¿�w¼ÏÇ�

¾¼Å¼wÅ¸Ä¼ ¾É¼¼Å É¼» ½Ã¸¾ ¾É¼¼Å É¼» ½Ã¸¾ ¾É¼¼Å É¼» ½Ã¸¾

°�©����w�©��� � ���� ����� � ���� ���� � ���� ���� �

°�©����w§°�� � ���� ���� � ���� ����� � ���� ���� �

°�£���®w�¬¥�� � ���� ���� � ���� ���� � ���� ���� �

°�£���® � ���� ���� � ���� ���� � ���� ���� �

°�£����w��ª� � ��� ��� � ��� ��� � ��� ��� �

°�£���® � ���� ���� � ���� ��� � ��� ��� �

°�£���® � ���� ���� � ���� ���� � ���� ���� �

°�£���®w�¥�� � ���� ���� � ���� ���� � ��� ��� �

°¦£���® � ���� ���� � ���� ����� � ���� ����� �

°�©���ºw«¬§� ��� ���� ��� � ���� ���� � ���� ���� �

°§©���� ���� ���� ���� � ���� ���� � ���� ���� �

Figure 2: Input gene expression profile data.

g 1 g 2 g 3 g 4

g 5

+3 -2
+4

Figure 3: Gene regulatory rule, where T (g5) = 0.

3 Finding Genetic Network from Gene Profile Data

This section explains the main module of our system. The input is a gene expression profile data, and
the output is a weight matrix W of a gene network.

The method described in this section consists of two stages. The first stage is to make a n ×
m intermediate matrix A = (aij) whose values are ternary value +1, 0 or −1 from the input gene
expression profile data. Each aij represents state of gene i at jth experiment, aij = +1 if active,
aij = −1 if inactive, and aij = 0 if unknown (neutral). The second is the core module of weighted
majority algorithm, which constructs a genetic network from intermediate matrix A and B = (bij),
where bij = flag(i, j).

3.1 Preprocessing

We first explain our basic idea to discretize the profile data consisting of red(i, j) and green(i, j) into
ternary values {1, 0,−1} representing the state of the gene. We denote the state of gene gi at the j-th
experiment by aij. Ideally, the state of the gene should be either active or inactive. However, because
of the noise in the experiments, it is not always easy to judge the state of genes from data. Thus we
introduce a neutral state, or unknown state, which means that we regard the gene is neither active
nor inactive. We denote the neutral state by aij = 0.

Basically we judge the state of each gene by the ratio ratio(i, j) of red value to green value, that
is ratio(i, j) = red(i, j)/green(i, j). When the ratio is drastically changed through the m experiments,
we determine aij separately for each experiment, based on the value ratio(i, j) relative to the m
experiments. If the ratio is relatively high, we regard that the gene is active at the experiment. If
the ratio is relatively low, the gene is inactive at the experiment. On the other hand, when the ratio



does not changes so much through the m experiments, it is not reasonable to assign distinct values to
each aij according to the small differences of ratio(i, j). Therefore we assign ai1 = ai2 = · · · = aim = 1
when all red(i, j) are high, and we assign ai1 = ai2 = · · · = aim = −1 when all red(i, j) are low.
Since the threshold values are sensitive to the gene network output by the system, we designed the
system so that the users can specify the five control parameters x1, x2, . . . , x5. Typical values of these
parameters are x1 = 2, x2 = 0.7, x3 = 0.3, x4 = 10, 000, and x5 = 2, 000. Details are described as
follows.

We use the log-transformed values rlog(i, j) of the ratios ratio(i, j), that is, rlog(i, j) = log2 ratio(i, j).
For each i = 1, . . . , n, let

rmin
log (i) = min1≤j≤m{rlog(i, j)}, and

rmax
log (i) = max1≤j≤m{rlog(i, j)}.

If rmax
log (i) − rmin

log (i) ≥ x1, we set

aij =




1 if x2 ≤ r′(i, j),
0 if x3 < r′(i, j) < x2,
−1 if r′(i, j) ≤ x3,

where

r′(i, j) =
rlog(i, j) − rmin

log (i)
rmax
log (i) − rmin

log (i)
.

Otherwise, that is, if rmax
log (i) − rmin

log (i) < x1, we set

aij =




1 if r′′(i, j) ≥ x4 for all j = 1, . . . ,m,
−1 if r′′(i, j) ≤ x5 for all j = 1, . . . ,m,
0 otherwise,

where
r′′(i, j) = ratio(i, j) · 1

m

∑
1≤j≤m

green(i, j).

Remark that r′′(i, j) is the value ratio(i, j) multiplied by the average of green values over m experi-
ments.

3.2 Modified Weighted Majority Algorithm

In Fig. 4, we show the heuristic algorithm which we have implemented as a core module. The input is
a pair of an n × m intermediate matrix A over {−1, 0, 1} and an n × m matrix B = (bij) over {0, 1}.
The value bij is 1 if and only if the gene gi is either disrupted or overexpressed at the j-th experiment.
The output is a weight matrix W = (wik) of a genetic network. In order to deal with ternary states
{−1, 0, 1}, we divide the threshold value T (g) of gene g into the positive threshold T+(g) and the
negative threshold T−(g). In this implement, for every gene g, we fixed both the positive threshold
T+(g) = θ+ = (x2 − x3) · n/2 and T−(g) = θ− = −(x2 − x3) · n/2, where x2 and x3 are given by the
users in the preprocessing phase.

In this algorithm, the matrix W is represented by the difference W+ −W− of two matrices. Each
element in W+ and W− takes a value between 0 and 1. Initially, all elements in W+, W− are set to 0.
If the weights are not fit to given observed data, they will be adjusted as follows: if the weight was too
small, we increase it by setting w+ := (w+

kj + 1)/2 and w− := w−/2. If the weight was too large, we
decrease it by setting w+ := w+/2 and w− := (w−+1)/2. We note that the update strategy is slightly
modified in the prototype of the system described in [9]. The adjusting process is repeated until either
no more adjustment is required or the loop counter becomes greater then pre-defined threshold.



Algorithm Weights Adjusting
Given A : n × m matrix of values {−1, 0, 1} and

B : n × m matrix of values {0, 1}
begin

initialize W+ and W− to be the zero matrices;
for each i ∈ {1, . . . , n} in random order begin /* using Multi-threads */

loop-counter := 0 ;
repeat

for j := 1 to m begin /* each experiment*/
if bij = 0 then begin /* neither disrupted nor overexpressed */

Let sum :=
∑n

k=1 aki(w+
ki − w−

ki) ;
if (aij = 1 and sum < θ+) or (aij = 0 and sum < θ−) then

for k := 1 to n do
if akj = 1 then

increase(k, i)
else if akj = −1 then

decrease(k, i)
else if (aij = −1 and sum > θ−) or (aij = 0 and sum > θ+) then

for k := 1 to n do
if akj = 1 then

decrease(k, i)
else if akj = −1 then

increase(k, i)
end

loop-counter := loop-counter + 1;
until W+ and W− become stable or loop-counter > limit-of-loop;

end;
return the matrix W = W+ − W−. end.

procedure increase(k, i: integer) /* increase wki */
begin

w+
ki := (w+

ki + 1)/2;
w−

ki := w−
ki/2

end

procedure decrease(k, i: integer) /* decrease wki */
begin

w+
ki := w+

ki/2;
w−

ki := (w−
ki + 1)/2;

end

Figure 4: Weights Adjusting Algorithm.



4 Correlation Analyzer of Genes

In this section, we describe a submodule of the system which investigates correlation coefficients
between genes in gene expression profile data. The input is a gene expression profile data and the
output is a matrix whose element at i-th column and k-th row is the correlation coefficient between
the gene gi and gk, which is explained below. As an option, the users can specify a subset of genes to
be investigated. Moreover, when the users specify a single gene gi and a threshold parameter l ∈ [0, 1],
the system outputs a clipped gene expression profile data consisting of all genes whose absolute values
of correlation coefficients to gi are greater than l. In this way, the submodule can be used to condense
the gene expression profile data with respect to the users’ interests.

Not only the standard correlation coefficient, the submodule can compute a correlation coefficient
with respect to specified functions. Let F be a set of functions from R to R, and f ∈ F . For short,
we denote rf (i, j) = f(r′′(i, j)), where r′′ is defined in the previous section. The average of rf (i, j) for
a gene gi is r̄f (i) = 1

m

∑m
j=1 rf (i, j). Let f and h ∈ F . The correlation coefficient between the genes gi

and gk with respect to f and h, denoted by Ci,k(f, h), is defined as

Ci,k(f, h) =
∑m

j=1{(rf (i, j) − r̄f (i))(rh(k, j) − r̄h(k))}√∑m
j=1(rf (i, j) − r̄f (i))2

√∑m
j=1(rh(k, j) − r̄h(k))2

.

The pool F of functions can be determined by the users. As candidates, currently, three functions
x2, log x and log2 x are available. For each pair of genes gi and gk, the submodule exhaustively searches
for the pair of functions f and h in F which maximizes the absolute value of Ci,k(f, h). This procedure
is applied to all pair of genes.

5 Visualization

This section argues how to visualize the weighted graphs which will be output by our system.
If the graph is relatively small and sparse, some existing techniques for graph-drawing [2] might be

helpful. However, if the graphs which we have to deal with are quite large whose size is about 6, 200,
and possibly dense, it is difficult for researchers to understand the interaction among the genes in the
network. Here we propose two methods to visualize the networks: global view and local view. The
former intends to capture the similarity of the genes in the network, whereas the latter is to figure out
the behavior of individual gene.

5.1 Global view

We consider how to give a global view to a weighted graph which is large and dense. A well known
method is to apply the Multi-Dimensional Scaling (MDS) [8]. MDS is an iterative algorithm for visually
analyzing the structure of high-dimensional data. MDS produces a non-linear mapping of data which
preserves interpoint distances of high-dimensional data while reducing to a lower dimensionality, say,
two or three dimension. We can apply MDS in order to arrange genes so that similar genes are
close to each other and dissimilar genes far from each other. Another method is the Self-Organizing
Map (SOM) [7] which is useful to visualize and interpret large high-dimensional data. SOM can also
applicable to arrange genes. Although these two heuristic methods are often used, (for example, [3]),
their performances are not analyzed very well to our best knowledge. Here we formulate the task to
arrange genes as optimization problems, and show their computational complexity.

Intuitively, our approach can be illustrated as Fig. 5. The figures are generated from a weight
matrix W = (wik) by plotting the strength of activation/inactivation from gene gi to gene gk at
position (i, k) as a height, with activation being high and inactivation being low. The right figure is
derived from the left figure by permuting rows and columns of the matrix so that the surface becomes



Permutating 

rows and columns

1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20

1
2
3
4
5
6
78

91011121314151617181920

1
18 14 17 5 2

10 7 9 4 6
20 13 16 15 12 3 8

19 11

2014194
91718138

10112
67

1165
153

12

Figure 5: Two dimensional permutation of a weight matrix.

smooth. The smoothness of the surface implies that similar genes tend to gather close each other on
each axis. From this matrix, we can get the interaction among genes. Thus the problem is to minimize
the total difference of the values with their neighbors. First we consider the difference with the four
neighbors.

Definition 5.1. Two-dimensional Permutation Problem (2dPerm) is, given an n × m matrix A, to
find a matrix B which is generated by permuting rows and columns of A, so that B minimizes the
following cost function:

cost(B) =
∑

1≤i≤n,1≤j≤n

(|bi+1,j − bi,j | + |bi−1,j − bi,j | + |bi,j+1 − bi,j | + |bi,j−1 − bi,j |).

We also formulate the one dimensional version of the problem, where we consider only two neigh-
bors.

Definition 5.2. One-dimensional Permutation Problem (1dPerm) is, given an n × m matrix A, to
find a matrix B which is generated by permuting rows and columns of A, so that B minimizes the
following cost function:

cost(B) =
∑

1≤i≤n,1≤j≤m

(|bi+1,j − bi,j |).

We can show the complexities of these problems as follows.

Theorem 5.3. Both 1dPerm and 2dPerm are NP-hard. Moreover, both problems can be approx-
imately solved in polynomial-time within the approximation ratio 1.5.

Proof (Overview) We can show the NP-hardness of these problems as follows. If each element of the
matrix in 1dPerm is either 0 or 1, 1dPerm can be regarded as the Traveling Salesman Problem in
Hamming Space, which is known to NP-hard [12]. Moreover, 1dPerm is reducible to 2dPerm, which
implies that 2dPerm is also NP-hard.

On the other hand, we can show an approximation-preserve reductions from 2dPerm to 1dPerm,
and from 1dPerm to the Metric Traveling Salesman Problem, for which a polynomial-time approxi-
mation algorithm with approximation ratio 1.5 is known [5] ut

By the above theorem, we see that these problems are quite hard, although some heuristic methods
are applicable. We note that the problem 1dPerm is closely related to the SOM approach, although
2dPerm does not directly related to SOM.



5.2 Local View

The local view of the system visualizes in a two dimensional plain that how a specific gene activates
other genes and how the gene is activated by the other genes (Fig. 6).

The system plots each gene gi (i 6= k) at the position whose x-coordinate is wik and y-coordinate is
wki. That means, if the gene gk is strongly activated by the gene gi, it locates at the right-side, and if
the gene gk is strongly inactivated by the gene gi, it locates at the left-side. On the other hand, if the
gene gk strongly activates the gene gi, its location is on the upper side, and if it strongly inactivates
gi, the location is on the lower side. Therefore genes whose activities are independent from the gene gi

gather in the center origin. In this way, we can capture the activity of each gene intuitively. Moreover,
we can also classify the genes into a number of categories with respect to the specified gene gi, by
clustering the points in the plain.

In the left figure in Fig. 6, we see that the specfied gene is activated from many other genes. On
the other hand, from the right figure, we realize that the specified gene activates and inactivates many
genes. In this way, we can capture the behavior of each gene separately.

0
+To-To

+From

-From

0
+To-To

+From

-From

Figure 6: Local views.

6 Conclusion

We explained our system to find a genetic network from gene expression profile data using weighted
network model. We have finished implementing the core module and the correlation analyzer on our
workstations, using multi-threads. The response of the system seems to be quite reasonable. As soon
as the experimental data are available, we will report our results on genetic networks produced by the
system. We are now implementing the visualization modules.

References

[1] Akutsu, T., Miyano, S., and Kuhara, S., Identification of genetic networks from a small number of
gene expression patterns under the boolean network model, Pacific Symposium on Biocomputing
’99, 17–28, 1999.

[2] Battista, G., Eades, P., Tamassia, R., and Tollis, I.G., Graph Drawing —algorithms for the
visualization of graphs, Prentice Hall, 1999.

[3] http://cmgm.stanford.edu/pbrown/sporulation/additional/websom.html.



[4] Chen, T., He, H., and Church, G., Modeling gene expression with differential equations, Pacific
Symposium on Biocomputing ’99, 29–40, 1999.

[5] Christofides, N., Worst-case analysis of a new heuristic for the traveling salesman problem,
Proc. Symposium on New Directions and Recent Results in Algorithms and Complexity, page 441,
Academic Press, 1976.

[6] DeRisi, J., Lyer, V., and Brown, P., Exploring the metabolic and genetic control of gene expression
on a genomic scale, Science, 278:680-686, 1997.

[7] Kohonen, T., Self-Organization and Associative Memory, Vol. 8, Springer Series in Information
Sciences, 1984.

[8] Kruskal, J., Multidimensional scaling and other methods for discovering structure, John Wiley
& Sons, 1977.

[9] Noda, K., Shinohara, A., Takeda, M., Matsumoto, S., Miyano, S., and Kuhara, S., Finding genetic
network from experiments by weighted network model, Genome Informatics 1998, 141–150, 1998.

[10] Noda, K., Shinohara, A., Takeda, M., Matsumoto, S., Miyano, S., and Kuhara, S., Simulation
results on finding genetic networks by weighted network model, Pacific Symposium on Biocom-
puting (Poster abstracts), page 84, 1999.

[11] Szallasi, Z., Genetic network analysis in light of massively parallel biological data acquisition,
Pacific Symposium on Biocomputing ’99, 5–16, 1999.

[12] Trevisan, L., When Hamming meets Euclid: The approximability of geometric TSP and Steiner
tree, In Proc. 29th ACM Symposium on Theory of Computing, 21–29, 1997.

[13] Weaver, D., Workman, C., and Stormo, G., Modeling regulatory networks with weight matrices,
In Pacific Symposium on Biocomputing ’99, 112–123, 1999.

[14] Yuh, C.-H., Bolouri, H., and Davidson, E., Genomic cis-regulatory logic: experimental and
computational analysis of a sea urchin gene, Science, 279:1896–1902, 1998.


