
454 Genome Informatics 12: 454–455 (2001)

More Speed and More Pattern Variations for Knowledge

Discovery System BONSAI

Hideo Bannai 1 Keisuke Iida 2 Ayumi Shinohara 2

bannai@ims.u-tokyo.ac.jp k-ihda@i.kyushu-u.ac.jp ayumi@i.kyushu-u.ac.jp

Masayuki Takeda 2 Satoru Miyano 1

takeda@i.kyushu-u.ac.jp miyano@ims.u-tokyo.ac.jp

1 Human Genome Center, Institute of Medical Science, University of Tokyo,
4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan

2 Department of Informatics, Kyushu University 33, Fukuoka 812-8581, Japan

Keywords: pattern matching, knowledge discovery, decision tree, alphabet indexing

1 Introduction

BONSAI is a machine learning system for knowledge acquisition from positive and negative examples
of strings [3]. A hypothesis generated by the system is a pair of a classification of symbols called an
alphabet indexing, and a decision tree over regular patterns, which classifies given examples (strings)
to either positive or negative. The algorithm of the system consists of two parts: a learning algorithm
for constructing a decision tree over regular patterns, and a local search algorithm for finding a good
alphabet indexing for the production of the decision tree. Our focus here is in the improvement of
the former, increasing both the speed of hypothesis construction, and the descriptional strength of the
generated hypotheses.

It has been reported that the system has discovered knowledge which can classify amino acid
sequences of trans-membrane domains and randomly chosen amino acid sequences located in other
parts of the PIR database, with over 90% accuracy [3]. However, in the current implementation, only
substring patterns (i.e. whether or not a string pattern appears as a substring of the data string)
are searched for, and such patterns may not be powerful enough for distinguishing between positive
and negative data of a more complex nature. In this paper, we present a new version of the BONSAI
system which implements several, more powerful variations of patterns, namely, subsequence patterns,
episode patterns, and approximate patterns [1, 4, 2]. We also implement an efficient branch-and-
bound algorithm for finding the best pattern which distinguishes between the positive and negative
data sets [1].

2 Pattern Variations

Let Σ be a finite alphabet and let Σ∗ be the set of all strings over Σ. For a string w, let |w| denote
the length of w. A string w = w1 · · ·wp ∈ Σ∗ is a substring of a string t = t1 · · · tn ∈ Σ∗ if there exists
1 ≤ i ≤ (n− p + 1) such that wj = ti+j−1 for 1 ≤ j ≤ p. A string w = w1 · · ·wp ∈ Σ∗ is a subsequence
of a given string t = t1 · · · tn ∈ Σ∗ if there exists q1, . . . , qp (1 ≤ q1 < · · · < qn ≤ n) such that wi = tqi

for all 1 ≤ i ≤ p. e.g.: abba is a substring of abaaabbaa. abbbb is a subsequence of abaaabbab.

Definition 1 (Substring Pattern) A substring pattern is a string w ∈ Σ∗. A substring pattern
matches a given string t ∈ Σ∗ if w is a substring of t. �

More Speed and More Pattern Variations for BONSAI 455

Definition 2 (Subsequence Pattern) A subsequence pattern is a string w ∈ Σ∗. A subsequence
pattern matches a given string t ∈ Σ∗ if w is a subsequence of t. �

Definition 3 (Episode Pattern) An episode pattern is a pair (w, l) where w ∈ Σ∗, and l is a non-
negative integer (l ≥ |w|). An episode pattern (w, l) matches a given string t ∈ Σ∗ if there exists a
substring v of t, where |v| ≤ l and w is a subsequence of v. (e.g.: (banzai, 8) will match banbonanzai,
whereas, (bannai, 8) will not.) �

Definition 4 (Approximate Pattern) An approximate pattern is a triplet (w, k, F) where w ∈ Σ∗

is a string, k is a non-negative integer, and F ⊆ {insertion,deletion, substitution}. An approximate
pattern (w, k, F) matches a given string t ∈ Σ∗ if a substring of t can be made from w with k or
less transformations contained in F . (e.g.: (bannai, 2, {substitution}) matches bonsai, but does not
match banana, whereas, (bannai, 2, {insertion, substitution}) will match banana. �

Efficient matching algorithms for the pattern matching of each of the pattern variations can be
found in [1, 4, 2].

3 Efficient Search

For each node in the decision tree, the pattern which best distinguishes between the positive and
negative examples, in terms of matches, is searched for: i.e. a pattern matches most of the positive
examples, but does not match most of the negative examples, or vice versa, is desired. All pattern
variations we consider satisfy the condition of [1], that is, for a pattern of some variation based on
the string w ∈ Σ∗, a pattern based on any longer string containing w results in a smaller number of
matches against a given set of strings. For such patterns and a conic score function, an upper bound
of the score for the longer string may be calculated, and the search can be pruned if the upper bound
is less than the current maximum score. For episode patterns, the algorithm of [2] is used to efficiently
find the optimal threshold l at the same time. A similar algorithm is also applicable for finding a
suboptimal mismatch number k in approximate patterns, and is implemented.

4 Conclusion

The new BONSAI system has been implemented in the Objective Caml language [5], a simple but
powerful functional language. The source code for BONSAI will be available and distributed at
http://biocaml.org/bonsai/, under the GNU General Public License.

References

[1] Hirao, M., Hoshino, H., Shinohara, A., Takeda, M., and Arikawa, S., A practical algorithm to find
the best subsequences patterns, Theoretical Computer Science, 2001, to appear.

[2] Hirao, M., Inenaga, S., Shinohara, A., Takeda, M., and Arikawa., S., A practical algorithm to
find the best episode patterns. Proceedings of the Fourth International Conference on Discovery
Science (DS2001), LNAI 2226. Springer-Verlag, 2001, to appear.

[3] Shimozono, S., Shinohara, A., Shinohara, T., Miyano, S., Kuhara, S., and Arikawa, S., Knowledge
acquisition from amino acid sequences by machine learning system BONSAI, Trans. Information
Processing Society of Japan, 35(10):2009–2018, 1994.

[4] Wu, S. and Manber, U., Fast text searching allowing errors, Commun. ACM, 35:83–91, 1992.

[5] Objective Caml - http://www.ocaml.org/.

