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Abstract. Communication is a key for facilitating multi-agent coordina-
tion on cooperative problems. In our previous work, we proposed Signal
Learning (SL) and Signal Learning with Messages (SLM) by which agents
learn local policies of communication and action simultaneously in Multi-
Agent Reinforcement Learning (MARL) framework. Our experimental
results showed that both SL and SLM can improve the performance of
agents’ coordination.
In this paper, we focus on theoretical analysis of the conditions for con-
structing optimal local policies on SL and SLM framework in Decen-
tralized Partially Observable Markov Decision Processes with Commu-
nication (Dec-POMDP-Com) models. As main results, we obtain the
minimum required sizes of the message set for off-line computation of
optimal local policies on SL and SLM. In addition, we report experimen-
tal results indicating that the extra messages make some positive effect
in learning processes when the size of the message set is larger than the
minimum required size based on theoretical analysis.

1 Introduction

In Multi-Agent Reinforcement Learning (MARL), each agent i learns a coop-
erative policy δA

i : Ωi → Ai, where Ωi and Ai are a set of observations and
a set of actions of agent i, respectively. If we aim to utilize communication to
facilitate multi-agent coordination, we must construct communication codes so
that agents can communicate with each other. However, it is a hard task since
we usually do not know workable communication codes and/or information on
unknown problems.

In our previous work [1], we proposed Signal Learning (SL), which allows
agents to learn communication codes autonomously. By using SL, agents can
learn local communication policy (δM

i : Ωi → Mi) and local action policy (δA
i :

Ωi × M recv
i → Ai) simultaneously in MARL framework, where Mi is a set

of messages of agent i, whose meanings are not predetermined explicitly, e.g.,
Mi = {1, 2, 3}, and M recv

i represents a set of joint messages that agent i receives
from the other agents. We experimentally showed that the performance becomes
better as the size |Mi| of the message set increases. It should be noted that the
messages in Mi have no meaning in the initial phase of learning. Our results



suggest that some beneficial meaning can emerge through learning process in
SL, and SL is extremely helpful for unknown problems.

We recently proposed an extended version of SL, Signal Learning with Mes-
sages (SLM) [2]. The extension is simply the change of communication policy
from (δM

i : Ωi → Mi) to (δM
i : Ωi × M recv

i → Mi). Although the change seems
to be surficial, our experiments showed that the performance of SLM is clearly
better and more robust than that of SL on a simple task. Surprisingly, the sim-
ple task was a good example to prove that SLM has the ability to acquire a
deterministic optimal policy, which cannot be achieved by SL.

As far as we know, our studies are rare ones to utilize meaningless mes-
sages to enhance multi-agent coordination in MARL framework. Although there
are several related studies about learning of communication policy in MARL
framework [3–9], these studies predetermine the meanings of messages. Jim and
Giles [10, 11] also utilize meaningless messages to enhance multi-agent coordina-
tion, while they adopt Genetic Algorithms (GA) for learning of communication
codes. They reported about the evolution of languages in their experiments,
which is similar to our results. One of the common shortcomings of our studies
and their studies is lack of theoretical justification, which would be very useful
for designers to construct an efficient multi-agent system.

In this paper, we focus on shifting the direction of our studies about learning
of communication codes to theoretical aspects. We recall the Decentralized Par-
tially Observable Markov Decision Process model with Communication (Dec-
POMDP-Com) from Goldman and Zilberstein [12]. The Dec-POMDP-Com is
a useful tools to analyze multi-agent system in a decision-theoretic context.
There are several studies about communication policy on the Dec-POMDP-Com
model [13–17], most of which focus on theoretical analysis, such as complexity
analysis of computing optimal policy on various versions of the model. While
they are mostly interested in off-line computation of the optimal policy with a
history of past observations and received joint messages, we have been interested
in on-line computation of a better policy only with the a last observation and
received joint message, i.e., on SL and SLM. As a first step to theoretical aspects,
we address theoretical analysis about off-line computation of the optimal policy
on SL and SLM.

The rest of this paper is organized as follows. In Section 2, we explain the
Dec-POMDP-Com model and optimal solutions in the model, and in Section 3,
we formally define policies on SL and SLM and express the difference from the
standard definition. We theoretically analyze the condition of the message set,
i.e., its minimum required size, so that optimal policies of SL and SLM can
achieve the value of the optimal policy on the standard definition in Section 4.
In Section 5, we report experimental results indicating that the extra messages
make some positive effect in learning processes when the size of the message
set is larger than the minimum required size based on theoretical analysis. In
Section 6, we describe our conclusions and future work.
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2 Dec-POMDP-Com

Dec-POMDP-Com is a decision theoretic model proposed by Goldman and Zil-
berstein [12], which can handle a decentralized multi-agent system, where agents
can communicate with each other. Pynadath and Tambe proposed a similar
model, Communication in a Markov Team Decision Process (COM-MTDP) [18].
We chose Dec-POMDP-Com simply because we do not utilize belief states in
this paper. We should be able to make the same arguments on COM-MTDP,
since Seuken and Zilberstein [17] proved Dec-POMDP-Com and COM-MTDP
are equivalent under the perfect recall assumption, i.e., if an agent has access to
all of its received information. A Dec-POMDP-Com is defined as follows.

Definition 1 (Dec-POMDP-Com). A Decentralized Partially Observable Markov
Decision Process with Communication is given by the tuple

DPC := ⟨I, S,Ω,A,M , C, P,R, O, T ⟩,

where

– I := {1, · · · , n} is a finite set of agents, indexed 1, · · · , n.
– S is a finite set of global states, with distinguished initial state s0.
– Ω :=

∏
i∈I Ωi is a finite set of joint observations, which consists of a finite

set Ωi of observations for agent i.
– A :=

∏
i∈I Ai is a finite set of joint actions, which consists of a finite set Ai

of actions for agent i.
– M :=

∏
i∈I Mi is a finite set of joint messages which consists of a finite

set Mi of messages for agent i. We define a finite set of joint messages that
agent i receives from the other agents by M recv

i :=
∏

j∈I−{i} Mj. ϵσ ∈ Mi is
the null communication, i.e., sending an empty message.

– C : M → ℜ is a cost function. C(m) represents the total cost of transmitting
the messages sent by all agents. The cost of ϵσ is 0. We assume that the C
is a constant function throughout this paper, since we do not predetermine
the meanings of messages.

– P : S × A × S → [0, 1] is a transition probability function. P (s,a, s′) :=
p(s′|s,a) represents the probability of moving from global state s ∈ S to
global state s′ ∈ S when the agents take joint action a ∈ A.

– R : S×A×S → ℜ is a reward function. R(s,a, s′) represents the reward for
executing joint action a ∈ A in global state s ∈ S, resulting in global state
s′ ∈ S.

– O : S×A×S×Ω → [0, 1] is an observation probability function. O(s,a, s′, o) :=
p(o|s,a, s′) represents the probability of receiving joint observation o ∈ Ω
when the agents take joint action a ∈ A in global state s ∈ S, resulting in
global state s′ ∈ S.

– T is a (possibly infinite) time horizon in which the agents take their actions.

The interaction among the agents on Dec-POMDP-Com is described as the
following process. In a state s ∈ S, each agent i sends a message m ∈ Mi and

3



performs an action a ∈ Ai according to its local policy accessing only the infor-
mation that the agent possesses. After executing a joint action a ∈ A, which
consists of the actions of all agents, the state s moves to a state s′ ∈ S according
to the transition probability function P (s,a, s′). Each agent i receives an ob-
servation o ∈ Ωi according to the observation probability function O(s,a, s′, o)
and a reward r = R(s,a, s′).

We formally define a local policy δi for agent i as a pair of a local action policy
δA
i and a local communication policy δM

i defined below, i.e., δi := ⟨δA
i , δM

i ⟩.

Definition 2 (Local Action Policy). A local action policy δA
i for agent i is

a mapping from the set Ωi
∗ of histories of observations, and the set (M recv

i )∗

of histories of received joint messages, to the set Ai of actions. That is,

δA
i : Ωi

∗ × (M recv
i )∗ → Ai.

Definition 3 (Local Communication Policy). A local communication pol-
icy δM

i for agent i is a mapping from the set Ωi
∗ of histories of observations,

and the set (M recv
i )∗ of histories of received joint messages, to the set Mi of

messages. That is,

δM
i : Ωi

∗ × (M recv
i )∗ → Mi.

We denote the sets of local action policies δA
i and local communication poli-

cies δM
i for agent i by DA

i and DM
i , respectively. The set of local policies δi for

agent i is defined by Di := DA
i ×DM

i . Let D :=
∏

i∈I Di. We call a tuple δ ∈ D
of the local policies for all agents, a joint policy.

Solving a Dec-POMDP-Com means finding an optimal joint policy that max-
imizes the expected total rewards in the Dec-POMDP-Com. The optimal joint
policy is formalized as

δ∗ := arg max
δ∈D

V T
δ (s0),

where V T
δ (s0) represents the expected total rewards after following a joint policy

δ from initial state s0 within T time steps. We call it the value of the joint policy
and define as follows.

Definition 4 (Value of a Joint Policy). The value of a joint policy δ in
initial state s0 for time horizon T is given by

V T
δ (s0) := E

[
T∑

t=0

γt (R(st, at, st+1) − C(mt))
∣∣∣∣ s0, δ

]
,

where st ∈ S, at ∈ A, and mt ∈ M recv represent a state, a joint action and
a received joint message at time step t, respectively, and γ ∈ [0, 1) is a discount
factor.
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3 Learning of Communication Codes

We proposed Signal Learning (SL) [1] and Signal Learning with Messages (SLM) [2],
which allows agents to learn communication codes autonomously using some re-
inforcement learning algorithm in the one step dynamics shown in Algorithm 1.
In SL, each agent sends a message depending only on an observation, while in
SLM, each agent sends depending on both an observation and a received mes-
sage. We showed that the performance of SLM is better than that of SL, since
much more information is available in SLM.

Algorithm 1 One-step dynamics of agent i in SL / SLM
1: perform the action δA

i (ot, mt) in the environment
2: receive an observation ot+1 ∈ Ωi from the environment
3: send the message δM

i (ot+1) / δM
i (ot+1, mt) to the other agents

4: receive a joint message mt+1 ∈ Mrecv
i sent by the other agents

5: receive a reward rt+1 from the environment
6: update δA

i and δM
i based on the reward rt+1

In this section, we formalize SL and SLM in decision theoretic context.

3.1 Signal Learning

A local policy on SL is defined as a pair of a local action policy and a commu-
nication policy defined as follows.

Definition 5 (Local Action Policy on SL). A local action policy δA
i for

agent i on SL is a mapping from the set Ωi of observations, and the set M recv
i

of received joint messages, to the set Ai of actions. That is,

δA
i : Ωi × M recv

i → Ai.

Definition 6 (Local Communication Policy on SL). A local communica-
tion policy δM

i for agent i on SL is a mapping from the set Ωi of observations,
to the set Mi of messages. That is,

δM
i : Ωi → Mi.

While a local policy on the standard definition allows an agent to access all
of the history of its own observations and received joint messages, a local action
policy on SL only allows an agent to access the last observation and received
joint message, and a local communication policy on SL only allows an agent to
access the last observation. Note that the set of local policies on SL is a subset
of D, the set of local policies on the standard definition. Thus, we can mostly
use the same notation in the Section 2. We denote the set on SL corresponding
to DA

i , DM
i , Di, and D by DA,SL

i , DM,SL
i , DSL

i , and DSL, respectively.
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3.2 Signal Learning with Messages

SLM is an extension of SL, and the only difference is local communication policy.
A local communication policy on SLM is defined as follows.

Definition 7 (Local Communication Policy on SLM). A local communi-
cation policy δM

i for agent i on SLM is a mapping from the set Ωi of observations,
and the set M recv

i of received joint messages, to the set Ai of actions. That is,

δM
i : Ωi × M recv

i → Mi.

In the same manner as SL, we use the notations of DA,SLM
i , DM,SLM

i , DSLM
i ,

and DSLM . Since DSL ⊂ DSLM ⊂ D, the following equation clearly holds for
any Dec-POMDP-Com:

max
δ∈DSL

V T
δ (s0) ≤ max

δ∈DSLM
V T

δ (s0) ≤ max
δ∈D

V T
δ (s0).

4 Theoretical Analysis

The main objective of this section is to clarify the minimum required size |Mi|
of the message set for each agent i so that optimal policy on SL and SLM can
achieve the value of the optimal policy on the standard definition in a decision
theoretic context.

We start to refer the next useful theorem proved by Goldman and Zilberstein.

Theorem 1 (Goldman and Zilberstein [13]). Let V T
δ,M (s0) be the value of

a joint policy δ with respect to a joint message set M . For any Dec-MDP-Com
with constant message cost, the value of the optimal joint policy with respect to
any joint message set M is not greater than the value of the optimal joint policy
with respect to the joint message set M ′ := Ω. That is

∀M , max
δ∈D

V T
δ,M (s0) ≤ max

δ∈D
V T

δ,M ′(s0),

where T and s0 are the time horizon and the initial state in the Dec-MDP-Com,
respectively.

This theorem means that the optimal local communication policy of each
agent is to send its own observation in a Dec-MDP-Com. A Dec-MDP-Com
is a jointly fully observable Dec-POMDP-Com, where there exists a mapping
J : Ω → S such that whenever O(s,a, s′, o) is non-zero then J(o) = s′. Since the
jointly full observability means that the combination of the agents’ observations
leads to the global state, the theorem is intuitively acceptable. Note that the
theorem assumes no delay of the system, that is, agents can instantaneously
communicate with each other.

Goldman and Zilberstein also proved that the optimal joint policy does not
need the histories of the past observations and received messages of each agent
in Corollary 4 in their paper [13]. Theorem 1 and their corollary immediately
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yield the following corollary, which clarifies the sufficient condition of the size
|Mi| of the message set for each agent i in a Dec-MDP-Com so that an optimal
joint policy on SL can achieve the value of an optimal policy on the standard
definition.

Corollary 1. For any Dec-MDP-Com with constant message cost, if the size
|Mi| of the message set of each agent i satisfies the condition,

|Mi| ≥ |Ωi|, (1)

then the value of the optimal joint policy on SL is equal to the value of the
optimal joint policy on the standard definition. That is

max
δ∈DSL

V T
δ (s0) = max

δ′∈D
V T

δ′ (s0),

where T and s0 are the time horizon and the initial state in the Dec-MDP-Com,
respectively.

Note that the condition (1) in Corollary 1 is not a necessary condition such
that there exists an optimal joint policy on SL that achieves the value of an
optimal joint policy on the standard definition. This is because if a Dec-MDP-
Com is fully observable, where each agent can always observe its current global
state, there clearly exists such an optimal policy on SL without communication,
i.e., |M | = 0.

Next, let us define deterministic Dec-POMDP-Com instead of Dec-MDP-
Com in order to analyze SLM.

Definition 8 (Dec-POMDP-Com with Deterministic Transitions). We
say that a Dec-POMDP-Com has deterministic transitions, if for any state s ∈ S
and any joint action a ∈ A, there exists a state s′ ∈ S such that P (s,a, s′) = 1.

When a Dec-POMDP-Com has deterministic transitions, there exists a tran-
sition mapping f trn : S × A → S, such that f trn(s,a) = s′ if and only if
P (s,a, s′) = 1. In this case, we can simplify the notation of its observation prob-
ability function O(s,a, s′,o) by using a function G(s′,o) in the next lemma.

Lemma 1. If a Dec-POMDP-Com has deterministic transitions, then there ex-
ists a function G : S × Ω → [0, 1] such that O(s,a, s′, o) = G(s′, o) for any
states s, s′ ∈ S, any joint action a ∈ A, and any joint observation o ∈ Ω.

Proof: Let G(s′, o) := p(o|s′). Since the Dec-POMDP-Com has deterministic
transitions, the transition probability P (s,a, s′) is either 1 or 0. Therefore,

G(s′, o) =
∑

s∈S,a∈A

p(o|s,a, s′)p(s,a|s′)

=
∑

s∈S,a∈A

O(s,a, s′, o)P (s,a, s′)

= O(s,a, s′, o).
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Definition 9 (Deterministic Observable Dec-POMDP-Com). We say
that a Dec-POMDP-Com is deterministic observable, if for any states s, s′ ∈ S
and any joint action a ∈ A, there exists a joint observation o ∈ Ω such that
O(s,a, s′, o) = 1.

When a Dec-POMDP-Com is deterministic observable, there exists an ob-
servation mapping fobs : S×A×S → Ω, such that fobs(s,a, s′) = o if and only
if O(s,a, s′, o) = 1.

Definition 10 (Deterministic Dec-POMDP-Com). We say that a Dec-
POMDP-Com is deterministic, if it has deterministic transition and is deter-
ministic observable.

From Lemma 1, when the Dec-POMDP-Com is deterministic, we can denote
the observation mapping by fobs(s′) as a substitution for fobs(s,a, s′). In this
case, we refer to the number of states corresponding to the observation o ∈ Ωi

of agent i by
Sobs

i (o) := {s ∈ S | fobs
i (s) = o},

where fobs
i : S → Ωi is the observation mapping of agent i.

The next theorem clarifies the sufficient condition of the size of the message
set in a deterministic Dec-POMDP-Com so that an optimal joint policy on SLM
can achieve the value of an optimal policy on the standard definition.

Theorem 2. For any deterministic Dec-POMDP-Com with constant message
cost, if the size |Mi| of the message set of each agent i satisfies the condition,

|Mi| ≥ max
j∈I

max
o∈Ωj

|Sobs
j (o)|, (2)

then the value of the optimal joint policy on SLM is equal to the value of any
joint policy on the standard definition. That is

max
δ∈DSLM

V T
δ (s0) = max

δ′∈D
V T

δ′ (s0),

where T and s0 are the time horizon and the initial state in the Dec-POMDP-
Com, respectively.

Proof: We only prove the case of n = 2. Let i, j ∈ {1, 2} : i ̸= j be the indexes
of one agent and the other agent, respectively.

Since |Mj | ≥ maxo∈Ωi |Sobs
i (o)|, agent i can decompose own observation o ∈

Ωi to the current global state s′ ∈ S by using the message m ∈ Mj received
from agent j. That is, there exists a function gi : Ωi ×Mj → S such that for any
observation o ∈ Ωi of agent i and any state s ∈ Sobs

i (o) corresponding to the
observation o, there exists a message m ∈ Mj of agent j such that gi(o,m) = s.
By using the function gi, agent j can always construct a communication policy
δM
j ∈ DM,SLM

j so that agent i can specify the global state. That is, for any
joint action policy (δA

1 , δA
2 ) ∈ DA,SLM , there exists a communication policy
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δM
j ∈ DM,SLM

j of agent j such that for any joint observation (o1, o2) ∈ Ω and
any joint message (m1,m2) ∈ M ,

s′ = gi(fobs
i (s′), δM

j (fobs
j (s′),mi)),

where s′ is the next global state, i.e., s′ := f trn(s, (δA
1 (o1,m2), δA

2 (o2,m1))).
Since the optimal joint action only depends on the global state, there is no

more effective communication policies than the above-mentioned communication
policy δM

j ∈ DM,SLM
j of agent j. For the same reason, the value of the optimal

joint policy on SLM achieves the value of the optimal joint policy on the standard
definition, even though a policy on SLM can only access the last observation and
received message.

The condition (2) in Theorem 2 is not a necessary condition for the same
reason as SL. Furthermore, we can easily construct a deterministic Dec-POMDP-
Com such that for any index i ∈ I,

|Mi| < max
j∈I

max
o∈Ωj

|Sobs
j (o)|.

From Corollary 1, if a Dec-POMDP-Com is jointly fully observable, such a Dec-
POMDP-Com is a concrete example such that the condition (2) in Theorem 2
does not hold, although the optimal joint policies on SLM need explicit commu-
nications, (i.e., |M | > 0), to achieve the value of an optimal joint policy on the
standard definition.

Let us define Cooperative Button Pushing (CBP) problem for the arguments
in the sequel.

Definition 11 (Cooperative Button Pushing Problem). We define Coop-
erative Button Pushing (CBP) Problem as follows (see Fig. 1):

– The goal of this problem is that two agents, starting from their own Start/Goal
(SG) grids, go back to the SG grids after switching the status of buttons from
OFF to ON, where agents repeat to move forward or backward.

– In order to switch the status of buttons to ON, agents must occupy their own
Button (B) grids at the same time at least once.

– The other grids represent by Center (C).
– The agents receive a positive reward only when the agents reach the goal.
– The agents cannot observe the grids of other agent and the status of buttons

(also cannot remember the status of buttons).
– The policy so that the agents can always reach the goal in minimum steps is

optimal.

The next fact shows that there exists a nontrivial Dec-POMDP-Com such
that the condition (2) in Theorem 2 does not hold.

Fact 1 There exists a deterministic Dec-POMDP-Com with constant message
cost, which is not jointly fully observable, such that

max
δ∈DSLM

V T
δ (s0) = max

δ′∈D
V T

δ′ (s0),
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Start / Goal Start / GoalButtonWall ΛΛΛΛ
Fig. 1. Cooperative Button Pushing Problem

Table 1. Optimal local policy δ∗i := (δA
i

∗
, δM

i
∗
) for agent i on SLM in CBP problem,

when Mi = {1, 2}. We assume that the initial message is 1 ∈ Mi.

Ωi × Mrecv
i (SG,1) (SG,2) (C,1) (C,2) (B,1) (B,2)

δA
i

∗
Fore Fore Fore Back Back Back

δM
i

∗
1 1 1 2 2 2

despite for any index i ∈ I,

|Mi| < max
j∈I

max
o∈Ωj

|Sobs
j (o)|,

where T and s0 are the time horizon and the initial state in the Dec-POMDP-
Com, respectively.

Proof: CBP problem is a concrete example. It is a deterministic Dec-POMDP-
Com with constant message cost, which is not jointly fully observable, where
I := {1, 2}; for any i ∈ I, Ωi := {SG, C, B}, and Ai := {Fore, Back}; S :=
Ω1×Ω2×{ON,OFF}. Clearly, the minimum steps to reach the goal is 4. Thus,
when |M1| = |M2| = 2, there exists an optimal joint policy on SLM as shown in
Table 1. That is,

max
δ∈DSLM

V T
δ (s0) = max

δ′∈D
V T

δ′ (s0).

However, for any index i ∈ I,

max
o∈Ωi

|Sobs
i (o)| = 6,

since Sobs
i (o) = Ωj × {ON, OFF} for any o ∈ Ωi, with j ∈ I : j ̸= i.

Fact 1 implies that an optimal joint policy on SLM can achieve the value of
an optimal joint policy on the standard definition, even if it identifies the states
where the optimal actions are the same with respect to an observation. Let us
denote the Sobs

i (o) shrunk by such identification by

Aobs
i (o) := {a ∈ Ai | δopt

i (s) = a, s ∈ Sobs
i (o)},

where δopt
i (s) represents the optimal action in a global state s ∈ S. Clearly,

Aobs
i (o) ⊆ Sobs

i (o). Therefore, we obtain a better bound for the size of the mes-
sage set Mi of each agent i as follows.
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Corollary 2. For any deterministic Dec-POMDP-Com with constant message
cost, if the size |Mi| of the message set of each agent i satisfies the condition,

|Mi| ≥ max
i∈I

max
o∈Ωi

|Aobs
i (o)|,

then the value of the optimal joint policy on SLM is equal to the value of any
joint policy on the standard definition. That is

max
δ∈DSLM

V T
δ (s0) = max

δ′∈D
V T

δ′ (s0),

where T and s0 are the time horizon and the initial state in the Dec-POMDP-
Com.

The next fact means that SLM is truly superior to SL in a certain Dec-
POMDP-Com.

Fact 2 There exists a deterministic Dec-POMDP-Com with constant message
cost, such that

max
δ∈DSLM

V T
δ (s0) > max

δ′∈DSL
V T

δ′ (s0),

where T and s0 are the time horizon and the initial state in the Dec-POMDP-
Com.

Proof: Let us consider CBP again. Since each agent on SL sends a message
depending only on its own current observation, there is no more effective com-
munication policies than sending the current observation. Thus, the agents on SL
cannot obtain the status of the buttons. This means that the optimal action of
each agent at the C grid is the probabilistic movement of forward and backward
with equal probabilities. Therefore, an optimal policy on SL cannot achieve the
value of an optimal policy on SLM.

5 Discussion

In Section 4, we obtained the minimum required sizes of the set of messages
on SL and SLM in a decision theoretic context. In this section, we consider the
minimum required sizes from the view point of reinforcement learning. Suppose
that a learning algorithm converges to an optimal policy with or without the
guarantee of its convergence. It is expected that we do not need the messages
whose size is larger than the minimum required size, since the performance of
learning may decrease as the input space of policy spreads out by increasing
the extra messages. However, our experimental results show the disappointing
responses to our expectation.

Here, we refer to the actual learning results of SL and SLM in CBP problem
shown in Fig. 2 from our previous work [2]. We also add additional experiments
shown in Fig. 3 for better understanding of the learning processes. First, we
observed a strange fact from Fig. 2 that RW performed better than NC. This
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fact shows that CBP problem has sufficient difficulty on the learning without
communication. In other words, CBP problem is an appropriate problem for
evaluating the effects of SL and SLM. By comparing the three cases except RW
in Fig. 2, SL is clearly better than NC and SLM is the best in performance.
In addition, SLM is more robust than SL from Fig. 3. This suggests that some
beneficial meaning emerges in messages through the learning processes in SL
and SLM (e.g., the agents’ observations and/or the status of buttons), while in
NC, the agents can receive no beneficial information as messages. The difference
of performance between SL and SLM arises from the included information in
messages. Although each agent on SL can only include its own observation in
a message by using the local communication policy δM

i : Ωi → Mi, the local
communication policy δM

i : Ωi × M recv
i → Mi can additionally allows each

agent on SLM to include the status of buttons in a message [2]. As a result,
SLM performed better than SL since the agents can deterministically decide the
optimal actions based on the current global states.

Here, we go back to the main subject. In the case of SLM, the minimum
required size in CBP problem is 2 from Corollary 2. The results on SLM show
that the performance of when |Mi| > 2 is clearly better than that of when
|Mi| = 2. This suggests that the extra messages make some positive effect in
the learning. In the case of SL, we conjecture that the minimum required size
in CBP problem is 3 from Corollary 1, although CBP problem is not a Dec-
MDP-Com. The results on SL show that the performance of when |Mi| > 3 is
clearly better than that of when |Mi| = 3. This also supports our suggestion.
We currently have no credible answers about what is the positive effect. We will
try it in future work.

6 Conclusions and Future Work

We defined a new model called deterministic Dec-POMDP-Com in Definition 10.
We theoretically analyzed Signal Learning (SL) in a Dec-MDP-Com and Signal
Learning with Messages (SLM) in a deterministic Dec-POMDP-Com, which we
previously proposed, and obtained the minimum required sizes of the set of
messages on SL and SLM in a decision theoretic context. In addition, we reviewed
some experimental results, which indicates that extra messages make positive
effect in learning processes, when the size of message set is larger than the
minimum required size. Future work includes an extension to the stochastic
model from a theoretical point of view and clarifying what is the positive effect.
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