
Finding Best Patterns Practically

Ayumi Shinohara, Masayuki Takeda, Setsuo Arikawa,
Masahiro Hirao, Hiromasa Hoshino, and Shunsuke Inenaga

Department of Informatics, Kyushu University 33, Fukuoka 812-8581, JAPAN
{ayumi, hirao, hoshino, s-ine, takeda, arikawa}@i.kyushu-u.ac.jp

Abstract. Finding a pattern which separates two sets is a critical task
in discovery. Given two sets of strings, consider the problem to find a
subsequence that is common to one set but never appears in the other
set. The problem is known to be NP-complete. Episode pattern is a
generalized concept of subsequence pattern where the length of substring
containing the subsequence is bounded. We generalize these problems
to optimization problems, and give practical algorithms to solve them
exactly. Our algorithms utilize some pruning heuristics based on the
combinatorial properties of strings, and efficient data structures which
recognize subsequence and episode patterns.

1 Introduction

In these days, a lot of text data or sequential data are available, and it is quite
important to discover useful rules from these data. Finding a good rule to separate
two given sets, often referred as positive examples and negative examples, is a
critical task in Discovery Science as well as Machine Learning. String is one
of the most fundamental structure to express and reserve information. In this
paper, we review our recent work [7,8] which find a best pattern practically.

First we remind our motivations. Shimozono et al. [13] developed a machine
discovery system BONSAI that produces a decision tree over regular patterns
with alphabet indexing, from given positive set and negative set of strings. The
core part of the system is to generate a decision tree which classifies positive
examples and negative examples as correctly as possible. For that purpose, we
have to find a pattern that maximizes the goodness according to the entropy
information gain measure, recursively at each node of trees. In the current im-
plementation, a pattern associated with each node is restricted to a substring
pattern, due to the limit of computation time. One of our motivations of this
study was to extend the BONSAI system to allow subsequence patterns as well
as substring patterns at nodes, and accelerate the computation time.

However, there is a large gap between the complexity of finding the best
substring pattern and subsequence pattern. Theoretically, the former problem
can be solved in linear time, while the latter is NP-hard. In [7], we introduced
a practical algorithm to find a best subsequence pattern that separates positive
examples from negative examples, and showed some experimental results.

A drawback of subsequence patterns is that they are not suitable for classify-
ing long strings over small alphabet, since a short subsequence pattern matches

S. Arikawa and A. Shinohara (Eds.): Progress in Discovery Science 2001, LNAI 2281, pp. 307–317.
c© Springer-Verlag Berlin Heidelberg 2002

308 Ayumi Shinohara et al.

with almost all long strings. Based on this observation, in [8] we considered
episode patterns, which were originally introduced by Mannila et al. [10]. An
episode pattern 〈v, k〉, where v is a string and k is an integer, matches with a
string t if v is a subsequence for some substring u of t with |u| ≤ k. Episode
pattern is a generalization of subsequence pattern since subsequence pattern v
is equivalent to episode pattern 〈v,∞〉. We gave a practical solution to find a
best episode pattern which separates a given set of strings from the other set of
strings.

In this paper, we summarize our practical implementations of exact search
algorithms that practically avoids exhaustive search. Since these problems are
NP-hard, essentially we are forced to examine exponentially many candidate
patterns in the worst case. Basically, for each pattern w, we have to count the
number of strings that contain w as a subsequence in each of two sets. We call
the task of counting the numbers as answering subsequence query. The compu-
tational cost to find the best subsequence pattern mainly comes from the total
amount of time to answer these subsequence queries, since it is relatively heavy
task if the sets are large, and many queries will be needed. In order to reduce
the time, we have to either (1) ask queries as few as possible, or (2) speed up to
answer queries. We attack the problem from both these two directions.

At first, we reduce the search space by appropriately pruning redundant
branches that are guaranteed not to contain the best pattern. We use a heuris-
tics inspired by Morishita and Sese [12], combined with some properties on the
subsequence languages, and episode pattern languages.

Next, we accelerate answering for subsequence queries and episode pattern
queries. Since the sets of strings are fixed in finding the best pattern, it is reason-
able to preprocess the sets so that answering query for any pattern will be fast.
We take an approach based on a deterministic finite automaton that accepts
all subsequences of a string. Actually, we use subsequence automata for sets of
strings, developed in [9] for subsequence query, and episode pattern recognizer
for episode pattern query. These automata can answer quickly for subsequence
query, at the cost of preprocessing time and space requirement to construct them.

2 Preliminaries

Let N be the set of integers. Let Σ be a finite alphabet, and let Σ∗ be the set
of all strings over Σ. For a string w, we denote by |w| the length of w. For a set
S ⊆ Σ∗ of strings, we denote by |S| the number of strings in S, and by ||S|| the
total length of strings in S.

We say that a string v is a prefix (substring, suffix, resp.) of w if w = vy
(w = xvy, w = xv, resp.) for some strings x, y ∈ Σ∗. We say that a string v
is a subsequence of a string w if v can be obtained by removing zero or more
characters from w, and say that w is a supersequence of v. We denote by v 	str w
that v is a substring of w, and by v 	seq w that v is a subsequence of w. For
a string v, we define the substring language Lstr(v) and subsequence language

Finding Best Patterns Practically 309

Lseq(v) as follows:

Lstr(v) = {w ∈ Σ∗ | v 	str w}, and
Lseq(v) = {w ∈ Σ∗ | v 	seq w}, respectively.

An episode pattern is a pair of a string v and an integer k, and we define the
episode language Leps(〈v, k〉) by

Leps(〈v, k〉) = {w ∈ Σ∗ | ∃u 	str w such that v 	seq u and |u| ≤ k}.
The following lemma is obvious from the definitions.

Lemma 1 ([7]). For any strings v, w ∈ Σ∗,

(1) if v is a prefix of w, then v 	str w,
(2) if v is a suffix of w, then v 	str w,
(3) if v 	str w then v 	seq w,
(4) v 	str w if and only if Lstr(v) ⊇ Lstr(w),
(5) v 	seq w if and only if Lseq(v) ⊇ Lseq(w).

We formulate the problem by following our previous paper [7]. Readers should
refer to [7] for basic idea behind this formulation. We say that a function f from
[0, xmax] × [0, ymax] to real numbers is conic if

– for any 0 ≤ y ≤ ymax, there exists an x1 such that
• f(x, y) ≥ f(x′, y) for any 0 ≤ x < x′ ≤ x1, and
• f(x, y) ≤ f(x′, y) for any x1 ≤ x < x′ ≤ xmax.

– for any 0 ≤ x ≤ xmax, there exists a y1 such that
• f(x, y) ≥ f(x, y′) for any 0 ≤ y < y′ ≤ y1, and
• f(x, y) ≤ f(x, y′) for any y1 ≤ y < y′ ≤ ymax.

We assume that f is conic and can be evaluated in constant time in the sequel.
The following are the optimization problems to be tackled.

Definition 1 (Finding the best substring pattern according to f).
Input Two sets S, T ⊆ Σ∗ of strings.
Output A string v that maximizes the value f(xv, yv), where xv = |S ∩Lstr(s)|

and ys = |T ∩ Lstr(s)|.

Definition 2 (Finding the best subsequence pattern according to f).
Input Two sets S, T ⊆ Σ∗ of strings.
Output A string v that maximizes the value f(xv, yv), where xv = |S ∩Lseq(v)|

and yv = |T ∩ Lseq(v)|.

Definition 3 (Finding the best episode pattern according to f). .
Input Two sets S, T ⊆ Σ∗ of strings.
Output A episode pattern 〈v, k〉 that maximizes the value f(x〈v,k〉, y〈v,k〉), where

x〈v,k〉 = |S ∩ Leps(〈v, k〉)| and y〈v,k〉 = |T ∩ Leps(〈v, k〉)|.

310 Ayumi Shinohara et al.

1 pattern FindMaxPattern(StringSet S, T)
2 maxVal = −∞;
3 for all possible pattern π do
4 x = |S ∩ L(π)|;
5 y = |T ∩ L(π)|;
6 val = f(x, y);
7 if val > maxVal then
8 maxVal = val ;
9 maxPat = π;
10 return maxPat ;

Fig. 1. Exhaustive search algorithm.

We remind that the first problem can be solved in linear time [7], while the
latter two problems are NP-hard.

We review the basic idea of our algorithms. Fig. 1 shows a naive algorithm
which exhaustively examines and evaluate all possible patterns one by one, and
returns the best pattern that gives the maximum value. The most time con-
suming part is obviously the lines 4 and 5, and in order to reduce the search
time, we should (1) reduce the possible patterns in line 3 dynamically by using
some appropriate pruning method, and (2) speed up to compute |S ∩L(π)| and
|T ∩ L(π)| for each π. In Section 3, we deal with (1), and in Section 4, we treat
(2).

3 Pruning Heuristics

In this section, we introduce some pruning heuristics, inspired by Morishita and
Sese [12].

For a function f(x, y), we denote F (x, y)=max{f(x,y),f(x,0),f(0,y),f(0,0)}.
From the definition of conic function, we can prove the following lemma.

Lemma 2. For any patterns v and w with L(v) ⊇ L(w), we have

f(xw, yw) ≤ F (xv, yv).

3.1 Subsequence Patterns

We consider finding subsequence pattern in this subsection. By Lemma 1 (5)
and Lemma 2, we have the following lemma.

Lemma 3 ([7]). For any strings v, w ∈ Σ∗ with v 	seq w, we have

f(xw, yw) ≤ F (xv, yv).

In Fig. 2, we show our algorithm to find the best subsequence pattern from
given two sets of strings, according to the function f . Optionally, we can specify
the maximum length of subsequences. We use the following data structures in
the algorithm.

Finding Best Patterns Practically 311

1 string FindMaxSubsequence(StringSet S, T , int maxLength = ∞)
2 string prefix , seq , maxSeq ;
3 double upperBound = ∞, maxVal = −∞, val ;
4 int x, y;
5 PriorityQueue queue; /* Best First Search*/
6 queue.push(””, ∞);
7 while not queue.empty() do
8 (prefix , upperBound) = queue.pop();
9 if upperBound < maxVal then break;
10 foreach c ∈ Σ do
11 seq= prefix+ c; /* string concatenation */
12 x = S.numOfSubseq(seq);
13 y = T .numOfSubseq(seq);
14 val = f(x, y);
15 if val > maxVal then
16 maxVal = val ;
17 maxSeq = seq ;
18* upperBound = F (x, y);
19 if |seq | < maxLength then
20 queue.push(seq , upperBound);
21 return maxSeq ;

Fig. 2. Algorithm FindMaxSubsequence.

StringSet Maintain a set S of strings.
– int numOfSubseq(string seq) : return the cardinality of the set {w ∈ S |

seq 	seq w}.

PriorityQueue Maintain strings with their priorities.
– bool empty() : return true if the queue is empty.
– void push(string w, double priority) : push a string w into the queue with

priority priority.
– (string, double) pop() : pop and return a pair (string, priority), where

priority is the highest in the queue.

The next theorem guarantees the completeness of the algorithm.

Theorem 1 ([7]). Let S and T be sets of strings, and � be a positive integer. The
algorithm FindMaxSubsequence(S, T , �) will return a string w that maximizes
the value f(xv, yv) among the strings of length at most �, where xv = |S∩Lstr(s)|
and ys = |T ∩ Lstr(s)|.
Proof. We first consider the case that the lines 18 is removed. Since the value
of upperBound is unchanged, PriorityQueue is actually equivalent to a simple
queue. Then, the algorithm performs the exhaustive search in a breadth first
manner. Thus the algorithm will compute the value f(xv, yv) for all strings of
length at most maxLength, in increasing order of the length, and it can find the
best pattern trivially.

312 Ayumi Shinohara et al.

We now focus on the line 9, by assuming the condition upperBound < maxVal
holds. Since the queue is a priority queue, we have F (xv, yv) ≤ upperBound for
any string v in the queue. By Lemma 3, f(xv, yv) ≤ F (xv, yv), which implies
f(xv, yv) < maxVal . Thus no string in the queue can be the best subsequence
and we jump out of the loop immediately.

Next, we consider the lines 18. Let v be the string currently represented
by the variable seq . At lines 12 and 13, xv and yv are computed. At line 18,
upperBound = F (xv, yv) is evaluated, and if upperBound is less than the current
maximum value maxVal , v is not pushed into queue. It means that any string
w of which v is a prefix will not be evaluated. We can show that such a string
w can never be the best subsequence as follows. Since v is a prefix of w, we
know v is a subsequence of w, by Lemma 1 (1) and (3). By Lemma 3, we know
f(xw, yw) ≤ F (xv, yv), and since F (xv, yv) < maxVal , the string w can never be
the maximum. ��

3.2 Episode Pattern

We now show a practical algorithm to find the best episode patterns. We should
remark that the search space of episode patterns is Σ∗ × N , while the search
space of subsequence patterns was Σ∗. A straight-forward approach based on
the last subsection might be as follows. First we observe that the algorithm
FindMaxSubsequence in Fig. 2 can be easily modified to find the best episode
pattern 〈v, k〉 for any fixed threshold k: we have only to replace the lines 12
and 13 so that they compute the numbers of strings in S and T that match with
the episode pattern 〈seq , k〉, respectively. Thus, for each possible threshold value
k, repeat his algorithm, and get the maximum. A short consideration reveals
that we have only to consider the threshold values up to l, that is the length of
the longest string in given S and T .

However, here we give a more efficient solution. Let us consider the following
problem, that is a subproblem of finding the best episode pattern in Definition 3.

Definition 4 (Finding the best threshold value).
Input Two sets S, T ⊆ Σ∗ of strings, and a string v ∈ Σ∗.
Output Integer k that maximizes the value f(x〈v,k〉, y〈v,k〉), where x〈v,k〉 = |S∩

Leps(〈v, k〉)| and y〈v,k〉 = |T ∩ Leps(〈v, k〉)|.
The next lemma give a basic containment of episode pattern languages.

Lemma 4 ([8]). For any two episode patterns 〈v, l〉 and 〈w, k〉, if v 	seq w and
l ≥ k then Leps(〈v, l〉) ⊇ Leps(〈w, k〉).
By Lemma 2 and 4, we have the next lemma.

Lemma 5 ([8]). For any two episode patterns 〈v, l〉 and 〈w, k〉, if v 	seq w and
l ≥ k then f(x〈w,k〉, y〈w,k〉) ≤ F (x〈v,l〉, y〈v,l〉).

Finding Best Patterns Practically 313

For strings v, s ∈ Σ∗, we define the threshold value θ of v for s by θ = min{k ∈
N | s ∈ Leps(〈v, k〉)}. If no such value, let θ = ∞. Note that s �∈ Leps(〈v, k〉) for
any k < θ, and s ∈ Leps(〈v, k〉) for any k ≥ θ. For a set S of strings and a string
v, let us denote by ΘS,v the set of threshold values of v for some s ∈ S.

A key observation is that a best threshold value for given S, T ⊆ Σ∗ and a
string v ∈ Σ∗ can be found in ΘS,v ∪ ΘT,v without loss of generality. Thus we
can restrict the search space of the best threshold values to ΘS,v ∪ ΘT,v.

From now on, we consider the numerical sequence {x〈v,k〉}∞
k=0. (We will treat

{y〈v,k〉}∞
k=0 in the same way.) It clearly follows from Lemma 4 that the sequence

is non-decreasing. Remark that 0 ≤ x〈v,k〉 ≤ |S| for any k. Moreover, x〈v,l〉 =
x〈v,l+1〉 = x〈v,l+2〉 = · · ·, where l is the length of the longest string in S. Hence,
we can represent {x〈v,k〉}∞

k=0 with a list having at most min{|S|, l} elements.
We call this list a compact representation of the sequence {x〈v,k〉}∞

k=0 (CRS, for
short).

We show how to compute CRS for each v and a fixed S. Observe that x〈v,k〉
increases only at the threshold values in ΘS,v. By computing a sorted list of all
threshold values in ΘS,v, we can construct the CRS of {x〈v,k〉}∞

k=0. If using the
counting sort, we can compute the CRS for any v ∈ Σ∗ in O(|S|ml + |S|) =
O(||S||m) time, where m = |v|.

We emphasize that the time complexity of computing the CRS of {x〈v,k〉}∞
k=0

is the same as that of computing x〈v,k〉 for a single k (0 ≤ k ≤ ∞), by our method.
After constructing CRSs x̄ of {x〈v,k〉}∞

k=0 and ȳ of {y〈v,k〉}∞
k=0, we can com-

pute the best threshold value in O(|x̄| + |ȳ|) time. Thus we have the following,
which gives an efficient solution to the finding the best threshold value problem.

Lemma 6. Given S, T ⊆ Σ∗ and v ∈ Σ∗, we can find the best threshold value
in O((||S|| + ||T ||)·|v|) time.

By substituting this procedure into the algorithm FindMaxSubsequence, we
get an algorithm to find a best episode pattern from given two sets of strings,
according to the function f , shown in Fig. 3. We add a method crs(v) to the
data structure StringSet that returns CRS of {x〈v,k〉}∞

k=0, as mentioned above.

By Lemma 5, we can use the value upperBound = F (xv,∞, yv,∞) to prune
branches in the search tree computed at line 20 marked by (*). We empha-
size that the value F (x〈v,k〉, y〈v,k〉) is insufficient as upperBound . Note also that
x〈v,∞〉 and y〈v,∞〉 can be extracted from x̄ and ȳ in constant time, respectively.
The next theorem guarantees the completeness of the algorithm.

Theorem 2 ([8]). Let S and T be sets of strings, and � be a positive integer.
The algorithm FindBestEpisode(S, T , �) will return an episode pattern that
maximizes f(x〈v,k〉, y〈v,k〉), with x〈v,k〉 = |S ∩ Leps(〈v, k〉)| and y〈v,k〉 = |T ∩
Leps(〈v, k〉)|, where v varies any string of length at most � and k varies any
integer.

314 Ayumi Shinohara et al.

1 string FindBestEpisode(StringSet S, T , int �)
2 string prefix , v;
3 episodePattern maxSeq ; /* pair of string and int */
4 double upperBound = ∞, maxVal = −∞, val ;
5 int k′;
6 CompactRepr x̄, ȳ; /* CRS */
7 PriorityQueue queue; /* Best First Search*/
8 queue.push(””, ∞);
9 while not queue.empty() do
10 (prefix , upperBound) = queue.pop();
11 if upperBound < maxVal then break;
12 foreach c ∈ Σ do
13 v = prefix+ c; /* string concatenation */
14 x̄ = S.crs(v);
15 ȳ = T .crs(v);
16 k′ = argmaxk{f(x〈v,k〉, y〈v,k〉)} and val = f(x〈v,k′〉, y〈v,k′〉);
17 if val > maxVal then
18 maxVal = val ;
19 maxEpisode = 〈v, k′〉;
20(*) upperBound = F (x〈v,∞〉, y〈v,∞〉);
21 if upperBound > maxVal and |v| < � then
22 queue.push(v, upperBound);
23 return maxEpisode;

Fig. 3. Algorithm FindBestEpisode.

4 Using Efficient Data Structures

We introduces some efficient data structures to speed up answering the queries.

4.1 Subsequence Automata

First we pay our attention to the following problem.

Definition 5 (Counting the matched strings).
Input A finite set S ⊆ Σ∗ of strings.
Query A string seq ∈ Σ∗.
Answer The cardinality of the set S ∩ Lseq(seq).

Of course, the answer to the query should be very fast, since many queries
will arise. Thus, we should preprocess the input in order to answer the query
quickly. On the other hand, the preprocessing time is also a critical factor in
some applications. In this paper, we utilize automata that accept subsequences
of strings.

In [9], we considered a subsequence automaton as a deterministic complete
finite automaton that recognizes all possible subsequences of a set of strings,
that is essentially the same as the directed acyclic subsequence graph (DASG)
introduced by Baeza-Yates [2]. We showed an online construction of subsequence

Finding Best Patterns Practically 315

3 2

03

2 1 1

2

3

a b

a

a b

b a

b

a a

b
a

a
b a

b

b

b

Fig. 4. Subsequence automaton for S = {abab, abb, bb}, where Σ = {a, b}. Each number
on a state denotes the number of matched strings. For example, by traverse the states
according to a string ab, we reach the state whose number is 2. It corresponds to the
cardinality |Lseq(ab) ∩ S| = 2, since ab
seq abab, ab
seq abb and ab �
seq bb.

automaton for a set of strings. Our algorithm runs in O(|Σ|(m + k) + N) time
using O(|Σ|m) space, where |Σ| is the size of alphabet, N is the total length of
strings, and m is the number of states of the resulting subsequence automaton.
We can extend the automaton so that it answers the above Counting the matched
strings problem in a natural way (see Fig. 4).

Although the construction time is linear to the size m of automaton to be
built, unfortunately m = O(nk) in general, where we assume that the set S
consists of k strings of length n. (The lower bound of m is only known for the
case k = 2, as m = Ω(n2) [4].) Thus, when the construction time is also a critical
factor, as in our application, it may not be a good idea to construct subsequence
automaton for the set S itself. Here, for a specified parameter mode > 0, we
partition the set S into d = k/mode subsets S1, S2, . . . , Sd of at most mode
strings, and construct d subsequence automata for each Si. When asking a query
seq , we have only to traverse all automata simultaneously, and return the sum
of the answers. In this way, we can balance the preprocessing time with the total
time to answer (possibly many) queries. In [7], we experimentally evaluated the
optimal value of the parameter mode.

4.2 Episode Directed Acyclic Subsequence Graphs

We now analyze the complexity of episode pattern matching. Given an episode
pattern 〈v, k〉 and a string t, determine whether t ∈ Leps(〈v, k〉) or not. This
problem can be answered by filling up the edit distance table between v and t,
where only insertion operation with cost one is allowed. It takes Θ(mn) time
and space using a standard dynamic programming method, where m = |v| and
n = |t|. For a fixed string, automata-based approach is useful. We use the Episode
Directed Acyclic Subsequence Graph (EDASG) for string t, which was recently
introduced by Tróıček in [14]. Hereafter, let EDASG(t) denote the EDASG for t.
With the use of EDASG(t), episode pattern matching can be answered quickly
in practice, although the worst case behavior is still O(mn). EDASG(t) is also
useful to compute the threshold value θ of given v for t quickly in practice. As an

316 Ayumi Shinohara et al.

9876543210 a a b a a b a b b

b b
b

b ba a

ab ab
a

ab

Fig. 5. EDASG(t), where t = aabaababb. Solid arrows denote the forward edges, and
broken arrows denote the backward edges. The number in each circle denotes the state
number.

example, EDASG(aabaababb) is shown in Fig. 5. When examining if an episode
pattern 〈abb, 4〉 matches with t or not, we start from the initial state 0 and
arrive at state 6, by traversing the forward edges spelling abb. It means that the
shortest prefix of t that contains abb as a subsequences is t[0 : 6] = aabaab, where
t[i : j] denotes the substring ti+1 . . . tj of t. Moreover, the difference between the
state numbers 6 and 0 corresponds to the length of matched substring aabaab of
t, that is, 6 − 0 = |aabaab|. Since it exceeds the threshold 4, we move backwards
spelling bba and reach state 1. It means that the shortest suffix of t[0 : 6] that
contains abb as a subsequence is t[1 : 6] = abaab. Since 6 − 1 > 4, we have to
examine other possibilities. It is not hard to see that we have only to consider
the string t[2 : ∗]. Thus we continue the same traversal started from state 2,
that is the next state of state 1. By forward traversal spelling abb, we reach state
8, and then backward traversal spelling bba bring us to state 4. In this time,
we found the matched substring t[4 : 8] = abab which contains the subsequence
abb, and the length 8 − 4 = 4 satisfies the threshold. Therefore we report the
occurrence and terminate the procedure.

It is not difficult to see that the EDASGs are useful to compute the threshold
value of v for a fixed t. We have only to repeat the above forward and back-
ward traversal up to the end, and return the minimum length of the matched
substrings. Although the time complexity is still Θ(mn), practical behavior is
usually better than using standard dynamic programming method.

5 Conclusion

In this paper, we focused on finding the best subsequence pattern and episode
patterns. However, we can easily extend our algorithm to enumerate all strings
whose values of the objective function exceed the given threshold, since essen-
tially we examine all strings, with effective pruning heuristics. Enumeration may
be more preferable in the context of text data mining [3,5,15].

It is challenging to apply our approach to find the best pattern in the sense
of pattern languages introduced by Angluin [1], where the related consistency
problems are shown to be very hard [11]. Hamuro et al. [6] implemented our
algorithm for finding best subsequences, and reported a quite successful experi-
ments on business data. We are now in the process of installing our algorithms
into the core of the decision tree generator in the BONSAI system [13].

Finding Best Patterns Practically 317

References

1. D. Angluin. Finding patterns common to a set of strings. J. Comput. Syst. Sci.,
21(1):46–62, Aug. 1980.

2. R. A. Baeza-Yates. Searching subsequences. Theoretical Computer Science,
78(2):363–376, Jan. 1991.

3. A. Califano. SPLASH: Structural pattern localization analysis by sequential his-
tograms. Bioinformatics, Feb. 1999.

4. M. Crochemore and Z. Trońıček. Directed acyclic subsequence graph for multiple
texts. Technical Report IGM-99-13, Institut Gaspard-Monge, June 1999.

5. R. Feldman, Y. Aumann, A. Amir, A. Zilberstein, and W. Klosgen. Maximal
association rules: A new tool for mining for keyword co-occurrences in document
collections. In Proc. of the 3rd International Conference on Knowledge Discovery
and Data Mining, pages 167–170. AAAI Press, Aug. 1997.

6. Y. Hamuro, H. Kawata, N. Katoh, and K. Yada. A machine learning algorithm
for analyzing string patterns helps to discover simple and interpretable business
rules from purchase history. In Progress in Discovery Science, LNCS, 2002. (In
this volume).

7. M. Hirao, H. Hoshino, A. Shinohara, M. Takeda, and S. Arikawa. A practical
algorithm to find the best subsequence patterns. In Proc. of The Third Interna-
tional Conference on Discovery Science, volume 1967 of Lecture Notes in Artificial
Intelligence, pages 141–154. Springer-Verlag, Dec. 2000.

8. M. Hirao, S. Inenaga, A. Shinohara, M. Takeda, and S. Arikawa. A practical
algorithm to find the best episode patterns. In Proc. of The Fourth International
Conference on Discovery Science, Lecture Notes in Artificial Intelligence. Springer-
Verlag, Nov. 2001.

9. H. Hoshino, A. Shinohara, M. Takeda, and S. Arikawa. Online construction of
subsequence automata for multiple texts. In Proc. of 7th International Symposium
on String Processing and Information Retrieval. IEEE Computer Society, Sept.
2000. (to appear).

10. H. Mannila, H. Toivonen, and A. I. Verkamo. Discovering frequent episode in
sequences. In U. M. Fayyad and R. Uthurusamy, editors, Proc. of the 1st Inter-
national Conference on Knowledge Discovery and Data Mining, pages 210–215.
AAAI Press, Aug. 1995.

11. S. Miyano, A. Shinohara, and T. Shinohara. Polynomial-time learning of elemen-
tary formal systems. New Generation Computing, 18:217–242, 2000.

12. S. Morishita and J. Sese. Traversing itemset lattices with statistical metric pruning.
In Proc. of the 19th ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pages 226–236. ACM Press, May 2000.

13. S. Shimozono, A. Shinohara, T. Shinohara, S. Miyano, S. Kuhara, and S. Arikawa.
Knowledge acquisition from amino acid sequences by machine learning system
BONSAI. Transactions of Information Processing Society of Japan, 35(10):2009–
2018, Oct. 1994.

14. Z. Trońıček. Episode matching. In Proc. of 12th Annual Symposium on Combi-
natorial Pattern Matching, Lecture Notes in Computer Science. Springer-Verlag,
July 2001. (to appear).

15. J. T. L. Wang, G.-W. Chirn, T. G. Marr, B. A. Shapiro, D. Shasha, and K. Zhang.
Combinatorial pattern discovery for scientific data: Some preliminary results. In
Proc. of the 1994 ACM SIGMOD International Conference on Management of
Data, pages 115–125. ACM Press, May 1994.

	1 Introduction
	2 Preliminaries
	3 Pruning Heuristics
	3.1 Subsequence Patterns
	3.2 Episode Pattern

	4 Using Efficient Data Structures
	4.1 Subsequence Automata
	4.2 Episode Directed Acyclic Subsequence Graphs

	5 Conclusion
	References

