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Abstract. We consider the exact learning in the query model. We deal
with all types of queries introduced by Angluin: membership, equiva-
lence, superset, subset, disjointness and exhaustiveness queries, and their
weak (or restricted) versions where no counterexample is returned. For
each of all possible combinations of these queries, we uniformly give com-
plete characterizations of boolean concept classes that are learnable using
a polynomial number of polynomial sized queries. Our characterizations
show the equivalence between the learnability of a concept class C using
queries and the existence of a good query for any subset H of C which
is guaranteed to reject a certain fraction of candidate concepts in H re-
gardless of the answer. As a special case for equivalence queries alone,
our characterizations directly correspond to the lack of the approximate
fingerprint property, which is known to be a sufficient and necessary
condition for the learnability using equivalence queries.

1 Introduction

With the remarkable advances in computer and network technology, a large
quantity of data obtained from scientific experiments is available. It is an urgent
and very important problem to establish methods to discover some rules which
explain such a large quantity of data. Because the data is so large, it is expected
to use computers to analyze the data. One approach is to apply a machine
learning system which learns concepts from examples, in order to discover rules
automatically. Moreover, a successful learning algorithm using queries would
give us a good strategy to make experiments within a reasonable amount of
time, in order to identify underlying rules. For these purpose, we have to clarify
the possibilities and limitations for computers to learn concepts from examples.

The exact learning model due to Angluin [1] is one of the most popular
models in the field of learning theory. In this model, a learner is required to
identify a target concept exactly using queries which give partial information
about the target concept to the learner. Angluin introduced six kinds of queries,
membership, equivalence, superset, subset, disjointness, and exhaustiveness. In
some cases, weak (or restricted) versions of queries are often used, where no
counterexample is provided to a learner.
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Among these queries, membership and equivalence queries have been focused
on especially, and there have been some individual approaches to show combi-
natorial properties in order to characterize the learnability using each of three
combinations of membership and equivalence queries. For equivalence queries
alone, Angluin [2] introduced a notion of approximate fingerprint property as a
tool for proving non-learnability. Gavaldà [4] showed that the property (with a
slight modification) can be used to prove the converse: if a concept class does
not have an approximate fingerprint property, then the concept class is exactly
learnable using a polynomial number of polynomial sized equivalence queries.
(See also [3]). For membership queries alone, Goldman and Kearns [5] showed
that the teaching dimension gives a lower bound for the number of member-
ship queries required to learn. Hegedüs [6] generalized it so that the generalized
teaching dimension of a concept class is polynomial if and only if the concept
class is learnable using a polynomial number of membership queries alone. For
the combination of membership and equivalence queries, Hellerstein et al. [7] and
Hegedüs [6] independently gave an elegant combinatorial property called poly-
nomial certificates as a necessary and sufficient condition for polynomial-query
learning.

In this paper, we give combinatorial properties which uniformly characterize
the learnability for each of any possible combinations of all queries introduced
above. We will give the characterizations in an abstract form so that we can
easily generalize it for another kind of queries, not specific to these six queries.

Our characterizations are based on the following two intuitions: The first one
is that if a learner can ask a good question to a teacher about the unknown
target concept, then the concept is easy to learn. Otherwise, it might be hard
to learn. Here, we regard that a question is good if at least a certain fraction of
concepts will be rejected, no matter how the answer is returned by the teacher.
If there always exists a good question for any subset of a concept class, then the
learner can use it to reduce the hypothesis space efficiently. Otherwise, that is,
if there is no good question for some subset of a concept class, adversary teacher
can answer maliciously so that little information will be given to the learner to
identify the target concept. In fact, this was a key idea to prove that the lack of
approximate fingerprint property is a necessary and sufficient condition for the
learnability using equivalence queries alone [2, 4].

The second intuition is that a learner can identify any target concept exactly
if and only if the learner can confirm that the hypothesis is absolutely correct
by using queries. We introduce a notion of specifying queries in order to capture
the intuition. When equivalence queries are available, it is a trivial task, since
the learner can directly confirm whether the hypothesis is correct or not.

We apply these intuitions for each type of queries, and capture the essence of
query complexity of exact learning using each of any possible combinations of all
these queries. The technicalities of the proofs may not be quite new since they
are rather straightforward extensions appeared in the literature [2, 4, 6]. However,
our characterizations will be applied for any kind of queries, not restricted to the
ones mentioned above. Since a query corresponds to an experiment in scientific
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discovery, we hope that our characterizations will lead us an efficient strategy to
choose and perform experiments among a large number of possible experiments.

2 Preliminaries

We adopt the terminology from [7, 8]. Let Σ be an alphabet. Then Σ∗ denotes
the set of all finite length strings over Σ, and Σn denotes the set of all strings
over Σ of length exactly n. For a string w ∈ Σ∗, ||w|| denotes the length of w,
for a set S, |S| denotes the cardinality of S.

A Representation of concepts R = ⟨Σ,∆,R, µ⟩ is a 4-tuple where Σ and ∆
are finite alphabets, R is a subset of ∆∗, and µ is a map from R to subsets of
Σ∗, called concepts. R is a set of representations, and µ is the map that specifies
which concept is represented by a given representation. For any concept c, χc

denotes the characteristic function of c. For any string w, χc(w) = 1 if w is in c
and χc(w) = 0 otherwise. The size of a concept c is min{||r|| : µ(r) = c}.

Throughout this paper, we assume that for any representation class R, the
following problems are computable:

1. For a given string r ∈ ∆∗, decide if r ∈ R.
2. For a given string w ∈ Σ∗ and r ∈ ∆∗, decide if w ∈ µ(r).

The concept class C by R is a set of concepts that have representations in R.
For any positive integer m, Cm = {µ(r) : r ∈ R, ||r|| ≤ m}, and C =

∪
m≥1 Cm.

In this paper, we deal with boolean concept classes only. Thus let us assume
that Σ = {0, 1}. A boolean concept c is a subset of Σn for any positive integer
n. When it causes no confusion, we will use c itself to denote χc. If R is a
boolean representation class, each r ∈ R will represent a boolean formula over n
variables, and the concept is a set of assignments to the variables that satisfies
the function. For any positive integers m and n, let Cm,n = {µ(r) : ||r|| ≤
m and µ(r) ⊆ Σn}, and Cn =

∪
m≥1 Cm,n. In the sequel, we identify a concept

c ∈ C with its representation r ∈ R with µ(r) = c when it is clear from the
context.

We assume several oracles which give some information about a target con-
cept c∗ to a learner. We may regard them as experiments to identify the target
concept. In the literatures, six oracles have been introduced as follows. For each
string v ∈ Σn, the membership oracle Mem returns “Yes” if c∗(v) = 1 and “No”
otherwise. Moreover, for each concept h ∈ C, we define Equivalence (Equ), Su-
perset (Sup), Subset (Sub), Disjointness (Dis), Exhaustiveness (Exh) oracles
and their weak versions (wEqu, wSup, wSub, wDis, wExh) as in Table 1.
However, in this paper, we do not have to restrict the queries to those ones,
since our characterizations would not be specific to these oracles. For a query σ
and a concept c, we denote by c[σ] the set of possible answers for c when asking
σ. We denote by ||σ|| the length of a query σ. For example, for a membership
query σ1, c[σ1] is {“Yes”} or {“No”}, and for an equivalence query σ2, c[σ2] is
{“Yes”} or the set of all counterexamples.
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Table 1. The definitions of oracles. The first row represents the types of oracles. The
second row represents conditions when each oracle returns “Yes”, and the third row
“No”. The last row shows the condition which a counterexample should satisfy. For
instance, the weak equivalence oracle wEqu answers “Yes” if h = c∗, and answers
“No” if h ̸= c∗. The equivalence oracle Equ answers “Yes” if h = c∗, and returns a
counterexample w with w ∈ (h ∪ c∗) − (h ∩ c∗) if h ̸= c∗.

Yes No w

Mem c∗(v) = 1 c∗(v) = 0
Equ, wEqu h = c∗ h ̸= c∗ w ∈ (h ∪ c∗) − (h ∩ c∗)
Sup, wSup h ⊇ c∗ h ̸⊇ c∗ w ∈ c∗ − h
Sub, wSub h ⊆ c∗ h ̸⊆ c∗ w ∈ h − c∗

Dis, wDis h ∩ c∗ = ∅ h ∩ c∗ ̸= ∅ w ∈ h ∩ c∗

Exh, wExh h ∪ c∗ = Σn h ∪ c∗ ̸= Σn w ∈ Σn − (h ∪ c∗)

The query complexity of learning algorithm A is the sum of the lengths of
queries and counterexamples returned by oracles. Note that the length of a
counterexample is always n, since we consider only boolean concepts.

Definition 1. Let Q be a set of queries. A concept class C is polynomial-query
learnable using Q if there exists an algorithm A and a polynomial p(·, ·) such
that, for any positive integers m, n and an unknown target concept c∗ ∈ Cm,n:

1. A gets n as input.
2. A may ask queries in Q.
3. A eventually halts and outputs r ∈ R with µ(r) = c∗.
4. The total query complexity of A is at most p(m, n).

In Section 3, we consider the case where the size m of a target concept is addi-
tionally given to a learner.

3 Good Queries

We introduce a notion of good queries in order to characterize polynomial-query
learnability where the size of a target concept is known to a learner. Intuitively,
a query is good for a set T of concepts, if a certain fraction of T are eliminated
by the query no matter how the answer is returned.

Definition 2. For a concept class T , a query σ and its answer α, we define
Cons(T , σ, α) be the set of concept in T that is consistent with σ and α. That
is,

Cons(T , σ, α) = {h ∈ T | α ∈ h[σ]}.

Definition 3. A query σ is δ-good for a concept class T if for any answer α,

|Cons(T , σ, α)| ≤ (1 − δ)|T |.
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Algorithm Learner1(m, n : positive integers)
Given Q : available queries
begin

H := Cm,n;
while |H| ≥ 2 do

Find a query σ ∈ Q that is 1/q(m, n)-good for H; (∗)
Let α is the answer to the query σ;
H := Cons(H, σ, α)

endwhile;
if |H| = 1 then output the unique hypothesis h in H
else output “Target concept is not in Cm,n”

end.

Fig. 1. Algorithm Learner1, where the size m of a target concept is known.

Theorem 1. Assume the size m of the target concept is known to a learner. A
concept class C is polynomial-query learnable using Q if and only if there exist
polynomials q(·, ·) and p(·, ·) such that for any positive integers m, n and any
T ⊆ Cm,n with |T | ≥ 2, there exists a query σ in Q with ||σ|| ≤ p(m,n) that is
1/q(m,n)-good for T .

Proof. (if part) Let p(·, ·) and q(·, ·) be polynomials such that for any positive
integers m,n and any T ⊆ Cm,n with |T | ≥ 2, there exists a query σ that
is 1/q(m,n)-good for T . We show a learning algorithm using queries in Q in
Figure 1. It is not hard to verify that all procedures in the algorithm, such as
Cons, are computable, since we only deal with boolean concepts.

First we show the correctness of the algorithm. Since H is initialized as Cm,n,
and the target concept c∗ is assumed to be in Cm,n, H contains c∗ before the first
stage. Since c∗ is consistent with any answer returned by the oracles in Q, and
at any stage H is updated so that only inconsistent concepts are eliminated from
H, c∗ is never eliminated. Moreover, whenever |H| ≥ 2, we can find a query that
is 1/q(m,n)-good for H in Q. Thus the output of the algorithm is guaranteed
to be exactly equal to the target concept c∗.

We now show that the total number of queries is O(m · p(m, n)). We denote
the set H at i-th stage of the algorithm by Hi, and l be the number of the stages.
We can show that for any stage i = 1, 2, ..., l − 1,

|Hi| ≤
(

1 − 1
p(m,n)

)
· |Hi−1|,

regardless of the answer from an oracle in Q. Since H0 is initialized as Cm,n, we
have

|Hi| ≤
(

1 − 1
p(m,n)

)i

· |Cm,n|
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for any i. We can show that the right part becomes at most one if i > p(m,n) ·
ln |Cm,n| by simple calculations, which ensures the termination of the algorithm.
Recall that |Cm,n| ≤ (|∆| + 1)m+1 for any m and n, since any concept in Cm,n

is represented by a string over ∆ of length at most m. Since at each stage,
exactly one query is asked to an oracle, the total number of query is O(m ·
p(m,n)). Since the length of each query is at most p(m,n) and the length of each
counterexample returned by oracles is n, the query complexity of the algorithm
is O(m · p(m,n)(p(m,n) + n)), which is a polynomial with respect to m and n.

(only if part) Assume that for any polynomials p(·, ·) and q(·, ·), there exist
positive integers m,n and a set T ⊆ Cm,n with |T | ≥ 2 such that there exists no
query σ that is 1/q(m, n)-good for T . Suppose to the contrary that there exists
a learning algorithm A that exactly identifies any target concept using queries
in Q, whose query complexity is bounded by a polynomial p′(m,n) for any m
and n. Let p(m,n) = p′(m,n) and q(m,n) = 2p′(m, n).

We construct an adversary teacher who answers for each query σ in Q as
follows: If ||σ|| > p(m, n), the teacher may answer arbitrarily, say “Yes”. (Since
the query complexity of A is bounded by p′(m,n) = p(m,n), actually A can
never ask such a query.) If ||σ|| ≤ p(m,n), the teacher answers α such that
|Cons(T , σ, α)| >

(
1 − 1

q(m,n)

)
|T |. By the assumption, there always exists such

a malicious answer. The important point is that for any query σ, its answer α
returned by the teacher contradicts less than 1/q(m,n) fraction of concepts in
T . That is,

|T | − |Cons(T , σ, α)| <
1

q(m, n)
|T |.

Since the query complexity of A is p′(m,n), at most p′(m,n) queries can be
asked to the teacher.

Thus the learner can eliminate less than (p′(m,n)/q(m,n))|T | concepts after
p′(m,n) queries. Since q(m,n) = 2p′(m,n), more than (1/2)|T | concepts in
T are consistent with all the answers. Moreover, since |T | ≥ 2, at least two
distinct concepts from T are consistent with all the answers so far. Since A is
deterministic, the output of A will be incorrect for at least one concept in T ,
which is a contradiction. ⊓⊔

4 Specifying Queries

This section deals with the case where the size m of a target concept is unknown
to a learner. The standard trick to overcome this problem is to guess m incre-
mentally and try to learn: initially let m = 1, and if there is no concept in Cm,n

that is consistent with the answers given by oracles, we double m and repeat.
For some cases, such that the equivalence query is available, or both subset and
superset queries are available, we can apply the trick correctly, since the learner
can confirm the hypothesis is correct or not by asking these queries. The next
definition is an abstraction of the notion.
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Algorithm Learner2 (n : positive integer)
Given Q : available queries
begin

m = 1;
repeat

simulate Learner1(m, n) using Q;
if Learner1 outputs a hypothesis h then

Let Q be a set of specifying queries for h in Cn;
if h is consistent with the answers for all queries in Q then

output h and terminate
m = m ∗ 2

forever
end.

Fig. 2. Algorithm Learner2, where the target size m is unknown

Definition 4. A set Q of queries is called specifying queries for a concept c in
T if the set of consistent concept in T is a singleton of c for any answer. That
is,

{h ∈ T | h[σ] = c[σ] for all σ ∈ Q} = {c}.

For instance, if the equivalence oracle is available, the set {Equ(c)} is a trivial
specifying queries for any c in C. Moreover, if both the superset and subset
oracles are available, the {wSup(c),wSub(c)} is also specifying queries for any
c in C. If the only membership oracle is available, our notion corresponds to the
notion of specifying set [6].

Theorem 2. A concept class C is polynomial-query learnable using Q if and
only if there exist polynomials q(·, ·), p(·, ·) and r(·, ·) such that for any positive
integers m and n, the following two conditions hold:

(1) for any T ⊆ Cm,n with |T | ≥ 2, there exists a query σ in Q with ||σ|| ≤
p(m,n) that is 1/q(m, n)-good for T .

(2) for any concept c ∈ Cn, there exist specifying queries Q ⊆ Q for c in Cn

such that ||Q|| ≤ r(m, n).

Proof. (if part) We show a learning algorithm Learner2 in Fig. 2, assuming
that the two conditions hold. The condition (2) guarantees that the output of
Learner2 is exactly equal to the target concept, while the condition (1) assures
that Learner1 will return a correct hypothesis as soon as m becomes greater
than or equal to the size of the target concept.

(only if part) Assume that the concept class C is polynomial-query learnable
by a learning algorithm A using queries in Q. We have only to show the condi-
tion (2), since Theorem 1 implies the condition (1). Let n > 0 and c ∈ Cn be
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arbitrarily fixed. Let Q be the set of queries asked by A when the target concept
is c. We can verify that Q is specifying queries, since the output of A is always
equal to the target concept c. Since the size of Q is bounded by a polynomial,
the condition holds. ⊓⊔

Let us notice that the above theorem uniformly gives complete characteriza-
tions of boolean concept classes that are polynomial-query learnable for each of
all possible combinations of the queries such as membership, equivalence, super-
set, subset, disjointness and exhaustiveness queries, and their weak versions.

Moreover, as a special case, we get the characterization of learning using
equivalence queries alone in terms of the approximate fingerprint property. We
say that a concept class C has an approximate fingerprint property if for any
polynomials p(·, ·) and q(·, ·), there exist positive integers m, n and a set T ⊆
Cm,n with |T | ≥ 2 such that for any concept h ∈ Cp(m,n),n, we have |{c ∈ T |
h(w) = c(w)}| < 1

q(m,n) |T | for some w ∈ Σn. Since equivalence queries contain
a trivial single specifying query for each concept, we get the following result.

Corollary 1 ([2, 4]). A concept class C is polynomial-query learnable using
equivalence queries if and only if C does not have an approximate fingerprint
property.

5 Conclusion

We have shown uniform characterizations of the polynomial-query learnabilities
using each of any combinations of all queries, such as membership, equivalence,
superset queries, etc. Our results reveal that the polynomial-query learnability
using a set of oracles is equivalent to the existence of a good query to the oracles
which eliminate a certain fraction of any hypothesis space. This is quite intuitive.

In this paper, we only dealt with boolean concepts. We will generalize our
results to treat general concepts in future works. Moreover, it is also interesting to
investigate the computational complexity of the learning task for honest concept
classes with polynomial query-complexity, in the similar way as shown by Köbler
and Lindner [8], where they showed that Σp

2 oracles are sufficient for the learning
using each of three possible combinations of membership and equivalence queries.
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