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Abstract. We consider the problem of discovering the optimal pair of
substring patterns with bounded distance α, from a given set S of strings.
We study two kinds of pattern classes, one is in form p ∧α q that are
interpreted as cooperative patterns within α distance, and the other is
in form p ∧α ¬q representing competing patterns, with respect to S. We
show an efficient algorithm to find the optimal pair of patterns in O(N2)
time using O(N) space. We also present an O(m2N2) time and O(m2N)
space solution to a more difficult version of the optimal pattern pair
discovery problem, where m denotes the number of strings in S.

1 Introduction

Pattern discovery is an intensively studied sub-area of Discovery Science. A large
amount of effort was paid to devising efficient algorithms to extract interesting,
useful, and even surprising substring patterns from massive string datasets such
as biological sequences [1, 2]. Then this research has been extended to more
complicated but very expressive pattern classes such as subsequence patterns [3,
4], episode patterns [5, 6], VLDC patterns [7] and their variations [8].

Another interesting and challenging direction of this research is discovery
of optimal pattern pairs, whereas the above-mentioned algorithms are only for
finding optimal single patterns. Very recently, in [9] we developed an efficient
O(N2) time algorithm for finding optimal pairs of substring patterns combined
with any Boolean functions such as ∧ (AND), ∨ (OR) and ¬ (NOT), where N
denotes the total string length in the input dataset. For instance, the algorithm
allows to find pattern pairs in form p ∧ q, which can be interpreted as two
sequences with cooperative functions. Some developments have been made for
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finding cooperative pattern pairs with a certain distance α, denoted, for now, by
p ∧α q, in terms of structured motifs [10, 11] and proximity patterns [12, 13].

This paper extends special cases in the work of [9] by producing a generic
algorithm to find the optimal pairs of cooperative patterns in form p ∧α q, and
competing patterns in form p ∧α ¬q. We develop a very efficient algorithm that
runs inO(N2) time using onlyO(N) space for any given threshold parameter α ≥
0, hence not increasing the asymptotic complexity of [9] which does not deal with
any bounded distance between two patterns. The pattern pairs discovered by
our algorithm are optimal in that they are guaranteed to be the highest scoring
pair of patterns with respect to a given scoring function. Our algorithm can be
adjusted to handle several common problem formulations of pattern discovery,
for example, pattern discovery from positive and negative sequence sets [1, 14,
8, 15], as well as the discovery of patterns that correlate with a given numeric
attribute (e.g. gene expression level) assigned to the sequences [16–18,2, 19].

The efficiency of our algorithm comes from the uses of helpful data struc-
tures, suffix trees [20] and sparse suffix trees [21, 22]. We also present an efficient
implementation that uses suffix arrays and lcp arrays [23] to simulate bottom-up
traversals on suffix trees and sparse suffix trees.

Comparison to Related Works. Marsan and Sagot [10] gave an algorithm
which is limited to finding pattern pairs in form p ∧α q. Although the time
complexity is claimed to be O(Nm), where m denotes the number of strings in
the dataset, a significant difference is that the length of each pattern is fixed
and is regarded as a constant, whereas our algorithm does not impose such a
restriction. Arimura et al. [12, 13] presented an algorithm to find the optimal
(α, d)-proximity pattern that can be interpreted into a sequence p1 ∧α · · · ∧α pd

of d patterns with bounded distance α. Although the expected running time
of their algorithm is O(αd−1N(logN)d), the worst case running time is still
O(αdNd+1 logN). Since in our case d = 2, it turns out to be O(α2N3 logN)
which is rather bad compared to our O(N2) time complexity. In addition, it is
quite easy to extend our algorithm to finding (α, d)-proximity pattern in O(Nd)
time using only O(N) space. Since the algorithm of [13] consumes O(dN) space,
our algorithm improves both time and space for extracting proximity patterns.
On the other hand, an algorithm to discover pattern pairs in form p ∧α ¬q was
given recently in [24], in terms of missing patterns. As the algorithm performs in
O(n2) time using O(n) space for a single input string of length n, our algorithm
generalizes it for a set of strings with the same asymptotic complexity.

None of the above previous algorithms considers the fact that if one pattern
of pair p ∧α q is very long, its ending position may be outside of the region
specified by α, or for pattern pair in form p ∧α ¬q, it may invade the α-region
with respect to some other occurrence of p. Since such pattern pairs seem to
be of less interest for some applications, we design a version of our algorithm
which permits us to find pattern pair p∧α q such that both p and q occur strictly
within the α-region of each occurrence of p, and pattern pair p ∧α ¬q such that
q is strictly outside the α-region of any occurrences of p. This version of our
algorithm runs in O(m2N2) time using O(m2N) space.
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Fig. 1. From pattern p in string s, q1 begins within α-distance, q2 begins outside α-
distance, q3 occurs within α-distance, and q4 occurs outside α-distance.

2 Preliminaries

2.1 Notation

Let Σ be a finite alphabet. An element of Σ∗ is called a string. Strings x, y, and
z are said to be a prefix, substring, and suffix of string w = xyz, respectively.
The length of a string w is denoted by |w|. The empty string is denoted by ε,
that is, |ε| = 0. The i-th character of a string w is denoted by w[i] for 1 ≤ i ≤ n,
and the substring of a string w that begins at position i and ends at position j is
denoted by w[i :j] for 1 ≤ i ≤ j ≤ n. For any set S, let |S| denote the cardinality
of S. Let [i, j] denote the set of consecutive integers i, i+ 1, . . . , j.

For strings p and s, let Beg(p, s) denote the set of all beginning positions of
p in s, e.g.,

Beg(p, s) = {i | s[i : i+ |p| − 1] = p}.
Also, let Cov(p, s) denote the set of all positions in s covered by p, e.g.,

Cov(p, s) = ∪j∈Beg(p,s)[j, j + |p| − 1].

For strings p, s and threshold value α ≥ 0, let us define set D(p, s, α) and of
integers by

D(p, s, α) = (∪j∈Beg(p,s)[j − α, j + α]) ∩ [1, |s|].
That is, D(p, s, α) consists of the regions inside s that are closer than or equal
to α positions from the beginning position of some occurrence of p. The shaded
regions illustrated in Fig. 1 are the regions in D(p, s, α).

If |Beg(q, s) ∩ D(p, s, α)| ≥ 1, that is, if one or more occurrences of q in s
are within α positions from at least one occurrence of p in s, then q is said to
begin within α-distance from p, and otherwise begin outside α-distance. Similarly,
if |Cov(q, s) ∩ D(p, s, α)| ≥ 1, that is, if there is at least one overlap between
an occurrence of p and a region in D(p, s, α), then q is said to occur within
α-distance from p, and otherwise occur outside α-distance. See also Fig. 1.

Let ψ(p, s) be a Boolean matching function that has the value true if p is
a substring of s, and false otherwise. We define 〈p, F, q〉 as a Boolean pattern
pair (or simply pattern pair) which consists of two patterns p, q and a Boolean
function F : {true, false} × {true, false} → {true, false}. We say that a
single pattern or pattern pair π matches string s if and only if ψ(π, s) = true.

For α-distance, we define four Boolean matching functions F1, F2, F3, and F4

as follows: F1 is such that ψ(〈p, F1, q〉, s) = true if ψ(p, s) = true and q begins
within α-distance from p, and ψ(〈p, F1, q〉, s) = false otherwise. F2 is such that
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ψ(〈p, F2, q〉, s) = true if ψ(p, s) = true and q begins outside α-distance from
p, and ψ(〈p, F2, q〉, s) = false otherwise. F3 is such that ψ(〈p, F3, q〉, s) = true
if ψ(p, s) = true and q occurs within α-distance from p, and ψ(〈p, F3, q〉, s) =
false otherwise. F4 is such that ψ(〈p, F4, q〉, s) = true if ψ(p, s) = true and q
occurs outside α-distance from p, and ψ(〈p, F4, q〉, s) = false otherwise. In the
sequel, let us write as:

〈p, F1, q〉 = p ∧b(α) q, 〈p, F2, q〉 = p ∧b(α) ¬q,
〈p, F3, q〉 = p ∧c(α) q, 〈p, F4, q〉 = p ∧c(α) ¬q.

Note that, by setting α ≥ |s|, we always have D(p, s, α) = [1, |s|]. Therefore,
the above pattern pairs are generalizations of pattern pairs such as (p ∧ q) and
(p ∧ ¬q) that are considered in our previous work [9].

Given a set S = {s1, . . . , sm} of strings, let M (π, S) denote the subset of
strings in S that π matches, that is,

M (π, S) = {si ∈ S | ψ(π, si) = true}.
We suppose that each si ∈ S is associated with a numeric attribute value ri. For
a single pattern or pattern pair π, let

∑
M (π,S) ri denote the sum of ri over all

si in S such that ψ(π, si) = true, that is,
∑

M (π,S)

ri =
∑

si∈S

(ri | ψ(π, si) = true).

As S is usually fixed in our case, we shall omit S where possible and let M (π)
and

∑
M (π) ri be a shorthand for M (π, S) and

∑
M (π,S) ri, respectively.

2.2 Problem Definition

In general, the problem of finding a good pattern from a given set S of strings
refers to finding a pattern π that maximizes some suitable scoring function score
with respect to the strings in S. We concentrate on score that takes parameters
of type |M (π)| and

∑
M (π) ri, and assume that the score value computation itself

can be done in constant time if the required parameter values are known. We
formulate the pattern pair discovery problem as follows:

Problem 1. Given a set S = {s1, . . . , sm} of m strings, where each string si is
assigned a numeric attribute value ri, a threshold parameter α ≥ 0, a scor-
ing function score : R × R → R, and a Boolean Function F ∈ {F1, . . . , F4},
find the Boolean pattern pair π ∈ {〈p, F, q〉 | p, q ∈ Σ∗} that maximizes
score(|M (π)|,∑M (π) ri).

The specific choice of the scoring function depends highly on the particular
application, for example, as follows: The positive/negative sequence set discrim-
ination problem [1, 14, 8, 15] is such that, given two disjoint sets of sequences S1

and S2, where sequences in S1 (the positive set) are known to have some biolog-
ical function, while the sequences in S2 (the negative set) are known not to, find
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pattern pairs which match more sequences in S1, and less in S2. Common scoring
functions that are used in this situation include the entropy information gain,
the Gini index, and the chi-square statistic, which all are essentially functions of
|M (π, S1)|, |M (π, S2)|, |S1| and |S2|. The correlated patterns problem [16–18,2,
19] is such that we are given a set S of sequences, with a numeric attribute value
ri associated with each sequence si ∈ S, and the task is to find pattern pairs
whose occurrences in the sequences correlate with their numeric attributes. In
this framework, scoring functions such as mean squared error, which is a function
of |M (π)| and

∑
M (π) ri, can be used.

2.3 Data Structures

We intensively use the following data structures in our algorithms. The efficiency
of our algorithms, in both time and space consumptions, comes from the use of
these data structures.

The suffix tree [20] for a string s is a rooted tree whose edges are labeled
with substrings of s, satisfying the following characteristics. For any node v in
the suffix tree, let l(v) denote the string spelled out by concatenating the edge
labels on the path from the root to v. For each leaf v, l(v) is a distinct suffix
of s, and for each suffix in s, there exists such a leaf v. Each leaf v is labeled
with pos(v) = i such that l(v) = s[i : |s|]. Also, each internal node has at least
two children, and the first character of the labels on the edges to its children are
distinct. It is well known that suffix trees can be represented in linear space and
constructed in linear time with respect to the length of the string [20].

The generalized suffix tree (GST) for a set S = {s1, . . . , sm} of strings is
basically the suffix tree for the string s1$1 · · · sm$m, where each $i (1 ≤ i ≤ m)
is a distinct character which does not appear in any of the strings in the set.
However, all paths are ended at the first appearance of any $i, and each leaf is
labeled with idi that specifies the string in S the leaf is associated with. For set
{abab, aabb}, the corresponding GST is shown in Fig. 2. GSTs are also linear
time constructible and can be stored in linear space with respect to the total
length of the strings in the input set [20].

The sparse suffix tree (SST) [21, 22] for a string s is a rooted tree which
represents a subset of the suffixes of s, i.e., a suffix tree of s from which the dead
leaves (and corresponding internal nodes) are removed, where the dead leaves
stand for the leaves that correspond to the suffixes not in the subset. On the
other hand, the leaves existing in the SST are called the living leaves. An SST
can be constructed in linear time by once building the full suffix tree and pruning
dead leaves from it. (Direct construction of SSTs was also considered in [21, 22]
but the pruning approach is sufficient for our purposes.)

The suffix array [23] As for a string s of length n, is a permutation of the
integers 1, . . . , n representing the lexicographic ordering of the suffixes of s. The
value As[i] = j in the array indicates that s[j : n] is the ith suffix in the lex-
icographic ordering. The lcp array for a string s, denoted lcps, is an array of
integers representing the longest common prefix lengths of adjacent suffixes in
the suffix array, that is,
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Fig. 2. The tree is the GST for set {abab, aabb}. Each leaf y is labeled by pos(y) with
respect to the concatenated string s′ = abab$1aabb$2. The left and right arrays are
the suffix and lcp arrays of string s′, respectively.

lcps[i] = max{k | s[As[i− 1] :As[i− 1] + k − 1] = s[As[i] :As[i] + k − 1]}.

Note that each position i in As corresponds to a leaf in the suffix tree of s, and
lcps[i] denotes the length of the path from the root to leaves of positions i − 1
and i for which the labels are equivalent. Fig. 2 shows the suffix array As′ and
the lcp array lcps′ of string s′ = abab$1aabb$2.

Recently, three methods for constructing the suffix array directly from a
string in linear time have been developed [25–27]. The lcp array can be con-
structed from the suffix array also in linear time [28]. It has been shown that
several (and potentially many more) algorithms which utilize the suffix tree
can be implemented very efficiently using the suffix array together with its lcp
array [28, 29]. This paper presents yet another good example for efficient imple-
mentation of an algorithm based conceptually on full and sparse suffix trees, but
uses the suffix and lcp arrays.

The lowest common ancestor lca(x, y) of any two nodes x and y in a tree is
the deepest node which is common to the paths from the root to both of the
nodes. The tree can be pre-processed in linear time to answer the lowest common
ancestor (lca-query) for any given pair of nodes in constant time [30]. In terms
of the suffix array, the lca-query is almost equivalent to a range minimum query
(rm-query) on the lcp array, which, given a pair of positions i and j, rmq(i, j)
returns the position of the minimum element in the sub-array lcp[i : j]. The lcp
array can also be pre-processed in linear time to answer the rm-query in constant
time [30, 31].

In the sequel, we will show a clever implementation of our algorithms which
simulates bottom-up traversals on SGSTs using suffix and lcp arrays. Our algo-
rithms need no explicit prunings of leaves from the SGSTs which means that
the suffix and lcp arrays do not have to be explicitly modified or reconstructed.
Therefore our algorithms are both time and space efficient in practice.
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3 Algorithms

In this section we present our efficient algorithms to solve Problem 1 for Boolean
functions F1, . . . , F4. Let N = |s1$1 · · · sm$m|, where S = {s1, . . . , sm}. The
algorithms calculate scores for all possible pattern pairs, and output a pattern
pair of the highest score.

3.1 Algorithm for Single Patterns

For a single pattern, we need to consider only patterns of form l(v), where v
is a node in the GST for S: If a pattern has a corresponding path that ends
in the middle of an edge of the GST, it will match the same set of strings as
the pattern corresponding to the end node of that same edge, and hence the
score would be the same. Below, we recall the O(N) time algorithm of [9] that
computes

∑
M (l(v)) ri for all single pattern candidates of form l(v). The algorithm

is derived from the technique for solving the color set size problem [32]. Note
that we do not need to consider separately how to compute |M (l(v))|: If we give
each attribute ri the value 1, then

∑
M (l(v)) ri = |M (l(v))|.

For any node v in the GST of S, let LF (v) be the set of all leaves in the
subtree rooted by v, ci(v) be the number of leaves in LF (v) with the label idi,
and ∑

LF (v)

ri =
∑

(ci(v)ri | ψ(l(v), si) = true).

For any such v, ψ(l(v), si) = true for at least one string si. Thus, we have
∑

M (l(v))

ri =
∑

(ri | ψ(l(v), si) = true)

=
∑

LF (v)

ri −
∑

((ci(v) − 1)ri | ψ(l(v), si) = true).

We define the above subtracted sum to be a correction factor, denoted by
corr(l(v), S) =

∑
((ci(v) − 1)ri | ψ(l(v), si) = true). The following recurrence

∑

LF (v)

ri =
∑

(
∑

LF (v′)

ri | v′ is a child of v)

allows us to compute the values
∑

LF (v) ri for all v during a linear time bottom-
up traversal of the GST. Now we need to remove the redundancies, represented
by corr(l(v), S), from

∑
LF (v) ri.

Let I(idi) be the list of all leaves with the label idi in the order they appear
in a depth-first traversal of the tree. Clearly the lists I(idi) can be constructed in
linear time for all labels idi. We note four properties in the following proposition:

Proposition 1. For the GST of S, the following properties hold:

(1) The leaves in LF (v) with the label idi form a continuous interval of length
ci(v) in the list I(idi).
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(2) If ci(v) > 0, a length-ci(v) interval in I(idi) contains ci(v) − 1 adjacent
(overlapping) leaf pairs.

(3) If x, y ∈ LF (v), the node lca(x, y) belongs to the subtree rooted by v.
(4) For any si ∈ S, ψ(l(v), si) = true if and only if there is a leaf x ∈ LF (v)

with the label idi.

We initialize each node v to have a correction value 0. Then, for each adjacent
leaf pair x, y in the list I(idi), we add the value ri into the correction value of
the node lca(x, y). It follows from properties (1) - (3) of Proposition 1, that now
the sum of the correction values in the nodes of the subtree rooted by v equals
(ci(v)−1)ri. After repeating the process for each of the lists I(idi), property (4)
tells that the preceding total sum of the correction values in the subtree rooted
by v becomes

∑
((ci(v) − 1)ri | ψ(l(v), si) = true) = corr(l(v), S).

Now a single linear time bottom-up traversal of the tree enables us to cumulate
the correction values corr(l(v), S) from the subtrees into each node v, and at
the same time we may record the final values

∑
M (l(v)) ri.

The preceding process involves a constant number of linear time traversals
of the tree, as well as a linear number of constant time lca-queries (after a linear
time preprocessing). Hence the values

∑
M (l(v)) ri are computed in linear time.

3.2 Algorithms for Pattern Pairs with α-Distance

The algorithm described in Section 3.1 permits us to compute
∑

M (l(v)) ri in
O(N) time. In this section, we concentrate on how to compute the values∑

M (π) ri for various types of pattern pair π with bounded distance α. In so
doing, we go over the O(N) choices for the first pattern, and for each fixed pat-
tern l(v1), we compute

∑
M (π) ri where π consists of l(v1) and second pattern

candidate l(v). The result of this section is summarized in the following theorem:

Theorem 1. Problem 1 is solvable in O(N2) time using O(N) space for F ∈
{F1, F2}, and O(m2N2) time and O(m2N) space for F ∈ {F3, F4}.
Below, we will give the details of our algorithm for each type of pattern pair.

For Pattern Pairs in Form p∧b(α)q. LetD(l(v1), S, α)=∪si∈SD(l(v1), si, α).
It is not difficult to see that D(l(v1), S, α) is O(N) time constructible (see Theo-
rem 9 of [24]). We then mark as ‘living’ every leaf of the GST whose position be-
longs toD(l(v1), S, α). This aims at conceptually constructing the sparse general-
ized suffix tree (SGST) for the subset of suffixes corresponding to D(l(v1), S, α),
and this can be done in O(N) time. Then, we additionally label each string
si ∈ S, and the corresponding leaves in the SGST, with the Boolean value
ψ(l(v1), si). This can be done in O(N) time. Now the trick is to cumulate the
sums and correction factors only for the nodes existing in the SGST, and sepa-
rately for different values of the additional label. The end result is that we will



40 Shunsuke Inenaga et al.

obtain the values
∑

M (π) ri =
∑

(ri | ψ(π, si) = true) in linear time, where π
denotes the pattern pair l(v1)∧b(α) l(v) for all nodes v in the conceptual SGST.
Since there are only O(N) candidates for l(v1), the total time complexity is
O(N2). The space requirement is O(N), since we repeatedly use the same GST
for S and the additional information storage is also linear in N at each phase of
the algorithm.

For Pattern Pairs in Form p ∧b(α) ¬q. Let us denote any pattern pair in
form p ∧b(α) ¬q by π. For the pattern pairs of this form, it stands that

∑

M (π)

ri =
∑

(ri | ψ(π, si) = true)

=
∑

(ri | ψ(p, s) = true) −
∑

M (π)

ri,

where π denotes p∧b(α) q. For each fixed first pattern l(v1),
∑

M (π) ri and
∑

(ri |
ψ(l(v1), s) = true) can be computed in O(N) time, and hence

∑
M (π) ri can

be computed in O(N) time as well. Since we have O(N) choices for the first
pattern, the total time complexity is O(N2), and the space complexity is O(N).

For Pattern Pairs in Form p ∧c(α) q. There are two following types of
patterns that have to be considered as candidates for the second pattern q:

(1) pattern q which has an occurrence beginning at some position in
D(l(v1), S, α).

(2) pattern q which has an occurrence beginning at some position in [1, N ] −
D(l(v1), S, α), but overlapping with some positions in D(l(v1), S, α).

Now, we separately treat these two kinds of patterns. In so doing, we con-
sider two SGSTs, one consists only of the leaves x such that pos(x) ∈ D(l(v1),
S, α), and the other consists only of the leaves y such that pos(y) ∈ [1, N ] −
D(l(v1), S, α). Denote these by SGST1 and SGST2, respectively.

For integer i with 1 ≤ i ≤ m, let Ni = |s1$1 · · · si$i|. For any leaf y of SGST2

with idi, we define len(y) as follows:

len(y) =

{
Ni−1 + h− α− pos(y) if pos(y) < Ni−1 + k − α,

Ni − pos(y) otherwise,

where h denotes the minimum element of Beg(l(v1), si) satisfying Ni−1 + h >
pos(y), and k = max(Beg(l(v1), si)). Fig. 3 illustrates len(y) with respect to
si and l(v1). Computing len(y) can be done in constant time for each leaf y,
after a linear time preprocessing of scanning D(l(v1), S, α) from right to left.
For any node v of SGST2, let SLFi(v) denote the list of all leaves that are in
the subtree of SGST2 rooted at v and are labeled with idi. Then, we compute
leni(v) = miny∈SLFi(v)(len(y)) for every internal node v in SGST2. For all nodes
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S1 $1 Si $i

l(v1) l(v1)

pos(y) pos(y�)

α α α αlen(y) len(y�)

$m.......... ..........

Ni-1

Fig. 3. For two leaves y, y′ of SGST2, len(y) and len(y′) with respect to string si ∈ S
and the first pattern l(v1).

v and i = 1, . . . ,m, leni(v) can be computed inO(mN) time using O(mN) space.
Notice that only nodes v such that for some i, leni(v) < |l(v)| in SGST2, can
give candidates for the second pattern, since the occurrences of the substrings
represented by the other nodes are completely outside D(l(v1), S, α).

Consider an internal node v′ and its parent node v in SGST2. Assume the
length of the edge between v and v′ is more than one. Suppose the subtree of
SGST2 rooted at v′ contains a leaf with idi. Now consider an ‘implicit’ node
t that is on the edge from v to v′. Then, even if leni(v′) < |l(v′)|, it might
stand that leni(t) ≥ |l(t)| since leni(t) = leni(v′) and |l(t)| < |l(v′)| always
hold. Note that in this case we have to take into account such implicit node t
for the second pattern candidate, independently from v′. On the other hand, if
we locate t so that leni(t) = |l(t)|, we will have leni(t′) > |l(t′)| for any implicit
node t′ upper than t in the edge, and will have leni(t′′) < |l(t′′)| for any implicit
node t′′ lower than t in the edge. Thus this single choice of t suffices. Since the
subtree can contain at most m distinct id’s, each edge can have at most m such
implicit nodes on it, and because SGST2 has O(N) edges, the total number
of the implicit nodes we have to treat becomes O(mN). What still remains is
how to locate these implicit nodes in O(mN) time. This is actually feasible by
using the so-called suffix links and the canonization technique introduced in [33].
For each of these implicit nodes we have to maintain m number of information
as mentioned in the above paragraph, and hence in total we are here required
O(m2N) time and space.

Cumulating the sums and correction factors is done in two rounds: For sim-
plicity, let us denote pattern pair l(v1)∧c(α) l(v) by π. First we traverse SGST1

and for each encountered node v, calculate the value
∑

M (π),1 ri and store it
in v. Then, we traverse SGST2 and for each encountered node w calculate
the value

∑
M (π),2 ri if necessary, while checking whether leni(w) < |l(w)| or

not, and store it in w but separately from
∑

M (π),1 ri. Then, the final value
∑

M (π) ri =
∑

M (π),1 ri +
∑

M (π),2 ri. Since we go over O(N) choices for the first
pattern, the resulting algorithm requires O(m2N2) time and O(m2N) space.

For Pattern Pairs in Form p ∧c(α) ¬q. As similar arguments to pattern
pairs in form p ∧b(α) ¬q hold, it can also be done O(m2N2) time and O(m2N)
space.
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3.3 Implementation

We show an efficient implementation of the algorithms for pattern pairs in form
p∧b(α) q and p∧b(α) ¬q, both run in O(N2) time using O(N) space as previously
explained. We further modify the implementation of the algorithm in [9], which
is an extension of the Substring Statistics algorithm in [28], that uses the suffix
and lcp arrays to simulate the bottom up traversals of the generalized suffix tree.
We note that the simulation does not increase the asymptotic complexity of the
algorithm, but rather it is expected to increase the efficiency of the traversal, as
confirmed in previous works [34, 28, 29].

Fig. 4 shows a pseudo-code for solving the Color Set Size problem with pruned
edges using a suffix array, which is used in the algorithm of the previous sub-
section. There are two differences from [9]: (1) the correction factors are set to
lca(i, j) of consecutive ‘living’ leaves i, j (i < j) corresponding to the same string.
Since the simulation via suffix arrays does not explicitly construct all internal
nodes of the suffix tree, we use another array CF to hold the correction factors.
The correction factor for these leaves i, j is summed into CF [rmq(i+ 1, j)]. (2)
‘Dead’ leaves are ignored in the bottom-up traversal. This can be done in several
ways, the simplest which assigns 0 to the weights of each ‘dead’ leaf. However,
although the worst-case time complexity remains the same, such an algorithm
would report redundant internal nodes that only have at most a single ‘living’ leaf
in its subtree. A more complete pruning can be achieved, as shown in the pseudo-
code, in the following way: for any consecutive ‘living’ leaves i, j (i < j) in the
suffix array, we add up all CF [k] for i < k ≤ j which is then added to the node
corresponding to lca(i, j). The correctness of this algorithm can be confirmed
by the following argument: For a given correction factor CF [k] (i < k ≤ j),
since the query result came from consecutive ‘living’ leaves of the same string,
they must have been from leaves i′, j′, such that i′ ≤ i and j ≤ j′. This
means that lcp[k] = lcp[rmq(i′ + 1, j′)] ≤ lcp[rmq(i + 1, j)] ≤ lcp[k]. Therefore
lcp[rmq(i′ + 1, j′)] = lcp[rmq(i+ 1, j)] = lcp[k], and lca(i′, j′) = lca(i, j), which
shows that CF [k] should be summed into the node with depth lcp[rmq(i+1, j)].

4 Computational Experiments

We tested the effectiveness of our algorithm using the two sets of predicted
3’UTR processing site sequences provided in [35], which are constructed based
on the microarray experiments in [36] that measure the degradation rate of yeast
mRNA. One set Sf consists of 393 sequences which have a fast degradation rate
(t1/2 < 10 minutes), while the other set Ss consists of 379 predicted 3’UTR
processing site sequences which have a slow degradation rate (t1/2 > 50 minutes).
Each sequence is 100 nt long, and the total length of the sequences is 77, 200
nt. For the scoring function, we used the chi-squared statistic, calculated by
(|Sf |+|Ss|)(tp∗tn−fp∗fn)2/(tp+ fn)(tp + fp)(tn + fp)(tn + fn) where tp =
|M(π, Sf )|, fp = |Sf | − tp, tn = |Ss| − fn, and fn = |M(π, Ss)|.

For b(α) and 1 ≤ α ≤ 30, the best score was 48.3 (p < 10−11) for the pair
AUA∧b(10)¬UGUA, which matched 159/393 and 248/379 fast and slowly degrading
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1 Let Stack = {(0,−1, 0)} be the stack;

2 cc := 0; iplus1 = 0;
3 foreach j = 1, . . . , n + 1 do:

4 cc := cc + CF [j];
5 (L, H,C) = top(Stack);
6 if j is a living leaf

7 (Lj , Hj , Cj) := (j, lcp[rmq(iplus1, j)], 0);
8 while (H > Hj) do:

9 (L, H,C) := pop(Stack);
10 report (L, H,C); /* s[A[L] : A[L] + H − 1] has count C */

11 Cj := C + Cj;

12 (L, H,C) := top(Stack);
13 if (H < Hj) then

14 push((Lj , Hj , Cj + cc), Stack);
15 else /* H = Hj */

16 (L, H) := pop(Stack);
17 push((L, H,C + Cj + cc), Stack);
18 push((j, N − A[j] + 1, 1), Stack);
19 cc := 0; iplus1 = j + 1;

Fig. 4. Core of the algorithm for solving the Color Set Size problem with pruned edges
using a suffix array. We assume each leaf (position in array) has been labeled ‘dead’
or ‘living’, and the correction factors for ‘living’ leaves are stored in the array CF . A
node in the suffix tree together with |M (l(v))| is represented by a three-tuple (L,H,C).

sequences respectively, meaning that this pattern pair is more frequent in the
slowly degrading sequences. This result is similar to the best pattern of the form
p ∧ ¬q obtained in [9], which was UGUA ∧ ¬AUCC with score 33.9 (240/393 and
152/379 (p < 10−8)), appearing more frequently in the fast degrading sequences.
In fact, UGUA is known as a binding site of the PUF protein family which plays
important roles in mRNA regulation [37]. Of the 268/393 and 190/379 sequences
that contain both AUA and UGUA, their distances were farther than α = 10 in only
37/268 of fast degrading sequences, while the number was 67/190 for slowly
degrading sequences. This could mean that AUA is another sequence element
whose distance from UGUA influences how efficiently UGUA functions.

We did not observe any notable difference in computational time compared
to the algorithm in [9], that the marking of each leaf as ‘dead’ or ‘living’ could
cause. For a given value of α, computation took around 2140 seconds for the
above dataset on a PC with Xeon 3 GHz Processor running Linux.

5 Concluding Remarks

In this paper we studied the problem of finding the optimal pair of substring
patterns p, q with bounded distance α, from a given set S of strings, which is
an extension of the problem studied in [9]. We developed an efficient algorithm
that finds the best pair of cooperative patterns in form p ∧b(α) q, and competing
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s
p pq2 q1q3q4

α α α α

q3q1 q4 q2

Fig. 5. From pattern p in string s, q1 begins within α-gap, q2 begins outside α-gap, q3

occurs within α-gap, and q4 occurs outside α-gap.

patterns in form p ∧b(α) ¬q, which performs in O(N2) time using O(N) space,
where N is the total length of the strings in S. For the more difficult versions of
the problem, referred to finding p ∧c(α) q and p ∧c(α) ¬q, we gave an algorithm
running in O(m2N2) time and O(m2N) space, where m = |S|. An interesting
open problem is if the m-factors can be removed from the complexities.

Any pairs output from our algorithms are guaranteed to be optimal in the
pattern classes, in the sense that they give the highest score due to the scor-
ing function. Our algorithms are adapted to various applications such as the
positive/negative sequence set discrimination problem for which the entropy in-
formation gain, the Gini index, and the chi-square statistic are commonly used
as the scoring function, and the correlated patterns problem for which the mean
squared error can be used.

It is possible to use our algorithms for bounded gaps α (see Fig. 5). Since the
ending positions of the first patterns have to be considered in this case, we will
naturally have O(N2) choices for the first pattern, and this fact suggests the use
of suffix tries rather than suffix trees for the first patterns. Still, there are only
O(N) choices for the second pattern, and thus for the pattern pairs with respect
to b(α), we can modify our algorithm to solve the problems in O(N3) time using
O(N2) space. We remark that for c(α), a modified algorithm finds the optimal
pattern pair in O(m2N3) time using O(N2 +m2N) space.
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