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Abstract. A variable-length-don’t-care pattern (VLDC pattern) is an el-
ement of set Π = (Σ ∪{�})∗, where Σ is an alphabet and � is a wildcard
matching any string in Σ∗. Given two sets of strings, we consider the
problem of finding the VLDC pattern that is the most common to one,
and the least common to the other. We present a practical algorithm
to find such best VLDC patterns exactly, powerfully sped up by prun-
ing heuristics. We introduce two versions of our algorithm: one employs
a pattern matching machine (PMM) whereas the other does an index
structure called the Wildcard Directed Acyclic Word Graph (WDAWG).
In addition, we consider a more generalized problem of finding the best
pair 〈q, k〉, where k is the window size that specifies the length of an oc-
currence of the VLDC pattern q matching a string w. We present three
algorithms solving this problem with pruning heuristics, using the dy-
namic programming (DP), PMMs and WDAWGs, respectively. Although
the two problems are NP-hard, we experimentally show that our algo-
rithms run remarkably fast.

1 Introduction

A vast amount of data is available today, and discovering useful rules from those
data is quite important. Very commonly, information is stored and manipulated
as strings. In the context of strings, rules are patterns. Given two sets of strings,
often referred to as positive examples and negative examples, it is desired to find
the pattern that is the most common to the former and the least common to the
latter. This is a critical task in Discovery Science as well as in Machine Learning.

A string y is said to be a substring of a string w if there exist strings x, z ∈ Σ∗

such that w = xyz. Substring patterns are possibly the most basic patterns to
be used for the separation of two sets S, T of strings. Hirao et al. [8] stated that
such best substrings can be found in linear time by constructing the suffix tree
for S ∪ T [12,21,7]. They also considered subsequence patterns as rules for sepa-
ration. A subsequence pattern p is said to match a string w if p can be obtained
by removing zero or more characters from w [2]. Against the fact that finding
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the best subsequence patterns to separate given two sets of strings is NP-hard,
they proposed an algorithm to solve the problem with practically reasonable
performance. More recently, an efficient algorithm to discover the best episode
patterns was proposed in [9]. An episode pattern 〈p, k〉, where p is a string and
k is an integer, is said to match a string w if p is a subsequence of a substring
u of w with |u| ≤ k [14,6,20]. The problem to find the best episode patterns is
also known to be NP-hard.

In this paper, we focus on a pattern containing a wildcard that matches any
string. The wildcard is called a variable length don’t care and is denoted by �.
A variable-length-don’t-care pattern (VLDC pattern) is an element of Π = (Σ ∪
{�})∗, and is also sometimes called a regular pattern as in [19]. When a, b ∈ Σ,
ab�bb�ba is an example of a VLDC pattern and, for instance, matches string
abbbbaaaba with the first and second �’s replaced by b and aaa, respectively. The
language L(q) of a pattern q ∈ Π is the set of strings obtained by replacing �’s
in q with arbitrary strings. Namely, L(ab�bb�ba) = {abubbvba | u, v ∈ Σ∗}. The
class of this language corresponds to a class of the pattern languages proposed
by Angluin [1]. VLDC patterns are generalization of substring patterns and
subsequence patterns. For instance, consider a pattern string abc ∈ Σ∗. The
substring matching problem corresponding to the pattern is given by the VLDC
pattern �abc�. Also, the VLDC pattern �a�b�c� leads to the subsequence pattern
matching problem.

This paper is devoted to introducing a practical algorithm to discover the
best VLDC pattern to distinguish two given sets S, T of strings. To speed up
the algorithm, firstly we restrict the search space by means of pruning heuristics
inspired by Morishita and Sese [16]. Secondly, we accelerate the matching phase
of the algorithm in two ways, as follows: In [11], we introduced an index structure
called the Wildcard Directed Acyclic Word Graph (WDAWG). The WDAWG for
a text string w recognizes all possible VLDC patterns matching w, and thus
enables us to examine whether a given VLDC pattern q matches w in O(|q|)
time. More recently, a space-economical version of its construction algorithm
was presented in [10]. We use WDAWGs for quick matching of VLDC patterns.
Another approach is to preprocess a given VLDC pattern q, building a DFA
accepting L(q). We use it as a pattern matching machine (PMM) which runs
over a text string w and determines whether or not q matches w in O(|w|) time.

We furthermore propose a generalization of the VLDC pattern matching
problem. That is, we introduce an integer k called the window size which specifies
the length of an occurrence of a VLDC pattern that matches w ∈ Σ∗. The
introduction of k leads to the generalization of the episode patterns as well.
Specifying the length of an occurrence of a VLDC pattern is of great significance
especially when classifying long strings over a small alphabet, since a short VLDC
pattern surely matches most long strings. Therefore, for example, when two sets
of biological sequences are given to be separated, this approach is adequate and
promising. Pruning heuristic to speed up our algorithm finding the best pair
〈q, k〉 is also presented. We propose three approaches effective in computing the
best pair, using the dynamic programming, PMMs, and WDAWGs, respectively.
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We declare that this work generalizes and outperforms the ones accomplished
in [8,9], since it is capable of discovering more advanced and useful patterns. In
fact, we show some experimental results that convince us of the accuracy of our
algorithms as well as their fast performances. Moreover, we are now installing
our algorithms into the core of the decision tree generator in BONSAI [17], a
powerful machine discovery system.

We here only give basic ideas for our pruning heuristics, that are rather
straightforward extensions of those developed in our previous work [8,9]. Inter-
ested readers are invited to refer to our survey report [18].

2 Finding the Best Patterns to Separate Sets of Strings

2.1 Notation

Let N be the set of integers. Let Σ be a finite alphabet. An element of Σ∗ is
called a string. The length of a string w is denoted by |w|. The empty string is
denoted by ε, that is, |ε| = 0. Strings x, y, and z are said to be a prefix, substring,
and suffix of string w = xyz, respectively. The substring of a string w that begins
at position i and ends at position j is denoted by w[i : j] for 1 ≤ i ≤ j ≤ |w|.
For convenience, let w[i : j] = ε for j < i. The reversal of a string w is denoted
by wR, that is, wR = w[n]w[n − 1] . . . w[1] where n = |w|.

For a set S ⊆ Σ∗ of strings, the number of strings in S is denoted by |S| and
the total length of strings in S is denoted by ‖S‖.

Let Π = (Σ ∪ {�})∗, where � is a variable length don’t care matching any
string in Σ∗. An element q ∈ Π is a variable-length-don’t-care pattern (VLDC
pattern). For example, �a�ab�ba� is a VLDC pattern with a, b ∈ Σ. We say
a VLDC pattern q matches a string w if w can be obtained by replacing �’s
in q with some strings. In the running example, the VLDC-pattern �a�ab�ba�
matches string abababbbaa with the �’s replaced by ab, b, b and a, respectively.
For any q ∈ Π, |q| denotes the sum of numbers of characters and �’s in q.

2.2 Finding the Best VLDC Patterns

We write as q  u if u can be obtained by replacing �’s in q with arbitrary
elements in Π.
Definition 1. For a VLDC pattern q ∈ Π, we define L(q) by

L(q) = {w ∈ Σ∗ | q  w}.
According to the above definition, we have the following lemma.

Lemma 1. For any q, u ∈ Π, if q  u, then L(q) ⊇ L(u).
Let good be a function from Σ∗ × 2Σ∗ × 2Σ∗

to the set of real numbers. In
what follows, we formulate the problem to solve.
Definition 2 (Finding the best VLDC pattern according to good).
Input: Two sets S, T ⊆ Σ∗ of strings.
Output: A VLDC pattern q ∈ Π that maximizes the score of good(q, S, T ).
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Intuitively, the score of good(q, S, T ) expresses the “goodness” of q in the sense
of distinguishing S from T . The definition of good varies with applications. For
examples, the χ2 values, entropy information gain, and gini index can be used.
Essentially, these statistical measures are defined by the numbers of strings that
satisfy the rule specified by q. Any of the above-mentioned measures can be
expressed by the following form:

good(q, S, T ) = f(xq, yq, |S|, |T |), where
xq = |S ∩ L(q)|,
yq = |T ∩ L(q)|.

When S and T are fixed, |S| and |T | are regarded as constants. On this assump-
tion, we abbreviate the notation of the function to f(x, y) in the sequel.

We say that a function f from [0, xmax] × [0, ymax] to real numbers is conic if

– for any 0 ≤ y ≤ ymax, there exists an x1 such that
• f(x, y) ≥ f(x′, y) for any 0 ≤ x < x′ ≤ x1, and
• f(x, y) ≤ f(x′, y) for any x1 ≤ x < x′ ≤ xmax.

– for any 0 ≤ x ≤ xmax, there exists a y1 such that
• f(x, y) ≥ f(x, y′) for any 0 ≤ y < y′ ≤ y1, and
• f(x, y) ≤ f(x, y′) for any y1 ≤ y < y′ ≤ ymax.

In the sequel, we assume that f is conic and can be evaluated in constant time.
The optimization problem to be tackled follows.

Definition 3 (Finding the best VLDC pattern according to f).
Input: Two sets S, T ⊆ Σ∗ of strings.
Output: A VLDC pattern q ∈ Π that maximizes the score of f(xq, yq), where
xq = |S ∩ L(q)| and yq = |T ∩ L(q)|.
The problem is known to be NP-hard [15], and thus we essentially have exponen-
tially many candidates. Therefor, we reduce the number of candidates by using
the pruning heuristic inspired by Morishita and Sese [16].

The following lemma derives from the conicality of function f .
Lemma 2 ([8]). For any 0 ≤ x < x′ ≤ xmax and 0 ≤ y < y′ ≤ ymax, we have
f(x, y) ≤ max{f(x′, y′), f(x′, 0), f(0, y′), f(0, 0)}.

By Lemma 1 and Lemma 2, we have the next lemma, basing on which we
can perform the pruning heuristic to speed up our algorithm.
Lemma 3. For any two VLDC patterns q, u ∈ Π, if q  u, then f(xu, yu) ≤
max{f(xq, yq), f(xq, 0), f(0, yq), f(0, 0)}.

2.3 Finding the Best VLDC Patterns within a Window

We here consider a natural extension of the problem mentioned previously. We
introduce an integer k called the window size. Let q ∈ Π and q[i], q[j] be the
first and last characters in q that are not �, respectively, where 1 ≤ i ≤ j ≤ |q|.
If q matches w ∈ Σ∗, let w[i′], w[j′] be characters to which q[i] and q[j] can
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correspond, respectively, where 1 ≤ i′ ≤ j′ ≤ |w|. (Note that we might have
more than one combination of i′ and j′.) If there exists a pair i′, j′ satisfying
j′ − i′ < k, we say that q occurs w within a window of size k. Then the pair
〈q, k〉 is said to match the string w.
Definition 4. For a pair 〈q, k〉 with q ∈ Π and k ∈ N , we define L′(〈q, k〉) by

L′(〈q, k〉) = {w ∈ Σ∗ | 〈q, k〉 matches w}.
According to the above definition, we have the following lemma.

Lemma 4. For any 〈q, k〉 and 〈p, j〉 with q, p ∈ Π and k, j ∈ N , if q  p and
j ≥ k, then L′(〈q, k〉) ⊇ L′(〈p, j〉).

The problem to be tackled is formalized as follows.
Definition 5 (Finding the best VLDC pattern and window size ac-
cording to f).
Input: Two sets S, T ⊆ Σ∗ of strings.
Output: A pair 〈q, k〉 with q ∈ Π and k ∈ N that maximizes the score of
f(x〈q,k〉, y〈q,k〉), where x〈q,k〉 = |S ∩ L′(〈q, k〉)| and y〈q,k〉 = |T ∩ L′(〈q, k〉)|.
We stress that the value of k is not given beforehand, i.e., we compute not only q
but also k with which the score of function f is maximum. Therefore, the search
space of this problem is Π × N , while that of the problem in Definition 3 is Π.
We remark that this problem is also NP-hard.

By Lemma 4 and Lemma 2, we achieve the following lemma that plays a key
role for the heuristic to prune the search tree.
Lemma 5. For any 〈q, k〉 and 〈p, j〉 with q, u ∈ Π and k, j ∈ N , if q  u and
j ≥ k, f(x〈p,j〉, y〈p,j〉) ≤ max{f(x〈q,k〉, y〈q,k〉), f(x〈q,k〉, 0), f(0, y〈q,k〉), f(0, 0)}.

3 Efficient Match of VLDC Patterns

Definition 6 (Counting the matched VLDC patterns).
Input: A set S ⊆ Σ∗ of strings.
Query: A VLDC pattern q ∈ Π.
Answer: The cardinality of set S ∩ L(q).

This is a sub-problem of the one given in Definition 3. It must be answered as
fast as possible, since we are given quite many VLDC patterns as queries. Here,
we utilize two practical methods which allows us to answer the problem quickly.

3.1 Using a DFA for a VLDC Pattern

Our first idea is to use a deterministic finite-state automaton (DFA) for a pattern.
Given a VLDC pattern q ∈ Π, we construct a DFA that accepts L(q) and use
it as a pattern matching machine (PMM) which runs over text strings in S. For
any q ∈ Π, a DFA can be constructed in O(|q|) time.
Lemma 6. Let S ⊆ Σ∗ and q ∈ Π. Then |S ∩ L(q)| can be computed in O(|q|)
preprocessing time and in O(‖S‖) running time.
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Fig. 1. WDAWG(w) where w = abbab.

3.2 Using Wildcard Directed Acyclic Word Graphs

The second approach is to use an index structure for a text string w ∈ S that
recognizes all VLDC patterns matching w.

The Directed Acyclic Word Graph (DAWG) is a classical, textbook index
structure [5], invented by Blumer et al. in [3]. The DAWG of a string w ∈ Σ∗ is
denoted by DAWG(w), and is known to be the smallest deterministic automaton
that recognizes all suffixes of w [4]. By means of DAWG(w), we can examine
whether or not a given pattern p ∈ Σ∗ is a substring of w in O(|p|) time.

Recently, we introducedMinimum All-Suffixes Directed Acyclic Word Graphs
(MASDAWGs) [11]. The MASDAWG of a string w ∈ Σ∗, which is denoted by
MASDAWG(w), is the minimization of the collection of the DAWGs for all
suffixes of w. More precisely, MASDAWG(w) is the smallest automaton with
|w|+1 initial nodes, in which the directed acyclic graph induced by all reachable
nodes from the k-th initial node conforms with the DAWG of the k-th suffix of
w.

Several important applications of MASDAWGs were given in [11], one of
which corresponds to a significantly time-efficient solution to the VLDC pat-
tern matching problem. Namely, a variant of MASDAWG(w), called Wildcard
DAWG (WDAWG) of w and denoted by WDAWG(w), was introduced in [11].
WDAWG(w) is the smallest automaton that accepts all VLDC patterns match-
ing w. WDAWG(w) with w = abbab is displayed in Fig. 1.
Theorem 1. When |Σ| ≥ 2, the number of nodes of WDAWG(w) for a string
w is Θ(|w|2). It is Θ(|w|) for a unary alphabet.
Theorem 2. For any string w ∈ Σ∗, WDAWG(w) can be constructed in time
linear in its size.

For all strings in S ⊆ Σ∗, we construct WDAWGs. Then we obtain the
following lemma that is a counterpart of Lemma 6.
Lemma 7. Let S ⊆ Σ∗ and q ∈ Π. Let N =

∑
w∈S |w|2. Then |S ∩ L(q)| can

be computed in O(N) preprocessing time and in O(|q|·|S|) running time.
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In spite of the quadratic space requirement of WDAWGs, it is meaningful to
construct them because of the following reasons. Assume that, for a string w in
S, a VLDC pattern q has been recognized by WDAWG(w). We then memorize
the node at which q was accepted. It allows us a rapid search of any VLDC
pattern qr with r ∈ Π, since we only need to move |r| transitions from the
memorized node. Therefore, WDAWGs are significantly useful especially in our
situation. Moreover, WDAWGs are also helpful for pruning the search tree. Once
knowing that a VLDC pattern q does not match any string in S by using the
WDAWGs, we need not consider any u ∈ Π such that q  u.

4 How to Compute the Best Window Size

Definition 7 (Computing the best window size according to f).
Input: Two sets S, T ⊆ Σ∗ of strings and a VLDC pattern q ∈ Π.
Output: An integer k ∈ N that maximizes the score of f(x〈q,k〉, y〈q,k〉), where
x〈q,k〉 = |S ∩ L′(〈q, k〉)| and y〈q,k〉 = |T ∩ L′(〈q, k〉)|.
This is a sub-problem of the one in Definition 5, where a VLDC pattern is given
beforehand.

Let  be the length of the longest string in S ∪ T . A short consideration
reveals that, as candidates for k, we only have to consider the values from |q|
up to  , which results in a rather straightforward solution. In addition to that,
we give a more efficient computation method, whose basic principle originates
in [9].

For a string u ∈ Σ∗ and a VLDC pattern q ∈ Π, we define the threshold
value θ of q for u by

θu,q = min{k ∈ N | u ∈ L′(〈q, k〉)}.

If there is no such value, let θu,q = ∞. Note that u /∈ L′(〈q, k〉) for any k < θ
and u ∈ L′(〈q, k〉) for any k ≥ θ. The set of threshold values for q ∈ Π with
respect to S ⊆ Σ∗ is defined as ΘS,q = {θu,q | u ∈ S}.

A key observation is that the best window size for given S, T ⊆ Σ∗ and a
VLDC pattern q ∈ Π can be found in set ΘS,q ∪ΘT,q without loss of generality.
Thus we can restrict the search space for the best window size to ΘS,q ∪ ΘT,q.
It is therefore important to quickly solve the following sub-problem.

Definition 8 (Computing the minimum window size).
Input: A string w ∈ Σ∗ and a VLDC pattern q ∈ Π.
Output: The threshold value θw,q.

We here show our three approaches to efficiently solve the above sub-problem.
The first is to adopt the standard dynamic programming method. For a string
w ∈ Σ∗ with |w| = n and a pattern q ∈ Π with |q| = m, let dij be the length
of the shortest suffix of w[1 : j] that q[1 : i] matches, where 0 ≤ i ≤ m and
0 ≤ j ≤ n. We can compute all dij ’s in O(mn) time, basing on the following
recurrences: d00 = 0,
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d0j =
{

0 if q[1] = �
∞ otherwise

for j ≥ 1,

di0 =
{
di−1,0 if q[1] = �
∞ otherwise

for i ≥ 1, and

dij =

{
min{di−1,j−1+1, di,j−1+1, di−1,j} if q[i] = �
di−1,j−1+1 if q[i] = w[j]
∞ otherwise

for i ≥ 1 and j ≥ 1.

Then θw,q =
{

min1≤j≤n{dmj} if q[m] = �
dmn otherwise.

Remark that if the row dmj (1 ≤ j ≤ n) is memorized, it will save the computa-
tion time for any pattern qr with r ∈ Π.

The second approach is to preprocess a given VLDC pattern q ∈ Π. We
construct a DFA accepting L(q) and another DFA for L(qR), and utilize them as
PMMs running over a given string w ∈ Σ∗. If q[1] �= � (q[m] �= �, respectively),
we have only to compute the shortest prefix (suffix, respectively) of w that q
matches and return its length. We now consider the case q[1] = q[m] = �.
Firstly, we run the DFA for L(q) over w. Suppose that q is recognized between
positions i and j in w, where 1 ≤ i < j ≤ |w| and j − i > |q|. A delicate point
is that it is unsure whether w[i : j] corresponds to the shortest occurrence of
q ending at position j. How can we find the shortest one? It can be found by
running the DFA for L(qR) backward, over w from position j. Assume that qR is
recognized at position k, where i ≤ k < j − |q|. Then w[k : j] corresponds to the
shortest occurrence of q ending at position j. After that, we resume the running
of the DFA of L(q) from position k + 1, and continue the above procedure until
encountering position |w|. The pair of positions of the shortest distance gives the
threshold value θw,q. This method is feasible in O(m) preprocessing time and in
O(mn) running time, where m = |q| and n = |w|.

The third approach is to preprocess a text string w ∈ Σ∗, i.e., we construct
WDAWG(w) and WDAWG(wR). For any w ∈ Σ∗, each and every node of
WDAWG(w) can be associated with a position in w [11]. Thus we can perform
a procedure similar to the second approach above, which enables us to find the
threshold value θw,q. This approach takes us O(n) preprocessing time and O(mn)
running time, where m = |q| and n = |w|.

As a result, we obtain the following:
Lemma 8. Let w ∈ Σ∗ and q ∈ Π with |w| = n and |q| = m. The threshold
value θw,q can be computed in O(mn) running time.

5 Computational Experiments

The algorithms were implemented in the Objective Caml Language. All calcu-
lations were performed on a Desktop PC with dual Xeon 2.2GHz CPU (though
our algorithms only utilize single CPU) with 1GB of main memory running De-
bian Linux. In all the experiments, the entropy information gain is used as the
score for which the search is conducted.
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Fig. 2. Execution time (in seconds) for artificial data for: different lengths of the ex-
amples (left) different number of examples in each positive/negative set (right). The
maximum length of patterns to be searched for is set to 8. WDAWG-sm is matching
using the WDAWG with state memoization. DP-rm is matching using the dynamic
programming table with row memoization. Only one point is shown for DP-rm in the
left graph, since a greater size caused memory swapping, and the computation was not
likely to end in a reasonable amount of time.

5.1 Artificial Data

We first tested our algorithms on an artificial dataset. The datasets were created
as follows: The alphabet was set to Σ = {a, b, c, d}. We then randomly generate
strings over Σ of length l. We created 3 types of datasets: 1) a completely random
set, 2) a set where a randomly chosen VLDC pattern �ccd�a�ddad� is embedded
in the positive examples, and 3) a set where a pair of a VLDC pattern and a
window size 〈�ccd�a�ddad�, 19〉 is embedded in the positive examples. In 2)
and 3), a randomly generated string is used as a positive example if the pattern
matches it, and used as a negative example otherwise, until both positive and
negative set sizes are n. Examples for which the set size exceeds n are discarded.

Fig. 2 shows the execution times for different l and n, for the completely
random dataset. We can see that the execution time grows linearly in n and l as
expected, although the effect of pruning seems to take over for VLDC patterns
in the left graph, when the length of each sequence is long. Searching for VLDC
patterns and window sizes using dynamic programming with row memoization,
does not perform very well.

Fig. 3 shows the execution times for different maximum lengths of VLDC
patterns to look for, for the 3 datasets (The length of a VLDC pattern is defined
as the length of the pattern representation, excluding any �’s on the ends). We
can see that the execution time grows exponentially as we increase the maximum
pattern length searched for, until the pruning takes effect. The lower left graph
in Fig. 3 shows the effect of performance of an exhaustive search, run on the
completely random dataset, compared to searches with the branch and bound
pruning for the different datasets. The pruning is more effective when it is more
likely to have a good solution.
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Fig. 3. Execution time (in seconds) for artificial data for different maximum lengths
of patterns to be searched for with: completely random data (upper left), VLDC and
window size embedded data (upper right), VLDC embedded data (lower left). The
lower right graph shows the effect of pruning of the search space for the different data
sets, compared to exhaustive search on the completely random dataset.

5.2 Real Data

To show the usefulness of VLDC patterns and windows, we also tested
our algorithms on actual protein sequences. We use the data available at
http://www.cbs.dtu.dk/services/TargetP/, which consists of protein se-
quences which are known to contain protein sorting signals, that is, (in many
cases) a short amino acid sequence segment which holds the information which
enables the protein to be carried to specified compartments inside the cell.
The dataset for plant proteins consisted of: 269 sequences with signal peptide
(SP), 368 sequences with mitocondrial targeting peptide (mTP), 141 sequences
with chloroplast transit peptide (cTP), and 162 “Other” sequences. The average
length of the sequences was around 419, and the alphabet is the set of 20 amino
acids.

Using the signal peptides as positive examples, and all others as negative
examples, we searched for the best pair 〈p, k〉 with maximum length of 10
using PMMs. To limit the alphabet size, we classify the amino acids into 3
classes {0, 1, 2}, according to the hydropathy index [13]. The most hydropho-
bic amino acids {A, M, C, F, L, V, I} (hydropathy ≥ 0.0) are converted to 0,
{P,Y,W,S,T,G} (−3.0 ≤ hydropathy < 0.0 ) to 1, and {R, K, D, E, N, Q, H}

http://www.cbs.dtu.dk/services/TargetP/
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(hydropathy < −3.0 ) to 2. We obtained the pair 〈0�00�00000�, 26〉, which oc-
curs in 213/269 = 79.2% of the sequences with SP, and 26/671 = 3.9% of the
other sequences. The calculation took exactly 50 minutes. This pattern can be
interpreted as capturing the well known hydrophobic h-region of SP [22]. Also,
the VLDC pattern suggests that the match occurs in the first 26 amino acid
residues of the protein, which is natural since SP, mTP, cTP are known to be N-
terminal sorting signals, that is, they are known to appear near the head of the
protein sequence. A best substring search quickly finds the pattern �00000001�
in 36 seconds, but only gives us a classifier that matches 152/269 = 56.51% of
the SP sequences, and 41/671 = 6.11% of the others.

For another example, we use the mTP set as positive examples, and the
SP and Other sets as negative examples. This time, we convert the alphabet
according to the net charge of the amino acid. Amino acids {D, E} (negative
charge) are converted to 0, {K, R} (positive charge) to 1, and the rest {A, L, N,
M, F, C, P, Q, S, T, G, W, H, Y, I, V} to 2. The calculation took about 21 minutes
and we obtain the pair 〈2�1�1�2221�, 28〉 which occurs in 334/368 = 90.76% of
the mTP sequences and (73/431 = 16.94%) of the SP and Other sequences. This
pattern can also be regarded as capturing existing knowledge about mTPs [23]:
They are fairly abundant in K or R, but do not contain much D or E. The pattern
also suggests a periodic appearance of K or R, which is a characteristic of an
amphiphilic α-helix that mTPs are reported to have. A best substring search
finds pattern �212221� in 20 seconds, which gives us a classifier that matches
318/368 = 86.41% of sequences with mTP and 255/431 = 59.16% of the other
sequences.
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