
A Practical Algorithm to Find the Best

Subsequence Patterns

Masahiro Hirao, Hiromasa Hoshino, Ayumi Shinohara,
Masayuki Takeda, and Setsuo Arikawa

Department of Informatics, Kyushu University 33, Fukuoka 812-8581, JAPAN
{hirao, hoshino, ayumi, takeda, arikawa}@i.kyushu-u.ac.jp

Abstract. Given two sets of strings, consider the problem to find a
subsequence that is common to one set but never appears in the other
set. The problem is known to be NP-complete. We generalize the problem
to an optimization problem, and give a practical algorithm to solve it
exactly. Our algorithm uses pruning heuristic and subsequence automata,
and can find the best subsequence. We show some experiments, that
convinced us the approach is quite promising.

1 Introduction

String is one of the most fundamental structure to express and reserve infor-
mation. In these days, a lot of string data are available. String processing has
vast application area, such as Genome Informatics and Internet related works.
It is quite important to discover useful rules from large text data or sequential
data [1, 6, 9, 22]. Finding a good rule to separate two given sets, often referred as
positive examples and negative examples, is a critical task in Discovery Science
as well as Machine Learning.

Shimozono et al. [20] developed a machine discovery system BONSAI that
produces a decision tree over regular patterns with alphabet indexing, from given
positive set and negative set of strings. The core part of the system is to gener-
ate a decision tree which classifies positive examples and negative examples as
correctly as possible. For that purpose, we have to find a pattern that maximizes
the goodness according to the entropy information gain measure, recursively at
each node of trees. In the current implementation, a pattern associated with
each node is restricted to a substring pattern, due to the limit of computation
time. One of our motivations of this study is to extend the BONSAI system to
allow subsequence patterns as well as substring patterns at nodes, and accelerate
the computation time.

However, there is a large gap between the complexity of finding the best
substring pattern and subsequence pattern. Theoretically, the former problem
can be solved in linear time, while the latter is NP-hard.

In this paper, we give a practical solution to find the best subsequence pat-
tern which separates a given set of strings from the other set of strings. We
propose a practical implementation of exact search algorithm that practically

S. Arikawa and S. Morishita (Eds.): DS 2000, LNAI 1967, pp. 141-153, 2000.
c Springer-Verlag Berlin Heidelberg 2000

avoids exhaustive search. Since the problem is NP-hard, essentially we are forced
to examine exponentially many candidate patterns in the worst case. Basically,
for each pattern w, we have to count the number of strings that contain w as
a subsequence in each of two sets. We call the task of counting the numbers
as answering subsequence query. The computational cost to find the best sub-
sequence pattern mainly comes from the total amount of time to answer these
subsequence queries, since it is relatively heavy task if the sets are large, and
many queries will be needed. In order to reduce the time, we have to either (1)
asking queries as few as possible, or (2) speeding up to answer queries. We attack
the problem from both these two directions.

At first, we reduce the search space by appropriately pruning redundant
branches that are guaranteed not to contain the best pattern. We use a heuris-
tics inspired by Morishita and Sese [18], combined with some properties on the
subsequence languages.

Next, we accelerate answering for subsequence queries. Since the sets of
strings are fixed in finding the best subsequence pattern, it is reasonable to
preprocess the sets so that answering subsequence query for any pattern will
be fast. We take an approach based on a deterministic finite automaton that
accepts all subsequences of a string. Actually, we use subsequence automata for
sets of strings, developed in [11]. Subsequence automaton can answer quickly for
subsequence query, at the cost of preprocessing time and space requirement to
construct it.

Since these two approaches are different in their aims, we expect that a
balanced integration of these two would result in the most efficient way to find the
best subsequence patterns. In order to verify the performance of our algorithm,
we are performing some experiments on these two approaches. We report some
results of the experiments, that convinced us it is quite promising.

2 Preliminaries

Let Σ be a finite alphabet, and let Σ∗ be the set of all strings over Σ. For a
string w, we denote by |w| the length of w, and for a set S, we denote by |S|
the cardinality of S. We say that a string v is a prefix (substring, suffix, resp.) of
w if w = vy (w = xvy, w = xv, resp.) for some strings x, y ∈ Σ∗. We say that
a string v is a subsequence of a string w if v can be obtained by removing zero
or more characters from w, and say that w is a supersequence of v. We denote
by v �str w that v is a substring of w, and by v �seq w that v is a subsequence
of w. For a string v, we define the substring language Lstr(v) and subsequence
language Lseq(v) as follows:

Lstr(v) = {w ∈ Σ∗ | v �str w}, and
Lseq(v) = {w ∈ Σ∗ | v �seq w}, respectively.

The following lemma is obvious from the definitions.

Lemma 1. For any strings v, w ∈ Σ∗,

142 Masahiro Hirao et al.

1. if v is a prefix of w, then v �str w,
2. if v is a suffix of w, then v �str w,
3. if v �str w then v �seq w,
4. v �str w if and only if Lstr(v) ⊇ Lstr(w),
5. v �seq w if and only if Lseq(v) ⊇ Lseq(w).

3 Formulation of the Problem

Let good be a function from Σ∗ × 2Σ∗ × 2Σ∗
to the set of real numbers. We

formulate the problem to be solved as follows.

Definition 1 (Finding the best pattern according to good).
Input Two sets S, T ⊆ Σ∗ of strings.
Output A string w ∈ Σ∗ that maximizes the value good(w,S, T).

Intuitively, the value good(w,S, T) expresses the goodness to distinguish S from
T using the rule specified by a string w. The definition of good varies for each
application. For examples, the χ2 values, entropy information gain, and gini
index are frequently used (See [18]). Essentially, these statistical measures are
defined by the numbers of strings that satisfy the rule specified by w. In this
paper, we only consider the rules defined as substring languages and subsequence
languages. We call these problems as finding the best substring pattern, and
finding the best subsequence pattern, respectively. Let L be either Lstr or Lseq.
Then any of the above examples of the measures can be described in the following
form.

good(w,S, T) = f(xw, yw, |S|, |T |), where
xw = |S ∩ L(w)|,
yw = |T ∩ L(w)|.

For example, the entropy information gain, which is introduced by Quin-
lan [19] and also used in BONSAI system [20], can be defined in terms of the
function f as follows:

f(x, y, xmax, ymax) = − x + y

xmax + ymax
I(x, y)

−xmax − x + ymax − y

xmax + ymax
I(xmax − x, ymax − y),

where I(s, t) =
{
0 (if s = 0 or t = 0),
− s

s+t log
s

s+t − t
s+t log

t
s+t (otherwise).

When the sets S and T are fixed, the values xmax = |S| and ymax = |T |
become constants. Thus, we abbreviate the function f(x, y, xmax, ymax) to f(x, y)
in the sequel.

Since the function good(w,S, T) expresses the goodness of a string w to
distinguish two sets, it is natural to assume that the function f satisfies the
conicality, defined as follows.

143A Practical Algorithm to Find the Best Subsequence Patterns

Definition 2. We say that a function f(x, y) is conic if

– for any 0 ≤ y ≤ ymax, there exists an x1 such that
• f(x, y) ≥ f(x′, y) for any 0 ≤ x < x′ ≤ x1, and
• f(x, y) ≤ f(x′, y) for any x1 ≤ x < x′ ≤ xmax.

– for any 0 ≤ x ≤ xmax, there exists a y1 such that
• f(x, y) ≥ f(x, y′) for any 0 ≤ y < y′ ≤ y1, and
• f(x, y) ≤ f(x, y′) for any y1 ≤ y < y′ ≤ ymax.

Actually, all of the above statistical measures are conic. We remark that any
convex function is conic.

Lemma 2. Let f(x, y) be a conic function defined over [0, xmax]× [0, ymax]. For
any 0 ≤ x < x′ ≤ xmax and 0 ≤ y < y′ ≤ ymax, we have

f(x, y) ≤ max{f (x′, y′), f(x′, 0), f(0, y′), f(0, 0)}, and
f(x′, y′) ≤ max{f (x, y), f(x, ymax), f(xmax, y), f(xmax, ymax)}.

Proof. We show the first inequality only. The second can be proved in the same
way. Since f is conic, we have f(x, y) ≤ max{f (x, 0), f(x, y′)}. Moreover, we have
f(x, 0) ≤ max{f (0, 0), f(x′, 0)} and f(x, y′) ≤ max{f (0, y′), f(x′, y′)}. Thus the
inequality holds. ��

In the rest of the paper, we assume that any function f associated with the
objective function good is conic, and can be evaluated in constant time.

Now we consider the complexity of finding the best substring pattern and
subsequence pattern, respectively. It is not hard to show that finding the best
substring pattern can be solved in polynomial time, since there are only O(N2)
substrings from given sets of strings, where N is the total length of the strings,
so that we can check all candidates in a trivial way. Moreover, we can solve it in
linear time, by using generalized suffix trees [12].

Theorem 1. We can find the best substring pattern in linear time.

On the other hand, it is not easy to find the best subsequence pattern. First
we introduce a very closely related problem.

Definition 3 (Consistency problem for subsequence patterns).
Input: Two sets S, T ⊆ Σ∗ of strings.
Question: Is there a string w that is a subsequence for each string s ∈ S, but

not a subsequence for any string t ∈ T?

The problem can be interpreted as a special case of the finding the best
subsequence pattern. The next theorem shows the problem is intractable.

Theorem 2 ([13, 16, 17]). The consistency problem for subsequence patterns
is NP-complete.

Therefore, we are essentially forced to enumerate and evaluate exponentially
many subsequence patterns in the worst case, in order to find the best sub-
sequence pattern. In the next section, we show a practical solution based on
pruning search trees. Our pruning strategy utilizes the property of subsequence
languages and the conicality of the function.

144 Masahiro Hirao et al.

4 Pruning Heuristics

In this section, we introduce two pruning heuristics, inspired by Morishita and
Sese [18], to construct a practical algorithm to find the best subsequence pattern.

For a conic function f(x, y), we define

F (x, y) = max{f (x, y), f(x, 0), f(0, y), f(0, 0)}, and
G(x, y) = max{f (x, y), f(x, ymax), f(xmax, y), f(xmax, ymax)}.

Theorem 3. For any strings v, w ∈ Σ∗ with v �seq w,

f(xw, yw) ≤ F (xv, yv), (1)
f(xv, yv) ≤ G(xw , yw). (2)

Proof. By Lemma 1 (5), v �seq w implies that Lseq(v) ⊇ Lseq(w). Thus xv =
|S ∩ Lseq(v)| ≥ |S ∩ Lseq(w)| = xw. In the same way, we can show yv ≥ yw. By
Lemma 2, we have f(xw, yw) ≤ F (xv, yv). The second inequality can be verified
similarly. ��

In Fig. 1, we show our algorithm to find the best subsequence pattern from
given two sets of strings, according to the function f . Optionally, we can specify
the maximum length of subsequences. We use the following data structures in
the algorithm.

StringSet Maintain a set S of strings.
– void append(string w) : append a string w into the set S.
– int numOfSubseq(string seq) : return the cardinality of the set {w ∈ S |

seq �seq w}.
– int numOfSuperseq(string seq) : return the cardinality of the set {w ∈ S |

w �seq seq}.

PriorityQueue Maintain strings with their priorities.
– bool empty() : return true if the queue is empty.
– void push(string w, double priority) : push a string w into the queue with

priority priority.
– (string, double) pop() : pop and return a pair (string, priority), where

priority is the highest in the queue.

The next theorem guarantees the completeness of the algorithm.

Theorem 4. Let S and T be sets of strings, and � be a positive integer. The
algorithm FindMaxSubsequence(S, T , �) will return a string w that maximizes
the value good(w,S, T) among the strings of length at most �.

Proof. First of all, we consider the behavior of the algorithm whose lines marked
by ‘∗’ are commented out. That is, we first assume that the lines 10, 13 and 20–
23 are skipped. In this case, we show that the algorithm performs the exhaustive

145A Practical Algorithm to Find the Best Subsequence Patterns

1 string FindMaxSubsequence(StringSet S, T , int maxLength = ∞)
2 string prefix , seq , maxSeq ;
3 double upperBound = ∞, maxVal = −∞, val ;
4 int x, y;
5 StringSet Forbidden = ∅;
6 PriorityQueue queue; /* Best First Search*/
7 queue.push(””, ∞);
8 while not queue.empty() do
9 (prefix , upperBound) = queue.pop();
10 * if upperBound < maxVal then break;
11 foreach c ∈ Σ do
12 seq= prefix+ c; /* string concatenation */
13 * if Forbidden .numOfSuperseq(seq)== 0 then
14 x = S.numOfSubseq(seq);
15 y = T .numOfSubseq(seq);
16 val = f(x, y);
17 if val > maxVal then
18 maxVal = val ;
19 maxSeq = seq;
20 * upperBound = max{f(x, y), f(x, 0), f(0, y), f(0, 0)};
21 * if upperBound < maxVal then
22 * Forbidden.append(seq);
23 * else
24 if |seq | < maxLength then
25 queue.push(seq , upperBound);
26 return maxSeq;

Fig. 1. Algorithm FindMaxSubsequence. In our pseudocode, indentation indicates
block structure, and the break statement is to jump out of the closest enclosing loop.

search in a breadth first manner. Since the value of upperBound is unchanged,
PriorityQueue is actually equivalent to a simple queue. The lines 14–16 eval-
uate the value good(seq , S, T) of a string seq, and if it exceeds the current max-
imum value maxVal , we update maxVal and maxSeq in lines 17–19. Thus the
algorithm will examine all strings of length at most �, in increasing order of the
length, and it can find the maximum.

We now consider the lines 20, 21, and 23. Let v be the string currently
represented by the variable seq . At lines 14 and 15, xv and yv are computed. At
line 20, upperBound = F (xv, yv) is estimated and if upperBound is less than the
current maximum value maxVal , the algorithm skips pushing v into the queue.
It means that any string w of which v is a prefix will not evaluated. We can
show that such a string w can never be the best subsequence as follows. Since v
is a prefix of w, we know v is a subsequence of w, by Lemma 1 (1) and (3). By

146 Masahiro Hirao et al.

Theorem 3 (1), the value f(xw, yw) ≤ F (xv, yv), and since F (xv, yv) < maxVal ,
the string w can never be the maximum.

Assume the condition upperBound < maxVal holds at line 10. It implies that
any string v in the queue can never be the best subsequence, since the queue
is a priority queue so that F (xv, yv) ≤ upperBound , which means f(xv, yv) ≤
F (xv, yv) by Theorem 3 (1). Therefore f(xv, yv) < maxVal for any string v in
the queue, and we can jump out of the loop immediately.

Finally, we take account of lines 13 and 22. Initially, the set Forbidden
of strings is empty. At line 22, a string v is appended to Forbidden only if
upperBound = F (xv, yv) < maxVal . At line 13, if the condition

Forbidden.numOfSuperseq(seq)== 0
does not hold, seq will not be evaluated. Moreover, any string of which seq is
a prefix will not be evaluated either, since we does not push seq in the queue
at line 25 in this case. Nevertheless, we can show that these cuts never affect
the final output as follows. Assume that Forbidden.numOfSuperseq(seq)�= 0 for
a string seq . It implies that there exists a string u ∈ Forbidden such that seq
is a supersequence of u. In another word, u is a subsequence of seq. Since u is
in Forbidden, we know that F (xu, yu) < maxVal at some moment. By Theo-
rem 3 (2), the value f(xseq , yseq) can never exceeds maxVal . Thus the output of
the algorithm is not changed by these cuts. ��

By the above theorem, we can safely prune the branches. We now consider
the cost of performing these heuristics. The cost of the first heuristics at lines
20, 21, and 23 is negligible, since evaluating the upperBound at line 20 is neg-
ligible compared to evaluate x and y at lines 14 and 15. On the other hand,
the second heuristics at lines 13 and 22 may be expensive, since the evaluation
of Forbidden.numOfSuperseq(seq) may not be so easy when the set Forbidden
becomes large.

Anyway, one of the most time-consuming part of the algorithm is the lines 14
and 15. Here, for a string seq , we have to count the number of strings in the sets
S and T that are subsequences of seq . We remark that the set S and T are fixed
within the algorithm FindMaxSubsequence. Thus we have a possibility to speed
up counting, at the cost of some appropriate preprocessing. We will discuss it in
the next section.

5 Using Subsequence Automata

In this section, we pay our attention to the following problem.

Definition 4 (Counting the matched strings).
Input A finite set S ⊆ Σ∗ of strings.
Query A string seq ∈ Σ∗.
Answer The cardinality of the set S ∩ Lseq(seq).

Of course, the answer to the query should be very fast, since many queries
will arise. Thus, we should preprocess the input in order to answer the query

147A Practical Algorithm to Find the Best Subsequence Patterns

quickly. On the other hand, the preprocessing time is also a critical factor in
our application. In this paper, we utilize automata that accept subsequences
of strings. Baeza-Yates [5] introduced the directed acyclic subsequence graph
(DASG) of a string t as the smallest deterministic partial finite automaton that
recognizes all possible subsequences of t. By using DASG of t, we can determine
whether a string s is a subsequence of a string t in O(|s|) time. He showed a
right-to-left algorithm for building the DASG for a single string. On the other
hand, Trońıček and Melichar [21] showed a left-to-right algorithm for building
the DASG for a single string.

We now turn our attention to the case of a set S of strings. A straightforward
approach is to build DASGs for each string in S. Given a query string seq , we
traverse all DASGs simultaneously, and return the total number of DASGs that
accept seq . It clearly runs in O(k|seq |) time, where k is the number of strings in
S. When the running time is more critical, we can build a product of k DASGs
so that the running time becomes O(|seq |) time, at the cost of preprocessing
time and space requirement. This is the DASG for a set of strings.

Baeza-Yates also presented a right-to-left algorithm for building the DASG
for a set of strings [5]. Moreover, Trońıček and Melichar [21], and Crochemore
and Trońıček [7] showed left-to-right algorithms for building the DASG for a set
of strings.

In [11], we considered a subsequence automaton as a deterministic complete
finite automaton that recognizes all possible subsequences of a set of strings,
that is essentially the same as DASG. We showed an online construction of
subsequence automaton for a set of strings. Our algorithm runs in O(|Σ|(m +
k) + N) time using O(|Σ|m) space, where |Σ| is the size of alphabet, N is the
total length of strings, and m is the number of states of the resulting subsequence
automaton. This is the fastest algorithm to construct a subsequence automaton
for a set of strings, to the best of our knowledge. We can extend the automaton
so that it answers the above Counting the matched strings problem in a natural
way (See Fig. 2).

Although the construction time is linear to the size m of automaton to be
built, unfortunately m = O(nk) in general, where we assume that the set S
consists of k strings of length n. (The lower bound of m is only known for the
case k = 2, as m = Ω(n2) [7].) Thus, when the construction time is also a critical
factor, as in our application, it may not be a good idea to construct subsequence
automaton for the set S itself. Here, for a specified parameter mode > 0, we
partition the set S into d = k/mode subsets S1, S2, . . . , Sd of at most mode
strings, and construct d subsequence automata for each Si. When asking a query
seq, we have only to traverse all automata similutaneously, and return the sum
of the answers. In this way, we can balance the preprocessing time with the total
time to answer (possibly many) queries. In the next section, we experimentally
evaluate the optimal value of the parameter mode in some situation.

148 Masahiro Hirao et al.

3 2

03

2 1 1

2

3

a b

a

a b

b a

b

a a

b
a

a
b a

b

b

b

Fig. 2. Subsequence automaton for S = {abab, abb, bb}, where Σ = {a, b}. Each number
on a state denotes the number of matched strings. For example, by traverse the states
according to a string ab, we reach the state whose number is 2. It corresponds to the
cardinality |Lseq(ab) ∩ S| = 2, since ab 	seq abab, ab 	seq abb and ab
	seq bb.

6 Implementation and Experiments

In this section, we report some results on our experiments. We are implementing
our algorithm in Fig. 1 using C++ language with Standard Template Library
(STL). For the PriorityQueue, we use the standard priority queue in STL.
Concerning with the StringSet, we have implemented the function numOfSub-
seq (seq) in the following two ways depending on the value of mode. In case of
mode = 0, we do not use subsequence automata. For each string w in the set, we
check whether seq is a subsequence of w or not in a trivial way, and return the
number of matched strings. Thus we do not need to preprocess the set. For the
cases mode ≥ 1, we construct k/mode subsequence automata in the preprocess,
where k is the number of strings in the set. On the other hand, the function
numOfSuperseq(seq) is implemented in a trivial way without using any special
data structure.

We examined the following two data as input.

Transmembrane Amino acid sequences taken from the PIR database, that
are converted into strings over binary alphabet Σ = {0, 1}, according to
the alphabet indexing discovered by BONSAI [20]. The average length of
the strings is about 30. S1 consists of 70 transmembrane domains, and T1

consists of 100 non-transmembrane domains.
DNA DNA sequences of yeast genome over Σ = {A, T, G, C}. The lengths of the

strings are all 30. We selected two sets S2 and T2 based on the functional
categories. |S2| = 31 and |T2| = 35.

We note that 〈S1, T1〉 is an easy instance, while 〈S2, T2〉 is a hard instance,
in the sense that the best score for 〈S1, T1〉 is high, while that for 〈S2, T2〉 is low.
As we will report, the facts affect the practical behaviors of our algorithm.

In order to verify the effect of the first heuristics and the second heuristics,
we compared the searching time to find the best subsequence pattern of our
algorithm.

149A Practical Algorithm to Find the Best Subsequence Patterns

exhaustive

pruning1
pruning2

1

10

100

1000

104

105

106

107

108

0 5 10 15maxLength

number

0.0001

0.001

0.01

0.1

1

10

100

1000

104

0 5 10 15maxLength

time

(sec)

(c) number (DNA) (d) time (DNA)

maxLength
1

10

100

1000

104

105

0 5 10 15

number

maxLength
0.0001

0.001

0.01

0.1

1

10

0 5 10 15

time

(sec)

(a) number (Transmembrane) (b) time (Transmembrane)

Fig. 3. Number of strings actually evaluated and running time, where maxLength
varies.

pruning1 We use the first heuristics only, by commented out the lines 13 and
22.

pruning2 We use both the first and second heuristics.
exhaustive We do not use any heuristics, by commented out the lines 10, 13

and 20–23.

Our experiments were carried out both on a workstation AlphaServer DS20
with an Alpha 21264 processor at 500MHz running Tru64 UNIX operating sys-
tem (WS), and on a personal computer with Pentium III processor at 733MHz
running Linux (PC).

First we verified the effect of the first heuristics and the second heuristics.
Fig. 3 shows the numbers of strings actually evaluated and the running time
at PC, when maxLength varies and mode was fixed to 0. The both graphs (a)

150 Masahiro Hirao et al.

Table 1. Preprocessing time and search time (seconds) at PC. The data is Transmem-
brane.

mode 0 1 2 3 4 5 6 7 8 9 10

preprocessing - 0.023 0.054 0.120 0.273 0.470 0.796 1.378 2.108 3.083 4.543

exhaustive 1.502 1.560 0.906 0.710 0.599 0.535 0.494 0.460 0.425 0.414 0.379

pruning1 0.067 0.077 0.046 0.037 0.031 0.025 0.023 0.022 0.020 0.019 0.018

pruning2 0.060 0.069 0.047 0.040 0.035 0.033 0.031 0.030 0.029 0.029 0.028

and (c) show that the pruning2 gives the most effective pruning with respect to
the number of evaluated strings, as we expected. For example, pruning2 reduces
the search space approximately half compared to pruning1, when maxLength is
14 in (c). However, the running time behaves differently as we expected. The
graph (b) shows that the running time reflects the number of evaluated strings,
while the graph (c) shows that pruning2 was much slower than pruning1. This is
because the overhead of maintaining the set Forbidden and the response time of
the query to Forbidden, since we implemented it in a trivial way. By comparing
(a) and (b) with (c) and (d) respectively, we see that the instance 〈S1, T1〉 of
Transmembrane is easy to solve compared to 〈S2, T2〉 of DNA, because some
short subsequences with high score were found in an early stage so that the
search space is reduced drastically.

We now verify the effect of introducing subsequence automata. Table 1 shows
the preprocess time, and search time for each search method, where mode is
changed from 0 to 10. We can see that the preprocessing time increases with
the mode, as we expected, since the total size of the automata increases. On
the other hand, the search time decreases monotonically with the mode for any
search method except the case mode = 0, since each subsequence query will be
answered quickly by using subsequence automata. The search time in the case
mode = 1 is slightly slower than that in the case mode = 0. It implies that
traversing an automaton is not so faster than naive matching of subsequence
when answering subsequence queries. We suppose that the phenomena arise
mainly from the effect of CPU caches.

In order to see the most preferable value of mode at which the total running
time is minimized, refer to Fig. 4 (a), (b), and (c) that illustrates Table 1. The
total running time, that is the sum of preprocessing and search time, is mini-
mized at mode = 3 for exhaustive search (a). On the other hand, unfortunately,
for both pruning1 in (b) and pruning2 in (c), the total running time is minimized
at mode = 0. It means that in this case, subsequence automata could not reduce
the running time. Especially, at the workstation (d), search without using sub-
sequence automata (mode = 0) is much faster than any other mode. We guess
that it is also caused by the CPU caches.

By these results, we verified that the pruning heuristics and subsequence
automata reduce the time to find the best subsequence pattern, independently.

151A Practical Algorithm to Find the Best Subsequence Patterns

0

0.5

1

1.5

2

0 1 2 3 4 5
mode

time

(sec)

preprocess time search time

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10
mode

time

(sec)

(a) exhaustive (PC)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5
mode

time

(sec)

(b) pruning1 (PC)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5
mode

time

(sec)

(c) pruning2 (PC) (d) pruning2 (WS)

Fig. 4. Total running time of (a) exhaustive search and (b)(c)(d) pruning search. The
experiments (a), (b) and (c) are performed at PC, while (d) at WS.

7 Concluding Remarks

We have discussed how to find a subsequence that maximally distinguishes given
two sets of strings, according to a specified objective function. The only require-
ment to the objective function is the conicality, that is weaker than the convexity,
and almost of all natural measures to distinguish two sets will satisfy the prop-
erty.

In this paper, we focused on finding the best subsequence pattern. However,
we can easily extend our algorithm to enumerate all strings whose values of the
objective function exceed the given threshold, since essentially we examine all
strings, with effective pruning heuristics. Enumeration may be more preferable
in the context of text data mining [6, 9, 22].

152 Masahiro Hirao et al.

In our current implementation, the function numOfSuperseq is realized in a
trivial way, that slows down the pruning2 in some situation. If we can construct
a supersequence automata efficiently, the second heuristic will be more effective.

We remark that the function G in Theorem 3 (2) is not actually used in our
algorithm, since our algorithm starts from the empty string and tries to extend
it. Another approach is also possible, that starts from a given string and tries
to shrink it. In this case, the function G will be applicable.

In [8, 15] an episode matching is considered, where the total length of the
matched strings is bounded by a given parameter. It will be very interesting to
extend our approach to find the best episode to distinguish two sets of strings.
Moreover, it is also challenging to apply our approach to find the best pattern in
the sense of pattern languages introduced by Angulin [2], where the related con-
sistency problems are shown to be very hard [13, 14, 17]. Arimura et al. showed
an another approach to find the best proximity pattern [3, 4, 10]. It may be in-
teresting to combine these approaches into one.

We plan to install our algorithm into the core of the decision tree generator
in the BONSAI system [20].

Acknowledgements

The authors would like to thank Prof. Albert Apostolico and Prof. Hiroki Arimura
for fruitful discussion.

References

1. R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. of the 11th
International Conference on Data Engineering, Mar. 1995.

2. D. Angluin. Finding patterns common to a set of strings. J. Comput. Syst. Sci.,
21(1):46–62, Aug. 1980.

3. H. Arimura and S. Shimozono. Maximizing agreement with a classification by
bounded or unbounded number of associated words. In Proc. of 9th Annual In-
ternational Symposium on Algorithms and Computation, volume 1533 of Lecture
Notes in Computer Science. Springer-Verlag, Dec. 1998.

4. H. Arimura, A. Wataki, R. Fujino, and S. Arikawa. A fast algorithm for discover-
ing optimal string patterns in large text databases. In Proc. the 8th International
Workshop on Algorithmic Learning Theory, volume 1501 of Lecture Notes in Arti-
ficial Intelligence, pages 247–261. Springer-Verlag, Oct. 1998.

5. R. A. Baeza-Yates. Searching subsequences. Theoretical Computer Science,
78(2):363–376, Jan. 1991.

6. A. Califano. SPLASH: Structural pattern localization analysis by sequential his-
tograms. Bioinformatics, Feb. 1999.

7. M. Crochemore and Z. Trońıček. Directed acyclic subsequence graph for multiple
texts. Technical Report IGM-99-13, Institut Gaspard-Monge, June 1999.

8. G. Das, R. Fleischer, L. Gasieniek, D. Gunopulos, and J. Kärkkäinen. Episode
matching. In A. Apostolico and J. Hein, editors, Proc. of the 8th Annual Symposium
on Combinatorial Pattern Matching, volume 1264 of Lecture Notes in Computer
Science, pages 12–27. Springer-Verlag, 1997.

153A Practical Algorithm to Find the Best Subsequence Patterns

9. R. Feldman, Y. Aumann, A. Amir, A. Zilberstein, and W. Klosgen. Maximal
association rules: A new tool for mining for keyword co-occurrences in document
collections. In Proc. of the 3rd International Conference on Knowledge Discovery
and Data Mining, Lecture Notes in Computer Science, pages 167–174. AAAI Press,
Aug. 1997.

10. R. Fujino, H. Arimura, and S. Arikawa. Discovering unordered and ordered phrase
association patterns for text mining. In Proc. of the 4th Pacific-Asia Conference on
Knowledge Discovery and Data Mining, volume 1805 of Lecture Notes in Artificial
Intelligence. Springer-Verlag, Apr. 2000.

11. H. Hoshino, A. Shinohara, M. Takeda, and S. Arikawa. Online construction of
subsequence automata for multiple texts. In Proc. of 7th International Symposium
on String Processing and Information Retrieval. IEEE Computer Society, Sept.
2000. (to appear).

12. L. C. K. Hui. Color set problem with applications to string matching. In Proc.
3rd Annual Symposium on Combinatorial Pattern Matching, volume 644 of Lecture
Notes in Computer Science, pages 230–243. Springer-Verlag, 1992.

13. T. Jiang and M. Li. On the complexity of learning strings and sequences. In Proc.
of 4th ACM Conf. Computational Learning Theory, pages 367–371, 1991.

14. K.-I. Ko and W. Tzeng. Three Σp
2 -complete problems in computational learning

theory. Computational Complexity, 1(3):269–310, 1991.
15. H. Mannila, H. Toivonen, and A. I. Vercamo. Discovering frequent episode in

sequences. In Proc. of the 1st International Conference on Knowledge Discovery
and Data Mining, pages 210–215. AAAI Press, Aug. 1995.

16. S. Miyano, A. Shinohara, and T. Shinohara. Which classes of elementary formal
systems are polynomial-time learnable? In Proc. of 2nd Workshop on Algorithmic
Learning Theory, pages 139–150, 1991.

17. S. Miyano, A. Shinohara, and T. Shinohara. Polynomial-time learning of elemen-
tary formal systems. New Generation Computing, 18:217–242, 2000.

18. S. Morishita and J. Sese. Traversing itemset lattices with statistical metric pruning.
In Proc. of the 19th ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pages 226–236, May 2000.

19. J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.
20. S. Shimozono, A. Shinohara, T. Shinohara, S. Miyano, S. Kuhara, and S. Arikawa.

Knowledge acquisition from amino acid sequences by machine learning system
BONSAI. Transactions of Information Processing Society of Japan, 35(10):2009–
2018, Oct. 1994.

21. Z. Trońıček and B. Melichar. Directed acyclic subsequence graph. In Proc. of the
Prague Stringology Club Workshop ’98, pages 107–118, Sept. 1998.

22. J. T. L. Wang, G.-W. Chirn, T. G. Marr, B. A. Shapiro, D. Shasha, and K. Zhang.
Combinatorial pattern discovery for scientific data: Some preliminary results. In
Proc. of the 1994 ACM SIGMOD International Conference on Management of
Data, pages 115–125. ACM Press, May 1994.

154 Masahiro Hirao et al.

	Introduction
	Preliminaries
	Formulation of the Problem
	Pruning Heuristics
	Using Subsequence Automata
	Implementation and Experiments
	Concluding Remarks
	Acknowledgements
	References

