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Abstract. There is a close relationship between formal language theory
and data compression. Since 1990’s various types of grammar-based text
compression algorithms have been introduced. Given an input string,
a grammar-based text compression algorithm constructs a context-free
grammar that only generates the string. An interesting and challenging
problem is pattern matching on context-free grammars P of size m and
T of size n, which are the descriptions of pattern string P of length
M and text string T of length N , respectively. The goal is to solve the
problem in time proportional only to m and n, not to M nor N . Kieffer
et al. introduced a very practical grammar-based compression method
called multilevel pattern matching code (MPM code). In this paper, we
propose an efficient pattern matching algorithm which, given two MPM
grammars P and T , performs in O(mn2) time with O(mn) space. Our
algorithm outperforms the previous best one by Miyazaki et al. which
requires O(m2n2) time and O(mn) space.

1 Introduction

In 1990’s formal language theory found text data compression to be a very
promising application area; data compression is the discipline which aims to re-
duce space consumption of the data by removing its redundancy, and this is
achievable by constructing a context-free grammar G which only generates the
input text string w. Namely, the grammar G is such that its language L(G) is
{w}. Such a context-free grammar adroitly extracts, and succinctly represents,
repeated segments of the input string, and thus gives a superbly compact repre-
sentation of the string. According to this observation, many types of ingenious
grammar-based text compression algorithms have been introduced so far. Exam-
ples of grammar-based text compressions are Sequitur [15, 17], Re-Pair [12],
byte pair encoding (BPE) [5], grammar transform [9, 10], and straight-line pro-
grams (SLPs) [8].
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As strings are the most basic type for data storage, pattern matching has
been an omnipresent problem in Computer Science [3]. Due to rapid spread and
increase of compressed data, we naturally face the pattern matching problem
with compressed strings. Namely, we are here required to do pattern matching
on two compressed strings (text and pattern) that are described in the form of
a context-free grammar. This problem is also called the fully compressed pattern
matching problem [18]. The problem is formalized as follows:

Input: context-free grammars P and T generating only pattern P and text T ,
respectively.

Output: all occurrences of P in T .

Let m and n be the sizes of the grammars P and T respectively, and M and N
be the lengths of the strings P and T , respectively. What should be emphasized
here is that the goal is to solve this problem in time proportional only to m
and n, not to M nor N . Although there exist a number of O(M + N)-time
algorithms that solve the pattern matching problem for uncompressed strings P
and T [6, 4], none of them supplies us with a polynomial time solution to the
compressed version of the problem since M (resp. N) can be exponentially large
with respect to m (resp. n). Therefore, in order for us to develop a polynomial
time solution, quite a limited amount of computational space is avaliable, and
this makes the problem by far harder to solve.

The first polynomial-time solution to the problem was given by Karpinski et
al. for straight-line programs (SLPs) [8]. SLPs are a grammar-based compression
method which constructs a context-free grammar in the Chomsky normal form.
They proposed an algorithm which runs in O((m + n)4 log(m + n)) time using
O((m + n)3) space. Later on, Miyazaki et al. [13] gave an improved algorithm
running in O(m2n2) time using O(mn) space.

Since computing a minimal SLP that generates a given string is known to
be NP-complete, it is of great significance to develop approximative algorithms
for generating small grammars [19, 2]. One of those algorithms is the multilevel
pattern matching code (MPM code) introduced by Kieffer et al. [11]. MPM code
is attractive in that it performs in linear time with respect to the input string
size, and is capable of exponential compression - the generated grammar size can
be exponentially small with respect to the input string size. It is also noteworthy
that MPM grammars have a hierarchical structure, which suggests that MPM
code has a potential for recognizing lexical and grammatical structures in strings
similarly to Sequitur [14, 16].

In this paper, we consider the pattern matching problem on MPM gram-
mars. Although the algorithm by Miyazaki et al. [13] for general SLPs requires
O(m2n2) time and O(mn) space, our algorithm specialized for MPM grammars
performs in O(mn2) time within O(mn) space.

2 Preliminaries

Let N be the set of natural numbers, and N+ be positive integers. Let Σ be a
finite alphabet. An element of Σ∗ is called a string. The length of a string T is
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Fig. 1. Derivation tree of the MPM for string abacabbcabacc

denoted by |T |. The i-th character of a string T is denoted by T [i] for 1 ≤ i ≤ |T |,
and the substring of a string T that begins at position i and ends at position j
is denoted by T [i : j] for 1 ≤ i ≤ j ≤ |T |.

A period of a string T is an integer p (1 ≤ p ≤ |T |) such that T [i] = T [i + p]
for any i = 1, 2, . . . , |T | − p.

Let X be any variable of a context-free grammar. We define the length of X
to be the length of the string X produces, and denote it by |X|.

A multilevel pattern matching grammar (MPM grammar) T is a sequence of
assignments such that

X1 = expr1, X2 = expr2, . . . , Xn = exprn,

where Xi are variables and expri are expressions of the form either:

– expri = a (a ∈ Σ), or
– expri = X�Xr (�, r < i) where |X�| ≥ |Xr| and |X�| is a power of 2,

and T = Xn. MPM grammar T is a context-free grammar in the Chomsky
normal form such that its language L(T ) is {T}. The size of T is n and is
denoted by ‖T ‖. For example, MPM grammar T for T = abacabbcabacc is:

X1 = a, X2 = b, X3 = c, X4 = X1X2, X5 = X1X3, X6 = X2X3, X7 = X4X5,
X8 = X4X6, X9 = X7X8, X10 = X7X3, X11 = X9X10,

and T = X11. Note ‖T ‖ = 11. Fig. 1 illustrates the derivation tree of T .
The height of variable X, denoted by height(X), is defined as follows:

height(X) =
{

1 if X = a (a ∈ Σ),
max(height(X�), height(Xr)) + 1 if X = X�Xr.

That is, height(X) is the length of the longest path from X to a leaf. In the
running example, height(X10) = 4, height(X11) = height(T ) = 5, and so on
(see Fig. 1). It is easy to see height(T ) ≤ n.
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The pattern matching problem for strings in terms of MPM grammars is,
given two MPM grammars T and P that are the descriptions of text T and
pattern P , to find all occurrences of P in T . Namely, we compute the following
set:

Occ(T, P ) = {i | T [i : i + |P | − 1] = P}.

In the sequel, we use X and Xi for variables of T , and Y and Yj for variables
of P. Let ‖T ‖ = n and ‖P‖ = m.

3 Overview of Algorithm

In this section, we show an overview of our algorithm that outputs a compact
representation of Occ(T, P ) for given MPM grammars T and P.

For strings X, Y ∈ Σ∗ and integer k ∈ N , we define the set of all occurrences
of Y that cover or touch the position k in X by

Occ↑(X, Y, k) = {i ∈ Occ(X, Y ) | k − |Y | ≤ i ≤ k}.

In the following, [i, j] denotes the set {i, i + 1, . . . , j} of consecutive integers.

Observation 1 ([7]). For any strings X, Y ∈ Σ∗ and integer k ∈ N ,

Occ↑(X, Y, k) = Occ(X, Y ) ∩ [k − |Y |, k].

Lemma 1 ([7]). For any strings X, Y ∈ Σ∗ and integer k ∈ N , Occ↑(X, Y, k)
forms a single arithmetic progression.

For positive integers a, d, t ∈ N+, we define 〈a, d, t〉 = {a+(i−1)d | i ∈ [1, t]}.
Assume that for t = 0, 〈a, d, t〉 = ∅. Note that t denotes the cardinality of the
set 〈a, d, t〉. By Lemma 1, Occ↑(X, Y, k) can be represented as the triple 〈a, d, t〉
with the minimum element a, the common difference d, and the length t of
the progression. By ‘computing Occ↑(X, Y, k)’, we mean to calculate the triple
〈a, d, t〉 such that 〈a, d, t〉 = Occ↑(X, Y, k).

For a set U of integers and an integer k, we denote U ⊕ k = {i + k | i ∈ U}
and U 
 k = {i − k | i ∈ U}. For MPM variables X = X�Xr and Y , we denote
Occ�(X, Y ) = Occ↑(X, Y, |X�| + 1).

Lemma 2 ([13]). For any MPM variables X = X�Xr and Y ,

Occ(X, Y ) = Occ(X�, Y ) ∪ Occ�(X, Y ) ∪ (Occ(Xr, Y ) ⊕ |X�|).

(See Fig. 2.)

Lemma 2 implies that Occ(Xn, Y ) can be represented by a combination of

{Occ�(Xi, Y )}n
i=1 = Occ�(X1, Y ),Occ�(X2, Y ), . . . ,Occ�(Xn, Y ).
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Fig. 2. s1, s2, s3 ∈ Occ(X, Y ), where s1 ∈ Occ(X�, Y ), s2 ∈ Occ�(X, Y ) and s3 ∈
Occ(Xr, Y )

Thus, the desired output Occ(T, P ) = Occ(Xn, Ym) can be expressed as a
combination of {Occ�(Xi, Ym)}n

i=1 that requires O(n) space. Hereby, computing
Occ(T, P ) is reduced to computing Occ�(Xi, Ym) for every i = 1, 2, . . . , n. In
computing each Occ�(Xi, Yj) recursively, the same set Occ�(Xi′ , Yj′) might
repeatedly be referred to, for i′ < i and j′ < j. Therefore we take the dynamic
programming strategy. We use an m×n table App where each entry App[i, j] at
row i and column j stores the triple for Occ�(Xi, Yi). We compute each App[i, j]
in a bottom-up manner, for i = 1, . . . , n and j = 1, . . . , m. In Section 4, we will
show each App[i, j] is computable in O(height(Xi)) time. Since height(Xi) ≤ n,
we can construct the whole table App in O(mn2) time. The size of the whole
table is O(mn), since each triple occupies O(1) space. We therefore have the
main result of the paper, as follows:

Theorem 1. Given two MPM grammars T and P, Occ(T, P ) can be computed
in O(mn2) time with O(mn) space.

4 Details of Algorithm

In this section, we show that Occ�(Xi, Yj) is computable in O(height(Xi)) time
for each variable Xi in T and Yj in P.

The following two lemmas and one observation are necessary to prove Lemma 5
which is one of the key lemmas for our algorithm.

Lemma 3 ([7]). For strings X, Y ∈ Σ∗ and integer k ∈ N , let 〈a, d, t〉 =
Occ↑(X, Y, k). If t ≥ 1, then d is the shortest period of X[s : b + |Y | − 1] for any
s ∈ 〈a, d, t − 1〉 and b = a + (t − 1)d.

Proof. First we see that d is a period of X[a : b + |Y | − 1] as follows. Since
〈a, d, t〉 = Occ↑(X, Y, k), we know
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Fig. 3. s ∈ Occ�(X, Y ) if and only if either s ∈ Occ�(X, Y�) and s+ |Y�| ∈ Occ(X, Yr)
(left case), or s ∈ Occ(X, Y�) and s + |Y�| ∈ Occ�(X, Yr) (right case)

Y = X[a : a + |Y | − 1],
Y = X[a + d : a + d + |Y | − 1],

...
Y = X[b : b + |Y | − 1].

By these equations, we have

X[i] = X[i + d] for all i ∈ [a, b + |Y | − 1 − d],

which shows that d is a period of X[s : b + |Y | − 1] for any s ∈ 〈a, d, t − 1〉.
We now suppose that X[s : b + |Y | − 1] has a smaller period d′ < d for

the contrary. That is, X[i] = X[i + d′] for all i ∈ [s, b + |Y | − 1 − d′]. Then
we have Y [i] = X[s + i − 1] = X[s + d′ + i − 1] for all i ∈ [1, |Y |]. Since
b− s ≥ b− (a+(t− 2) ·d) = b− (b−d) = d > d′, we have s+d′ ∈ Occ↑(X, Y, k).
However, this contradicts with 〈a, d, t〉 = Occ↑(X, Y, k), since s + d′ �∈ 〈a, d, t〉.
Thus d is the shortest period of X[s : b + |Y | − 1] for any s ∈ 〈a, d, t − 1〉. 
�

Observation 2 ([13]). For any MPM variables X, Y = Y�Yr, and integer
k ∈ N ,

Occ�(X, Y ) =
(
Occ�(X, Y�) ∩ (Occ(X, Yr) 
 |Y�|)

)
∪

(
Occ(X, Y�) ∩ (Occ�(X, Yr) 
 |Y�|)

)
.

(See Fig. 3.)

Lemma 4 ([7]). For any strings X, Y1, Y2 ∈ Σ∗ and integers k1, k2 ∈ N ,
Occ↑(X, Y1, k1) ∩ (Occ↑(X, Y2, k2) 
 |Y1|) can be computed in O(1) time, pro-
vided that Occ↑(X, Y1, k1) and Occ↑(X, Y2, k2) are already computed.
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For strings X, Y ∈ Σ∗ we consider the two following queries:

Single-Match Query: Given integer s ∈ N , return if s ∈ Occ(X, Y ) or not.
Covering-Match Query: Given integer k ∈ N , return triple 〈a, d, t〉 which

represents Occ↑(X, Y, k).

Lemma 5. For any MPM variables X and Y = Y�Yr and integer k ∈ N ,
computing Occ�(X, Y ) is reducible in constant time to the following queries:

(1) covering-match query Occ↑(X, Y�, |X�| + 1) = Occ�(X, Y�),
(2) covering-match query Occ↑(X, Yr, |X�| + 1) = Occ�(X, Yr),
(3) at most two covering-match queries Occ↑(X, Y ′, k1) and Occ↑(X, Y ′, k2) for

some integers k1, k2, where Y ′ is either Y� or Yr, and
(4) at most two single-match queries s1, s2 ∈ Occ(X, Y ′) for some integers s1, s2,

where Y ′ is either Y� or Yr.

Proof. We perform two covering-match queries Occ�(X, Y�) and Occ�(X, Yr),
and let 〈a1, d1, t1〉 and 〈a2, d2, t2〉 be answers of them, respectively. Depending
on the cardinalities of triples, we have the four following cases:

(a) when t1 ≤ 1 and t2 ≤ 1.
At most two single-match queries are necessary for the following reasons. If
t1 = 0, we know Occ�(X, Y�) = ∅. If t1 = 1, we perform a single-match
query a1 + |Y�| ∈ Occ(X, Yr), and we have

Occ�(X, Y�) ∩ (Occ(X, Yr) 
 |Y�|) = {a1} ∩ (Occ(X, Yr) 
 |Y�|)

=

{
{a1} if a1 + |Y�| ∈ Occ(X, Yr),
∅ otherwise.

Similarly, if t2 = 0 we know Occ�(X, Yr) = ∅. If t2 = 1, we have

Occ(X, Y�) ∩ (Occ�(X, Yr) 
 |Y�|) = Occ(X, Y�) ∩ ({a2} 
 |Y�|)

=

{
{a2−|Y�|} if a2−|Y�| ∈Occ(X, Y�),
∅ otherwise.

By Observation 2, Occ�(X, Y ) is a union of these two sets. Trivially, the
union operation can be done in constant time since each of these two sets is
either singleton or empty.

(b) when t1 ≥ 2 and t2 ≤ 1.
First we compute A = Occ�(X, Y�) ∩ (Occ(X, Yr) 
 |Y�|) = 〈a1, d1, t1〉 ∩
(Occ(X, Yr) 
 |Y�|), by using one covering-match query and at most one
single-match query. Let b1 = a1 + (t1 − 1)d1. We consider two sub-cases
depending on the length of Yr with respect to b1 − a1 = (t1 − 1)d1 ≥ d1, as
follows.
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– the case |Yr| ≥ b1 − a1 (see the left of Fig. 4). By this assumption, we
have b1 − |Yr| ≤ a1, which implies [a1, b1] ⊆ [b1 − |Yr|, b1]. Thus

A = 〈a1, d1, t1〉 ∩ (Occ(X, Yr) 
 |Y�|)
= (〈a1, d1, t1〉 ∩ [a1, b1]) ∩ (Occ(X, Yr) 
 |Y�|)
= (〈a1, d1, t1〉 ∩ [b1 − |Yr|, b1]) ∩ (Occ(X, Yr) 
 |Y�|)
= 〈a1, d1, t1〉 ∩ ([b1 − |Yr|, b1] ∩ (Occ(X, Yr) 
 |Y�|))
= 〈a1, d1, t1〉 ∩ (([b1 − |Yr| + |Y�|, b1 + |Y�|] ∩ Occ(X, Yr)) 
 |Y�|)
= 〈a1, d1, t1〉 ∩ (Occ↑(X, Yr, b1 + |Y�|) 
 |Y�|),

where the last equality is due to Observation 1. Here, we perform covering-
match query Occ↑(X, Yr, b1 + |Y�|). According to Lemma 4, 〈a1, d1, t1〉∩
(Occ↑(X, Yr, b1 + |Y�|) 
 |Y�|) can be computed in constant time.

– the case |Yr| < b1−a1 (see the right of Fig. 4). The basic idea is the same
as in the previous case, but covering-match query Occ↑(X, Yr, b1 + |Y�|)
is not enough, since |Yr| is ‘too short’. However, additional single-match
query a1 + |Y�| ∈ Occ(X, Yr) fills up the gap, as follows.

A = 〈a1, d1, t1〉 ∩ (Occ(X, Yr) 
 |Y�|)
= (〈a1, d1, t1〉 ∩ [a1, b1]) ∩ (Occ(X, Yr) 
 |Y�|)
= (〈a1, d1, t1〉 ∩ ([a1, b1−|Yr|−1]∪[b1−|Yr|, b1])) ∩ (Occ(X, Yr)
|Y�|)
= 〈a1, d1, t1〉 ∩ (S ∪ Occ↑(X, Yr, b1 + |Y�|)) 
 |Y�|),

where S = [a1 + |Y�|, b1 + |Y�| − |Yr| − 1] ∩ Occ(X, Yr).

By Lemma 3, d1 is the shortest period of X[a1 : b1 + |Y | − 1]. Therefore,
we have X[a1 + |Y�| : b1 + |Y�| − 1] = ut1 where u is the suffix of Y� of
length d1. Thus, if a1 + |Y�| ∈ Occ(X, Yr), S = 〈a1 + |Y�|, d1, t

′〉, where t′

is the maximum integer satisfying a1+ |Y�|+(t′ −1)d1 ≤ b1+ |Y�|−|Yr|−
1. Since Occ↑(X, Yr, b1 + |Y�|) forms a single arithmetic progression by
Lemma 1, the union operation can be done in constant time. Otherwise
(if a1 + |Y�| �∈ Occ(X, Yr)), we have S = ∅ for the same reason, and thus
the union operation can be done in constant time.

We now consider set B = Occ(X, Y�) ∩ (Occ�(X, Yr) 
 |Y�|). Since t2 ≤ 1,
Occ�(X, Yr) is either singleton or empty. If it is empty, B = ∅. If it is
singleton {a2}, we just perform single-match query a2 − |Y�| ∈ Occ(X, Y�).
If the answer is ‘yes’, then B = {a2 − |Y�|}, and otherwise B = ∅.
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The union operation for Occ�(X, Y ) = A ∪ B can be done in constant time
since B is at most singleton.
In total, a covering-match query and at most two single-match queries are
enough to compute Occ�(X, Y ) in this case.

(c) when t1 ≤ 1 and t2 ≥ 2.
Symmetric to Case (b).

(d) when t1 ≥ 2 and t2 ≥ 2.
We can compute A = Occ�(X, Y�) ∩ (Occ(X, Yr) 
 |Y�|) in the same way
as Case (b), since the proof for Case (b) does not depend on the cardinality
of Occ(X, Yr). Also, computing B = Occ(X, Y�) ∩ (Occ�(X, Yr) 
 |Y�|) is
symmetric to computing A. Recall that each of A and B is an intersection of
two sets both form a single arithmetic progression. This implies that A and
B also form a single arithmetic progression (it can be proven in a similar
manner to Lemma 4). Hence the union operation for Occ�(X, Y ) = A ∪ B
can be done in constant time. Thus, two covering-match queries and at most
two single-match queries are enough in this case.


�

The time complexity of a single-match query is the following:

Lemma 6 ([13]). For any MPM variables X, Y and integer s ∈ N , single-
match query s ∈ Occ(X, Y ) can be done in O(height(X)) time.

Now the only remaining thing is how to efficiently perform covering-match
query Occ↑(X, Y, k). We will show it in Lemma 7.

For any MPM variable X = X�Xr, we recursively define the leftmost descen-
dant lmd(X, h) and the rightmost descendant rmd(X, h) of X with respect to
height h (≤ height(X)), as follows:

lmd(X, h) =
{

lmd(X�, h) if height(X) > h,
X if height(X) = h,

rmd(X, h) =
{

rmd(Xr, h) if height(X) > h,
X if height(X) = h.

In the example of Fig. 1, lmd(X10, 3) = X7, rmd(X9, 2) = X6, rmd(X7, 1) =
X3, and so on. For variable Xi (1 ≤ i ≤ n) and height h (< height(Y )), we
precompute two tables storing lmd(Xi, h) and rmd(Xi, h) respectively. By using
these tables, we can refer to any lmd(Xi, h) and rmd(Xi, h) in constant time.
These tables can be constructed in O(mn) time in a bottom-up manner.

Lemma 7. For any MPM variables X, Y and integer k ∈ N , covering-match
query Occ↑(X, Y, k) is reducible in O(height(X)) time to at most three covering-
match queries Occ�(L, Y ), Occ�(C, Y ), and Occ�(R, Y ) where L, C, R are a
descendant of X or X itself.

Proof. Let X = X�Xr and Y = Y�Yr. If k = |X�| + 1, then only one covering-
match query Occ�(X, Y ) is enough. Now we assume k �= |X�| + 1.
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Fig. 5. Given integer k, the left (right, resp.) illustrates how to find L (R, resp.)

Let i = max(k−|Y |, 1) and j = min(k+|Y |−1, |X|). We consider the possibly
shortest descendant L of X which covers the range [i, k]. (see the left of Fig. 5.)
Let iL, jL be the integers such that X[iL : jL] = L. Let l = iL+|L�|. Similarly, we
consider the possibly shortest descendant R of X which covers the range [k, j].
(see the right of Fig. 5.) Let iR, jR be the integers such that X[iR : jR] = R. Let
r = iR + |R�|.

Assume l = r, that is, L = R. In this case only one covering-match query
Occ�(L, Y ) is enough, since k = l = iL + |L�| and thus

Occ↑(X, Y, k) = Occ↑(L, Y, |L�| + 1) ⊕ (iL − 1)
= Occ�(L, Y ) ⊕ (iL − 1).

In case l < r, we have the following sub-cases.

(1) when L is a descendant of R.
Depending on the shapes of R = R�Rr and Y = Y�Yr, we have the four
following sub-cases:
(a) when |R�| = |Rr| and |Y�| = |Yr|. In this case, L = rmd(R�, height(Y )+

1). Then,

Occ↑(X, Y, k) = ((Occ�(L, Y ) ∩ [k−|Y |−iL+1 : k−iL+1]) ⊕ (iL−1))
∪ ((Occ�(R, Y )∩[k−|Y |−iR+1:k−iR+1])⊕(iR−1)).

Since Occ�(L, Y ) and Occ�(R, Y ) form a single arithmetic progression
by Lemma 1, the intersection and union operations take O(1) time.

(b) when |R�| > |Rr| and |Y�| = |Yr|. Since |R�| and |Y | are a power of 2,
we have L = rmd(R�, height(Y ) + 1). Thus we have the same equation
as in Case (1)-(a).

(c) when |R�| = |Rr| and |Y�| > |Yr|. We have the two following sub-cases:
(i) when r−k+ |Y | ≤ 2×|Y�|. In this case, L = rmd(R�, height(Y�)+1).

Thus we have the same equation as in Case (1)-(a).
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(ii) when r−k+ |Y | > 2×|Y�|. In this case, L = rmd(R�, height(Y�)+2).
Let C = Lr. Then,

Occ↑(X, Y, k)
= ((Occ�(L, Y ) ∩ [k − |Y | − iL + 1 : k − iL + 1]) ⊕ (iL − 1))

∪ ((Occ�(C, Y ) ∩ [k − |Y | − p + 1 : k − p + 1]) ⊕ (p − 1))
∪ ((Occ�(R, Y ) ∩ [k − |Y | − iR + 1 : k − iR + 1]) ⊕ (iR − 1)),

where p = iL + |L�|. By Lemma 1, the intersection and union oper-
ations can be done in O(1) time.

(d) when |R�| > |Rr| and |Y�| > |Yr|. Since |R�| is a power of 2, we can use
the same equations as in Case (1)-(c).

(2) when L is an ancestor of R.
Depending on the shapes of L = L�Lr and Y = Y�Yr, we have the four
following sub-cases:
(a) when |L�| = |Lr| and |Y�| = |Yr|. This is symmetric to Case (1)-(a).
(b) when |L�| > |Lr| and |Y�| = |Yr|. Let Lr = L�(r)Lr(r). Since |L�(r)| is a

power of 2, we can use the same strategy as in Case (2)-(a).
(c) when |L�| = |Lr| and |Y�| > |Yr|. This is a symmetric to Case (1)-(c).
(d) when |L�| > |Xr| and |Y�| > |Yr|. Let Lr = L�(r)Lr(r). Since |L�(r)| is a

power of 2, we can use the same strategy as in Case (2)-(c).

Since each of R, L is a descendant of X or X itself, we can find them in
O(height(X)) time by a top-down traversal on X. Moreover, C can be found in
constant time from L or R.


�
By Lemmas 5, 6 and 7, we conclude that each entry App[i, j] representing

Occ�(Xi, Yj) can be computed in O(height(Xi)) time. Since height(Xi) ≤ n,
given two MPM grammars T and P, we can compute Occ(T, P ) in O(mn2)
time.

5 Conclusions and Further Discussions

This paper considered the pattern matching problem on a subclass of context-
free grammars called multilevel pattern matching grammars (MPM grammars).
MPM code was developed by Kieffer et al. [11] for efficient grammar-based text
compression. Since MPM grammar sizes can be exponentially small with respect
to the original string sizes, it is a rather hard task to solve the pattern match-
ing problem in time proportional only to the grammar sizes. In this paper, we
developed an efficient pattern matching algorithm which, given two MPM gram-
mars P and T , runs in O(mn2) time with O(mn) space, where m = ‖P‖ and
n = ‖T ‖. Our algorithm outperforms the previous best algorithm of [13] running
in O(m2n2) time using O(mn) space. An interesting open problem is whether
an O(mn)-time solution is achievable or not.
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As a final remark we mention that MPM grammars can be seen as text
compression by ordered binary decision diagrams (OBDDs) [1]. OBDDs were
originally developed to represent a Boolean function as a directed acyclic graph.
OBDDs are also used for symbolic or implicit graph algorithms [20]. MPM code
turns out to reveal yet another application of OBDDs to text compression.
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