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Abstract

In this paper we address the problem of searching in LZW compressed text
directly, and present a new algorithm for finding multiple patterns by simulating
the move of the Aho-Corasick pattern matching machine. The new algorithm
finds all occurrences of multiple patterns whereas the algorithm proposed by
Amir, Benson, and Farach finds only the first occurrence of a single pattern.
The new algorithm runs in O(n+m2 + r) time using O(n+m2) space, where n
is the length of the compressed text, m is the length of the total length of the
patterns, and r is the number of occurrences of the patterns. We implemented a
simple version of the algorithm, and showed that it is approximately twice faster
than a decompression followed by a search using the Aho-Corasick machine.

1 Introduction

Recent years there has been a remarkable explosion of machine readable text data.
Such text data are often stored in compressed forms. We therefore need a fast pattern
matching technique for searching the compressed text directly. Several researchers
tackled this problem. Eilam-Tsoreff and Vishkin[6] addressed the run-length compres-
sion, and Amir, Landau, and Vishikin[5], and Amir and Benson[2, 3] addressed its two-
dimensional version. Farach and Thorup[7] and Ga̧sieniec, et al.[8] addressed the LZ77
compression[14]. Amir, Benson, and Farach[4] addressed the LZW compression[13].
Karpinski, et al.[9] and Miyazaki, et al.[12] addressed the straight-line programs. For
a fast pattern matching when the text is compressed, we need algorithms which are
faster than a decompression followed by a simple search. However, these studies seem
to be done mainly from the theoretical viewpoints. Concerning the practical aspect
of this problem, Manber [11] pointed out as below.

It is not clear, for example, whether in practice the compressed search in
[4] will indeed be faster than a regular decompression followed by a fast
search.
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In this paper we shall give a positive answer to this question.
In [4], Amir, Benson, and Farach presented a series of algorithms having various

time and space complexities. From the viewpoint of speeding up the pattern match-
ing, the most attractive one is the O(n + m2) time and space algorithm, where n
is the length of the compressed text and m is the length of the pattern. It can be
viewed as two functions which simulate the move of the KMP automaton[10]. This
view enables us to simplify, improve, and then extend the algorithm to the multiple
pattern matching problem.

In this paper, we give a new algorithm for finding multiple patterns in LZW
compressed text. The new algorithm simulates the move of the Aho-Corasick pattern
matching machine. Whereas the algorithm in [4] finds only the first occurrence of a
single pattern, the new algorithm simultaneously recognizes all occurrences of multiple
patterns. The new algorithm runs in O(n + m2 + r) time using O(n + m2) space,
where n is the length of the compressed text, m is the total length of the patterns,
and r is the number of occurrences of the patterns. The O(r) time is devoted only for
reporting the positions of occurrences of the patterns. The experimental result shows
that the new algorithm is approximately twice faster than an LZW decompression
followed by a search using the Aho-Corasick machine. Thus, the algorithm is shown
to be efficient from the practical viewpoint.

2 Preliminaries

This section briefly sketches the LZW compression and the Aho-Corasick pattern
matching machine.

2.1 LZW compression

An LZW compressed text is a sequence of integers. Each integer j indicates the node
numbered j in a dictionary trie. A node of the dictionary trie represents the string
that is spelled out by the path from the root to it. The set of strings represented by
the nodes of the dictionary trie, denoted by D, is called dictionary. The dictionary
trie is adaptively and incrementally built when compressing a text. Figure 1 shows
the dictionary trie when the text is abababbabcababcabab, assuming the alphabet Σ =
{a, b, c}. For example, the integer 9 of the compressed text represents the string bc.
Hereafter, we identify the string u with the integer representing it, if no confusion
occurs.

The dictionary trie is removed after the compression is completed. It can be
recovered from the compressed text. In the decoding phase, the original text is
obtained with the aid of the recovered dictionary trie. This decoding process takes
linear time proportional to the length of the original text. However, if the original
text is not required, the dictionary trie can be built only in O(n) time, where n is the
length of the compressed text.



Figure 1: Dictionary trie.

2.2 AC machine

The Aho-Corasick pattern matching machine[1] (AC machine for short) is a finite
state machine which simultaneously locates all occurrences of multiple patterns in a
single pass through a text. The construction of the AC machine takes only linear
time proportional to the sum of the lengths of the patterns.

Let Σ be an alphabet. Let Π ⊂ Σ+ be a finite set of patterns. Let Q be the set
of states, and q0 ∈ Q be the initial state. The AC machine for Π is then specified by
the three functions:

the goto function g : Q × Σ → Q ∪ {fail},
the failure function f : Q → Q, and
the output function o : Q → 2Π.

Figure 2 shows the AC machine for the patterns Π = {aba, ababb, abca, bb} with
Σ = {a, b, c}.

Figure 2: Aho-Corasick machine for Π = {aba, ababb, abca, bb}.
The solid and the broken arrows represent the goto and the failure func-
tions, respectively. The underlined strings adjacent to the states mean
the outputs from them.



Define the state transition function δ : Q × Σ → Q by

δ(q, a) =

{
g(q, a) if g(q, a) ̸= fail,
g(f(q), a) otherwise,

and then extend δ into the function from Q × Σ∗ to Q by

δ(q, ε) = q and δ(q, ua) = δ(δ(q, u), a),

where ε is the empty string, q ∈ Q, u ∈ Σ∗, and a ∈ Σ.

3 Basic idea

We want to build a pattern matching machine that runs on an LZW compressed
text and simulates the behaviors of the AC machine on the original text. For every
integer u of the compressed text, the new machine makes one state transition which
corresponds to the consecutive state transitions of the AC machine caused by the
string u. Let Next be the new state transition function. Namely, the function Next
is the limitation of δ : Q × Σ∗ → Q to the domain Q × D. By using the function
Next, we can simulate the state transitions of the AC machine. However, the AC
machine being simulated may pass through states with outputs in one step of the
new machine. Hence the new machine should be a Mealy type sequential machine,
with an output function from Q × D to 2{1,2,···}×Π defined by

Output(q, u) = {⟨i, π⟩ | 1 ≤ i ≤ |u| and π ∈ o(δ(q, u[1..i]))}.

That is, Output(q, u) stores all outputs emitted by the AC machine during the state
transitions from the state q reading the string u.

Note that the domain of the functions Next and Output is Q × D, and the set D
grows incrementally when reading the compressed text. Therefore the data structures
required for the two functions fall into two classes according to whether or not they
depend only on the patterns independently of D. Thus the algorithm consists of two
parts: Preprocessing the patterns and scanning the compressed text. The functions
Next and Output are partially constructed in the preprocessing phase, and then up-
dated incrementally in the text scanning phase. The pattern matching algorithm in
LZW compressed text can be summarized as in Figure 3. Figure 4 shows the move
of the new machine on the compressed text of Figure 1.

As shown later, the function Next can be realized to answer in O(1) time and the
function Output can be realized to answer in linear time proportional to the size of
the answer using O(n + m2) time and space, where n is the length of the compressed
text and m is the total length of the patterns. Thus, the algorithm of Figure 3 runs
in O(n + m2 + r) time using O(n + m2) space, where r is the number of occurrences
of patterns. The following two sections discuss the realizations of the two functions.



Input. Set of patterns Π and LZW compressed text u1u2 . . . un.
Output. All positions of the original text at which pattern ends.
Method.
begin

/* Preprocessing phase */
Construct from Π the AC machine, the GST, and the other functions;

/* Text scanning phase */
ℓ := 0;
state := q0;
for i := 1 to n do begin

for each ⟨d, π⟩ ∈ Output(state, ui) do
report an occurrence of pattern π that ends at position ℓ + d;

state := Next(state, ui);
ℓ := ℓ + |ui|;
Update the dictionary trie, Next and Output

end
end.

Figure 3: Pattern matching algorithm.

original text: a b ab ab ba b c aba bc abab
compressed text: 1 2 4 4 5 2 3 6 9 11

state: 0 −→ 1 −→ 2 −→ 4 −→ 4 −→ 1 −→ 2 −→ 6 −→ 3 −→ 6 −→ 4
...

...
...

...
...

output: ⟨1, aba⟩ ⟨1, aba⟩ ⟨1, ababb⟩ ⟨1, abca⟩ ⟨1, abca⟩

⟨1, bb⟩ ⟨3, aba⟩ ⟨3, aba⟩

Figure 4: Move of new machine.

4 Realization of state transition function

This section discusses the realization of the state transition function Next defined on
Q × D.

First of all, we introduce some notations. When the string w can be written
as w = xyz, the strings x,y, and z are called a prefix, a factor, and a suffix of w,
respectively. Let Prefix(u) be the set of prefixes of a string u, and let Prefix(S) =∪

u∈S Prefix(u) for a set of strings S. We also define Suffix and Factor in a similar
way. It should be noted that there is one-to-one correspondence between the states
of the AC machine and the prefixes of the patterns. For example, the initial state 0
corresponds to the empty string ε and the state 4 corresponds to the string abab in
Figure 2. Hereafter, we identify a pattern prefix with the state representing it. Thus
we can identify Q with Prefix(Π).

To realize the function Next, we use two data structures: the AC machine and the
generalized suffix trie for Π. A generalized suffix trie for a set of strings (GST, for
short) is a trie which represents the set of suffixes of the strings. It is an extension of



Table 1: Function N1.
The blanks indicate undefined.

state a b c ab ba bb bc ca aba abb abc bab bca abab abca babb ababb
0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 1 1 0 0 1 0
2 2 8 2 2 0 2 0 2 0 0 0 0
3 0 3 0 1 3 1 0 0 1 1 0 0 1 0
4 2 4 2 2 0 2 0 2 0 0 0 0
5 0 8 0 0 0 0 0 0 0
6 6 0 0 0 0 0 0 0 0
7 0 1 0 1 0 1 0 0 1 1 0 0 1 0
8 0 8 0 0 0 0 0 0 0
9 0 8 0 0 0 0 0 0 0

the suffix trie for a single string. Note that each node of the GST for Π corresponds
to a string in Factor(Π). A node of GST for Π is said to be explicit if and only
if it represents a suffix of some pattern in Π, or its out-degree is more than one.
The construction of the AC machine for Π takes O(m) time and space, and the
construction of the GST for Π takes O(m2) time and space, where m is the total
length of patterns in Π.

Now, we consider the realization of Next. The following lemma characterizes the
state transition function δ of the AC machine. This is a modified version of Lemma 3
in [1].

Lemma 1 Let q ∈ Q = Prefix(Π), u ∈ Σ∗, and let p = δ(q, u). Then, the string p is
the longest string in the set Suffix(qu) ∩ Q.

Definition 1 Let Π ⊂ Σ+ be a finite set of patterns, and let u ∈ Σ+. Define

Occ(Π, u) = {q ∈ Prefix(Π) | qu ∈ Prefix(Π)}.

The set Occ(Π, u) means the set of states in Q = Prefix(Π) at which string u occurs.
For example, Occ(Π, a) = {0, 2, 6}, Occ(Π, bab) = {1}, and Occ(Π, aa) = ∅ in the AC
machine of Figure 2 for Π = {aba, ababb, abca, bb}.
Definition 2 For any (q, u) ∈ Q×Σ∗, let N1(q, u) be the longest string in Suffix(q)∩
Occ(Π, u). If no such string, N1(q, u) is undefined.

Since u /∈ Factor(Π) implies that N1(q, u) is undefined, it is sufficient to consider
only the values of N1 for Q × Factor(Π). Table 1 shows the function N1 for the
AC machine of Figure 2 where Π = {aba, ababb, abca, bb}. Note that the values of
N1 are stored as the states of the AC machine. For example, N1(4, ab) = 2 since
Suffix(4)∩Occ(Π, ab) = {0, 2} and the string ab represented by state 2 is longer than
ε represented by state 0. The next lemma, which can be proved by using Lemma 1,
is an extension of the idea in [4] to the multiple pattern problem.

Lemma 2 Let (q, u) ∈ Q × D. Then,

Next(q, u) =

{
N1(q, u) · u if Suffix(q) ∩ Occ(Π, u) ̸= ∅
δ(ε, u) otherwise.



The values of δ(ε, u) for u ∈ D can be computed incrementally when constructing
the dictionary trie from the compressed text, and stored in the nodes of it. The
computation is as follows: Suppose that the values of δ(ε, v) are already computed
for all existing nodes v of the dictionary trie. Suppose also that we create a new
node, and add a new edge labelled a from the node representing u to the new node
which represents the string ua. Then, the value of δ(ε, ua) is obtained as δ(δ(ε, u), a)
by performing one state transition of the AC machine, and is stored in the new node.
This requires only O(1) time.

The function N1 can be represented as a table of size |Q| × |Factor(Π)| = O(m3),
where m is the total length of patterns in Π. The table size, moreover, can be reduced
to O(m2).

Definition 3 For any u ∈ Factor(Π), let

[u] = {ux | x ∈ Σ∗ and Occ(Π, u) = Occ(Π, ux)}.

String v ∈ [u] is said to be maximal if va ̸∈ [u] for all a ∈ Σ.

For example, [ab] = {ab}, [c] = {c, ca}, and [ba] = {ba, bab, babb} when Π =
{aba, ababb, abca, bb}.

Lemma 3 Let u ∈ Factor(Π). Then, N1(q, u) = N1(q, x) for any x ∈ [u].

Note that the set [u] may contain more than one maximal element. Let us denote
by u one of the maximal elements of [u]. The function which returns the string u for
a string u can be realized to answer in O(1) time, and stored in the nodes of GST
for Π. It can be computed in O(m2) time using O(m2) space. We can see that any
maximal element in [u] for any u ∈ Factor(Π) is represented by an explicit node
of GST. Since the number of the explicit nodes of GST is O(m), the size of the set
{u | u ∈ Factor(Π)} is O(m). Therefore the function N1 defined on Q × Factor(Π)
can be represented as an O(m2) size table by using the function u.

Let N̂1(q, u) = N1(q, u) · u. It should be mentioned that each value of N̂1 cor-
responds to a state of the AC machine, that is, a node of the trie for Π. We can
see that in the trie, the node N̂1(q, u) is an ancestor of the node N̂1(q, u), and the
distance between the two nodes is |u| − |u|. Assuming the function Ancestor(q, k)
which returns the ancestor of the node q with distance k, the value of N̂1(q, u) can
be obtained by

N̂1(q, u) = Ancestor(N̂1(q, u), |u| − |u|).
The function Ancestor can be realized to answer in O(1) time as an O(m2) size table
which is constructed in O(m2) time. Thus, we can get the value of the function Next
by

Next(q, u) =

{
Ancestor(N̂1(q, u), |u| − |u|) if u ∈ Factor(Π),
δ(ε, u) otherwise.

The construction of the table which stores the values of N̂1(q, u) can be constructed
in O(m2) time using O(m2) space in a manner which is basically the same as the
algorithm proposed by Amir, Benson, and Farach[4]. We now have the following
theorem.



Theorem 1 The state transition function Next defined on Q × D can be realized to
answer in O(1) time, using O(|D| + m2) time and space.

5 Realization of output function

This section discusses the realization of the function Output defined on Q × D. It
follows from the definition of Output that

Output(q, u) = {⟨i, π⟩ | 1 ≤ i ≤ |u|, π ∈ Π, and π is a suffix of string q · u[1..i] }.

Now, we partition the set Output(q, u) into two sets according to the following lemma.

Lemma 4 Let ũ be the longest prefix of u such that ũ ∈ Suffix(Π). Let

A(u) = {⟨i, π⟩ | π ∈ Π, |ũ| < i ≤ |u|, and u[i − |π| + 1..i] = π}.

Then, Output(q, u) = Output(q, ũ) ∪ A(u).

The set A(u) can be represented by the two functions Prev(u) and ũ, where Prev(u)
is the longest proper prefix of a string u whose suffix is in Π. Since these functions
can be computed incrementally when constructing the dictionary trie and stored in
its nodes, the representation of A(u) requires O(n) time and space. Now we have
only to store the values of Output for Q × Suffix(Π) because of ũ ∈ Suffix(Π).

Definition 4 Let q ∈ Q and u ∈ Suffix(Π) with u ̸= ε. A sequence of states
q1, q2, . . . , q|u| ∈ Q is said to be the state sequence w.r.t. (q, u) if and only if

q1 = δ(q, u[1]);
qi = δ(qi−1, u[i]) for i = 2, 3, . . . , |u|.

Definition 5 Define the function N2 : Q × (Suffix(Π) − {ε}) → Q × Suffix(Π) by

N2(q1, u1) = (q2, u2) ⇔ a ∈ Σ, u1 = au2, and δ(q1, a) = q2.

Table 2 shows the function N2 for the AC machine of Figure 2 where Π = {aba,
ababb, abca, bb}. By repeated calls of the function N2, we can get the state sequence
q1, q2, . . . , qm w.r.t. (q, u). Thus we can enumerate all elements of Output(q, u) =∪m

i=1{⟨i, π⟩ | π ∈ o(qi)}. However, the enumeration takes linear time proportional to
the length of the string u. We need the subsequence of the above state sequence in
which the states have non-empty outputs. Define the function N∗

2 as follows.

Definition 6 Let q1, q2, . . . , qm be the state sequence w.r.t. (q, u) ∈ Q × Suffix(Π).
Define N∗

2 (q, u) = (qj, u[j+1..|u|]) where j is the smallest integer such that 1 ≤ j ≤ m
and o(qj) ̸= ∅.
The function N∗

2 can be constructed from N2 using O(m2) time and space. Using N∗
2

we can get the desired subsequence in linear time proportional to the length of it. We
now have the following theorem.

Theorem 2 The output function Output defined on Q×D can be realized to answer
in linear time proportional to the size of the answer, using O(|D| + m2) time and
space.



Table 2: Function N2.
The asterisks indicate the pairs (p, v) with o(p) ̸= ∅.

state aba ba a ababb babb abb bb b abca bca ca
0 (1,ba) (8,a) (1,ε) (1,babb) (8,abb) (1,bb) (8,b) (8,ε) (1,bca) (8,ca) (0,a)
1 (1,ba) (2,a) (1,ε) (1,babb) (2,abb) (1,bb) (2,b) (2,ε) (1,bca) (2,ca) (0,a)
2 (3,ba)∗ (9,a)∗ (3,ε)∗ (3,babb)∗ (9,abb)∗ (3,bb)∗ (9,b)∗ (9,ε)∗ (3,bca)∗ (9,ca)∗ (6,a)
3 (1,ba) (4,a) (1,ε) (1,babb) (4,abb) (1,bb) (4,b) (4,ε) (1,bca) (4,ca) (0,a)
4 (3,ba)∗ (5,a)∗ (3,ε)∗ (3,babb)∗ (5,abb)∗ (3,bb)∗ (5,b)∗ (5,ε)∗ (3,bca)∗ (5,ca)∗ (6,a)
5 (1,ba) (9,a)∗ (1,ε) (1,babb) (9,abb)∗ (1,bb) (9,b)∗ (9,ε)∗ (1,bca) (9,ca)∗ (0,a)
6 (7,ba)∗ (8,a) (7,ε)∗ (7,babb)∗ (8,abb) (7,bb)∗ (8,b) (8,ε) (7,bca)∗ (8,ca) (0,a)
7 (1,ba) (2,a) (1,ε) (1,babb) (2,abb) (1,bb) (2,b) (2,ε) (1,bca) (2,ca) (0,a)
8 (1,ba) (9,a)∗ (1,ε) (1,babb) (9,abb)∗ (1,bb) (9,b)∗ (9,ε)∗ (1,bca) (9,ca)∗ (0,a)
9 (1,ba) (9,a)∗ (1,ε) (1,babb) (9,abb)∗ (1,bb) (9,b)∗ (9,ε)∗ (1,bca) (9,ca)∗ (0,a)

Figure 5: Running time.

6 Experimental results

To evaluate our algorithm from the practical viewpoint, we implemented the following
three methods in the C++ language on Sun SPARCstation 20.

Method 1 A decompression into a temporary file which is followed by a search using
the AC machine.

Method 2 A method in which the AC machine runs on the decompressed substring
for each integer of the compressed text (without creating a temporary file).

Method 3 A simple version of the proposed algorithm in which the technique for
reducing the size of N1 is not applied.

Since Method 2 differs from Method 1 only in that it does not create a temporary
file, it is clear that Method 2 is faster than Method 1. Ignoring the preprocessing
time, the running time of Method 2 is O(N) while that of Method 3 is O(n), where
N is the length of the original text and n is the length of the compressed text. The
best LZW compression gives n =

√
2N . However, the LZW compression of typical

English texts normally gives n = N/2. Thus, the constant factor hidden behind the
O-notation plays a key role in the competition.



In the experiment, we used the Brown corpus as the text to be searched. The
original size is about 6.8MB and the compressed size is about 3.4MB. We measured
the CPU time to search for various sets of patterns. We excluded the preprocessing
phase because we can ignore it when the total length of patterns m is sufficiently
smaller than the text length N . The running time varies depending on the number of
pattern occurrences. Let us define the occurrence rate to be the ratio of the number
of pattern occurrences r to the original text length N . The relation between the CPU
time and the occurrence rate is shown in Figure 5. Method 3 defeats both Method 1
and Method 2. It should be emphasized that Method 3 is approximately 1.5 to 1.6
times faster than Method 2.
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