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Abstract

Sequitur due to Nevill-Manning and Witten. [19] is a powerful program
to infer a phrase hierarchy from the input text, that also provides extremely
effective compression of large quantities of semi-structured text [18]. In this
paper, we address the problem of searching in Sequitur compressed text di-
rectly. We show a compressed pattern matching algorithm that finds a pattern
in compressed text without explicit decompression. We show that our algo-
rithm is approximately 1.27 times faster than a decompression followed by an
ordinal search.

1 Introduction

Nevill-Manning and Witten [19] developed a powerful program Sequitur that infers
a phrase hierarchy from the input text. It successfully extracts some comprehensible
account of the structure of the input text, that are very useful for phrase browsing
in digital libraries. At the same time, Sequitur is very attractive as a compression
tool. The compression ratio is better than those of other dictionary-based compression
methods [18, 20, 22].

Amir et al. [1] proposed an exciting problem related to data compression. It is
referred to as compressed pattern matching problem, in which the aim is to find pattern
occurrences in compressed text without decompression. Here, the performance of the
pattern matching algorithm is measured with respect not to the size N of original
(uncompressed) text, but to the size n of compressed text. They showed a compressed
pattern matching algorithm for LZW compression that runs in O(n + m2), where m
is the length of pattern. It implies that the compressed pattern matching algorithm
for LZW compression will be asymptotically faster than the decompression followed
by an ordinary pattern matching, since n =

√
N at the best case. Their algorithm

simulates the Knuth-Morris-Pratt (KMP) automaton [10] over a sequence of phrases
instead of characters. The work stimulated a considerable amount of subsequent
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theoretical studies on compressed pattern matching that runs in o(N) time for various
compression methods.

From a practical point of view, Kida et al. [8] showed the first experimental result
that compressed pattern matching in LZW compressed files is indeed faster than
a decompression followed by an ordinary search. They generalized the algorithm
due to Amir et al. so that it can report all occurrences of multiple patterns for
LZW compressed files. Followed this work, a good deal of practical effort has been
made on compressed pattern matching for LZW [17], LZ77 [17], pattern substitution
method [23], and so on.

From a theoretical viewpoint, on the other hand, Kida et al. [6] introduced a collage
system as a unifying framework which abstracts various dictionary-based compression
methods. Through the collage systems, many dictionary-based compression methods
can be categorized into some classes (Fig. 1) and we can capture the essence of each
compression method in the matter of compressed pattern matching. They also showed
a general pattern matching algorithm for text strings in terms of collage system, that
generalizes the algorithm due to Amir et al. considerably. Shibata et al. [24] showed
a general pattern matching algorithm based on the Boyer-Moore (BM) [2] for text
strings in terms of collage system. KMP and BM are known as the most important
basic algorithms for searching in usual (uncompressed) texts.

The main purpose of this paper is to establish a compressed pattern matching
algorithm for Sequitur and estimate its practical behavior. Since Sequitur is
categorized as dictionary-based compression methods and we can treat it naturally
as a collage system (Fig. 1), technically, we have only to adjust the general algorithm
to Sequitur. Our experiments show that our algorithm is approximately 1.27 times
faster than a decompression followed by an ordinary search. These results give us a
strong evidence that the collage system is quite powerful and useful in compressed
pattern matching.

Recently, Kieffer et al. [9] investigated a type of lossless source code called a
grammar-based code. In a grammar-based code, text string is first converted into a
context-free grammar from which the original text can be fully constructed, and then
encoded. We remark that the framework of collage systems is more general than their
scheme in the sense that every grammar used in their scheme belongs to the same
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subclass of collage systems as Sequitur does.
We introduce some notation. Let Σ be a finite alphabet. An element of Σ∗ is

called a string. Strings x, y, and z are said to be a prefix, factor, and suffix of the
string u = xyz, respectively. A prefix, factor, and suffix of a string u is said to be
proper if it is not u. The length of a string u is denoted by |u|. The empty string
is denoted by ε, that is, |ε| = 0. The ith symbol of a string u is denoted by u[i] for
1 ≤ i ≤ |u|, and the factor of a string u that begins at position i and ends at position
j is denoted by u[i : j] for 1 ≤ i ≤ j ≤ |u|. For convenience, let u[i : j] = ε for j < i.
Denote by uR the reversed string of a string u. For a string u and a non-negative
integer i, the string obtained by removing the length i prefix (resp. suffix) from u is
denoted by [i]u (resp. u[i]). That is, [i]u = u[i + 1 : |u|] and u[i] = u[1 : |u| − i].

2 Sequitur

Sequitur is an algorithm that forms a grammar from a sequence of discrete symbols
and it is also utilized for an effective compression model. The basic idea of Sequitur
is to replace phrases which appear more than once by nonterminal symbols. Each
repetition gives rise to a rule in the grammar. In the process of the algorithm, the
following two properties should be hold in order to reduce the whole size of the
grammar.

(p1) : no pair of adjacent symbols appears more than once in the grammar.

(p2) : every rule is used more than once.

Property p1 assures the uniqueness of all rules in the grammar, while property p2

ensures that each rule is useful. In [19], Nevill-Manning et al. proposed a linear time
algorithm to infer rules from given text, by effectively using data structures based on
doubly linked lists. For example, a text ‘abcdbcabcd’ will be transformed into the
following three rules, where S is the start symbol, and A and C are nonterminals.

S → CAC

A → bc

C → aAd

You can easily recover the original text from these rules by substitutions.
As a compression tool, these rules have to be encoded into a sequence of bits

compactly. At first, Sequitur converts a set of rules into a single sequence as
follows. Started from the start symbol S, repeat the procedure recursively: when a
new nonterminal appears, embed it with its definition. For example, the above set of
rules will be the sequence

C(:= aA(:= bc)d)AC.

Then the sequence is encoded by using the arithmetic coder.
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3 A unifying framework for compressed pattern

matching

In a dictionary-based compression, a text string is described by a pair of a dictionary
and a sequence of tokens, each of which represents a phrase defined in the dictionary.
Kida et al. [6] introduced a unifying framework, named collage system, which ab-
stracts various dictionary-based methods, such as the Lempel-Ziv family, Sequitur,
Re-Pair [11], and static dictionary methods. They presented a general compressed
pattern matching algorithm for the framework, which is based on the simulation of
the KMP automaton[6]. This implies that any compression method covered by the
framework has a compressed pattern matching algorithm as an instance.

3.1 Collage system

A collage system is a pair ⟨D,S⟩ defined as follows: D is a sequence of assignments
X1 =expr1; X2 =expr2; · · · ; Xℓ =exprℓ, where each Xk is a token (or a variable) and
exprk is any of the forms:

a for a ∈ Σ ∪ {ε}, (primitive assignment)
XiXj for i, j < k, (concatenation)
[j]Xi for i < k and an integer j, (prefix truncation)

X
[j]
i for i < k and an integer j, (suffix truncation)

(Xi)
j for i < k and an integer j. (j times repetition)

Each token represents a string obtained by evaluating the expression as it implies.
The strings represented by tokens are called phrases. As we want to distinguish a
token from the phrase it represents, we denote by X.u the phrase represented by a
token X. The size of D is the number ℓ of assignments and denoted by ∥D∥. Define
the height of a token X to be the height of the syntax tree whose root is X. The
height of D is defined by height(D) = max{height(X) | X in D}. It expresses the
maximum dependency of the tokens in D.

On the other hand, S = Xi1 , Xi2 , . . . , Xin is a sequence of tokens defined in D. We
denote by |S| the number n of tokens in S. The collage system represents a string
obtained by concatenating the phrases represented by Xi1 , Xi2 , . . . , Xin .

According to the framework, text strings compressed by LZW, Sequitur, and
Re-Pair can be represented as follows. Notice that both of these collage systems are
truncation-free.

LZW [25]. S = Xi1 , Xi2 , . . . , Xin and D is as follows:

X1 = a1; X2 = a2; · · · ; Xq = aq;
Xq+1 = Xi1Xσ(i2); Xq+2 = Xi2Xσ(i3); · · · ;
Xq+n−1 = Xin−1Xσ(in),

where the alphabet is Σ = {a1, . . . , aq}, 1 ≤ i1 ≤ q, and σ(ℓ) denotes the integer k,
1 ≤ k ≤ q, such that ak is the first symbol of the phrase Xℓ.u. S is encoded as a
sequence of integers i1, i2, . . . , in in which an integer ij is represented in ⌈log2(q + j)⌉
bits, while D is not encoded since it can be obtained from S.
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Input: Pattern π and collage system consisting of D and S = S[1 : n].
Output: All occurrences of π in the original text.
begin
/* Construction of Jump and Output */

Construct Jump and Output from pattern π and dictionary D
/* Scanning S */

state := 0; ℓ := 0;
for i := 1 to n do begin

for each d ∈ Output(state,S[i]) do
Report a pattern occurrence that ends at position ℓ + d;

state := Jump(state,S[i]); ℓ := ℓ + |S[i].u|
end

end.

Figure 2: General algorithm for searching in a collage system.

Sequitur [19] and Re-Pair [11]. S = Xi1 , Xi2 , . . . , Xin , and D is as follows:

X1 = a1; X2 = a2; · · · ; Xq = aq;
Xq+1 = Xℓ(1)Xr(1); Xq+2 = Xℓ(2)Xr(2); · · · ;
Xq+s = Xℓ(s)Xr(s),

where Σ = {a1, · · · , aq}. D and S are encoded using some appropriate encoding.
Concerning with the previous example, the rule S → CAC directly corresponds to
S, and the other rules correspond to D. Remark that S is clearly separated from D
here, while they are converted into an interleaved sequence when it is encoded.

3.2 Pattern matching in collage systems

Our problem is defined as follows.

Given a pattern π = π[1 : m] and a collage system ⟨D,S⟩ with S =
S[1 : n], find all locations at which π occurs within the original text
S[1].u · S[2].u · · · S[n].u.

Figure 2 gives an overview of the algorithm due to Kida et al. [6], which processes
S token-by-token. The algorithm simulates the move of the KMP automaton run-
ning on the original text, by using two functions Jump and Output, both take as
input a state and a token. The former is used to substitute just one state transition
for the consecutive state transitions of the KMP automaton caused by each of the
phrases, and the latter is used to report all pattern occurrences found during the state
transitions. Thus the definitions of the two functions are as follows.

Jump(j, t) = δ(j, t.u),

Output(j, t) =

{
|v|

∣∣∣∣∣ v is a non-empty prefix of t.u
such that δ(j, v) is the final state

}
,
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where δ is the state transition function of the KMP automaton. This idea is a
generalization of the algorithm due to Amir et al. [1], which was restricted to LZW
compressed texts.

Theorem 1 (Kida et al. [6]) In the algorithm in Fig. 2, Jump and Output can be
constructed in O(height(D) · ∥D∥+m2) time using O(∥D∥+m2) space. The scanning
part consumes O(height(D) ·n+r) time, where r is the number of pattern occurrences.
The factor height(D) can be dropped if the dictionary D is truncation-free.

The above theorem implies that if the dictionary D is truncation-free, the total
running time is linear with respect to the size of ⟨D,S⟩, the compressed text. As
we have shown, the collage systems for Sequitur and LZW are truncation-free.
On the other hand, the collage systems for LZ77 and LZSS compression requires
truncations [8]. These facts correspond with the observations that LZW is suitable
for compressed pattern matching, while LZSS is not [7, 8, 17]. As we will show below,
Sequitur is also suitable for compressed pattern matching.

3.3 Searching in Sequitur compressed files

We briefly state on the modification of the general pattern matching algorithm that
are specific to Sequitur. In Sequitur, the encoding of the dictionary D is inter-
leaved with that of S, as we explained in Section 2. Therefore, we have to extract D
incrementally in the token-by-token processing of S, and the constructions of Jump
and Output are merged into the scanning part (see Fig. 2 again).

4 Experimental results

In this section, we discuss the compression ratio, compression/decompression time
and searching time. Our experiments were carried out on an AlphaStation XP1000
with an Alpha21264 processor at 667MHz running Tru64 UNIX operating system
V4.0F and used the following texts:

• Brown corpus: A well-known collection of English sentences, which was com-
piled in the early 1960s at Brown university, USA. The file size is about 6.8
Mbyte.

• Genbank: A subset of the Genbank database, an annotated collection of all
publicly available DNA sequences. The file size is about 17Mbyte.

First of all, we estimated the compression ratio and the compression and de-
compression time of Sequitur in comparison with well-known compression tools
Compress and Gzip. The results are shown in Table 1.

We verified that the compression ratio of Sequitur outperforms Gzip as well as
Compress. On the other hand, however, the compression and decompression are very
slow compared to Gzip and Compress, because Sequitur utilizes the arithmetic cod-
ing that is time consuming, and the program might not be fully optimized. From our
view point of compressed pattern matching, compression time is not a serious matter,
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while the decompression time is critical. In the original program of Sequitur, de-
compression routine borrows the same data structures, such as doubly linked list, that
are unnecessary for decompression only. Thus we simply rewrote the decompression
routine using a standard array. The improved time of decompression is shown in the
last rows in Table 1.

We now consider the performance of our compressed pattern matching algorithm.
We compared the running time of the following three methods:

(A) Original decompression followed by KMP matching.

We did not combine the decompression and the search programs using the
UNIX ‘pipe’ because this is slow. Instead, we incorporated the KMP algorithm
into these decompression programs, so that the KMP automaton processes the
decoded characters directly.

(B) Improved decompression followed by KMP matching.

The same as (A) except that the decompression routine is improved as we stated.

(C) Compressed pattern matching.

We implemented the algorithm presented in the previous section in searching
Sequitur compressed text directly. Here, we do not explicitly recover the
original text file.

We performed the experiments as follows. The length of target pattern varied
from 5 to 30. For each length, we randomly chose 10 substrings from the original
text as target patterns. For each pattern, we ran these programs 10 times, and we
calculated the average running time (CPU time). Fig. 3 shows the results. We can
observe that (C) is faster than (B) as well as (A). In fact the running time of (C) is
even reduced to about 25% of (B), regardless the pattern length.

Moreover, we suspected that the most expensive part in decompression would be
the arithmetic coder routine. In order to estimate the time consumed this routine,
we constructed a skeleton program from the decompression program, that consists of
only the lines related to the arithmetic coding. We plotted the estimated time as (*)

Table 1: Performance of Sequitur compared with Compress and Gzip. The com-
pression/decompression times are CPU times in sec.

Sequitur Compress Gzip Gzip -9
Brown Corpus compression ratio 0.34 0.44 0.39 0.39
(6.83Mbyte) comp. time 35.93 1.02 3.54 5.07

decomp. time 8.93 0.61 0.33 0.33
improved decomp. time 7.45 — — —

Genbank compression ratio 0.21 0.27 0.23 0.22
(17.11Mbyte) comp. time 197.14 1.91 13.79 62.03

decomp. time 17.47 1.30 0.57 0.55
improved decomp. time 14.87 — — —
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Figure 3: Searching time, where (A): decompression followed by KMP matching, (B):
improved decompression followed by KMP matching, and (C): compressed pattern
matching. We show the time to decode by the arithmetic coder as (*).

in Fig 3. It turned out that the arithmetic coder wastes 84% of compressed pattern
matching (C). It should be noticed that the routine is common to all of (A), (B), and
(C). If the decoder runs faster, the running time of (C) relative to (B) and (A) will
be increased. One choice is to use Huffman coding instead of arithmetic coding since
it is faster, while the compression ratio will be worse.

5 Conclusion

We showed a KMP type algorithm for compressed pattern matching for Sequitur
compressed texts, and it is about 1.27 times faster than a decompression followed
by KMP matching. The results make Sequitur more attractive as a compression
tool. Through a series of our experiments, we have realized some room for further
improvement in the current implementation of Sequitur in order to enable faster
compressed matching.

• Dictionary D should be encoded separately from the sequential part S. More-
over, since the dependency of all rules produced by Sequitur forms a directed
acyclic graph, we should encode them in the topological order so that each rule
is defined before it appears at other rules. For example, when encoding the rules
{S → CAC, A → bc, C → aAd}, we should encode A, C, and then S. Then
the construction of Jump and Output is clearly separated from scanning part in
our algorithm, and we can avoid recursions when reconstructing the rules.

• For faster compressed pattern matching, the dictionary part should not be too
large, since the size of automaton depends on the dictionary. One extreme
example is Byte Pair Encoding methods [4], where the number of rules is limited
to 256, that is verified to be quite suitable for compressed pattern matching [23,
24]. In this sense, the approach to limit the memory requirement in [21] will be
promising.

• Arithmetic coder may not be appropriate for our purpose, since it wastes most
of the decompression time.
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Unfortunately, the above discussion is beyond the scope of collage systems, in which
we have ignored in the process of abstraction. Nothing to say, however, the practical
behavior heavily depends on these constant factors. We hope to establish another
better framework to capture these factors.

We finally note some trends on the compressed pattern matching shortly. A more
ambitious goal (Goal 2) is to perform a faster search in compressed files in comparison
with an ordinary search in the original files. In this case, the aim of compression is
not only to reduce disk storage requirement but also to speed up string searching
task. For some compression methods, in fact this goal has been achieved [3, 12, 15,
23, 24]. Moreover, approximate string matching is also aimed for LZ78/LZW format
[5, 13], although practically even the first goal has not established yet. In their
recent work [16], however, Navarro et al. took a practical approach, which reduces
the problem to multipattern searching of pattern pieces plus local decompression
and direct verification of candidate text areas, and showed experimentally that this
solution achieves the first goal for moderate error level. Since the general pattern
matching algorithm used in this paper can be extended to multipattern searching for
regular collage systems [14], and Sequitur belongs to this class, we are sure that
approximate string matching for Sequitur is also efficiently possible.
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