
Shift-And Approach to Pattern Matching

in LZW Compressed Text

Takuya Kida, Masayuki Takeda, Ayumi Shinohara, and Setsuo Arikawa

Department of Informatics, Kyushu University 33
Fukuoka 812-8581, Japan

{kida, takeda, ayumi, arikawa}@i.kyushu-u.ac.jp

Abstract. This paper considers the Shift-And approach to the problem
of pattern matching in LZW compressed text, and gives a new algorithm
that solves it. The algorithm is indeed fast when a pattern length is
at most 32, or the word length. After an O(m + |Σ|) time and O(|Σ|)
space preprocessing of a pattern, it scans an LZW compressed text in
O(n + r) time and reports all occurrences of the pattern, where n is the
compressed text length, m is the pattern length, and r is the number of
the pattern occurrences. Experimental results show that it runs approxi-
mately 1.5 times faster than a decompression followed by a simple search
using the Shift-And algorithm. Moreover, the algorithm can be extended
to the generalized pattern matching, to the pattern matching with k
mismatches, and to the multiple pattern matching, like the Shift-And
algorithm.

1 Introduction

Pattern matching in compressed text is one of the most interesting topics in the
combinatorial pattern matching. Several researchers tackled this problem. Eilam-
Tzoreff and Vishkin [8] addressed the run-length compression, and Amir, Lan-
dau, and Vishikin [6], and Amir and Benson [2, 3] and Amir, Benson, and Farach
[4] addressed its two-dimensional version. Farach and Thorup [9] and Ga̧sieniec,
et al. [11] addressed the LZ77 compression [18]. Amir, Benson, and Farach [5]
addressed the LZW compression [16]. Karpinski, et al. [12] and Miyazaki, et al.
[15] addressed the straight-line programs. However, it seems that most of these
studies were undertaken mainly from the theoretical viewpoint. Concerning the
practical aspect, Manber [14] pointed out at CPM’94 as follows.

It is not clear, for example, whether in practice the compressed search
in [5] will indeed be faster than a regular decompression followed by a
fast search.

In 1998 we gave in [13] an affirmative answer to the above question: We
presented an algorithm for finding multiple patterns in LZW compressed text,
which is a variant of the Amir-Benson-Farach algorithm [5], and showed that in
practice the algorithm is faster than a decompression followed by a simple search.

M. Crochemore, M. Paterson (Eds.): CPM’99, LNCS 1645, pp. 1–13, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

2 Takuya Kida et al.

Namely, it was proved that pattern matching in compressed text is not only of
theoretical interest but also of practical interest. We believe that fast pattern
matching in compressed text is of great importance since there is a remarkable
explosion of machine readable text files, which are often stored in compressed
forms.

On the other hand, the Shift-And approach [1, 7, 17] to the classical pattern
matching is widely known to be efficient in many practical applications. This
method is simple, but very fast when a pattern length is not greater than the
word length of typical computers, say 32. In this paper, we apply this method
to the problem of pattern matching in LZW compressed text and then give a
new algorithm that solves it. Let m, n, r be the pattern length, the length of
compressed text, and the number of occurrences of the pattern in the original
text, respectively. The algorithm, after an O(m + |Σ|) time and O(|Σ|) space
preprocessing of a pattern, scans a compressed text in O(n + r) time using
O(n+m) space and reports all occurrences of the pattern in the original text. The
O(r) time is devoted only to reporting the pattern occurrences. Experimental
results on the Brown corpus show that the proposed algorithm is approximately
1.5 times faster than a decompression followed by a search using the Shift-And
method. Moreover, the algorithm can be extended to (1) the generalized pattern
matching, to (2) the pattern matching with k mismatches, and to (3) the multiple
pattern matching.

We assume, throughout this paper, that m ≤ 32 and that the arithmetic op-
erations, the bitwise logical operations, and the logarithm operation on integers
can be performed in constant time.

The organization of this paper is as follows: We briefly sketch the LZW
compression method, and the Shift-And pattern matching algorithm. We present
our algorithm and discuss the complexity in Section 3. In Section 4, we show the
experimental results in comparison with both an LZW decompression followed
by a search using the Shift-And method and the previous algorithm presented
in [13]. In Section 5 we shall discuss the extensions of the algorithm to the
generalized pattern matching, to the pattern matching with k mismatches, and
to the multiple pattern matching.

2 Preliminaries

We first define some notation. Let Σ, usually called an alphabet, be a finite set
of characters, and Σ∗ be a set of strings over Σ. We denote the length of u ∈ Σ∗

by |u|. We call especially the string whose length is 0 null string, and denote it
by ε. We denote by u[i] the ith character of a string u, and by u[i : j] the string
u[i]u[i + 1]...u[j], 1 ≤ i ≤ j ≤ |u|. For a set A of integers and an integer k, let
A⊕ k = {i + k | i ∈ A} and k 	A = {k − i | i ∈ A}.

In the following subsections we briefly sketch the LZW compression method
and the Shift-And pattern matching algorithm.

Shift-And Approach to Pattern Matching in LZW Compressed Text 3

1, a0

2, b

3, c

4, b

5, a

6, a

8, b
7, b

9, c
10,a

11,b

12,a

1,2, 2,4, 4, 5, 6,3, 9, 11Compressed text

Original text a b a b a b b a b c a b a b c a b a b

Fig. 1. Dictionary trie.

2.1 LZW Compression

The LZW compression is a very popular compression method. It is adopted as
the compress command of UNIX, for instance. It parses a text into phrases and
replaces them with pointers to the dictionary. The dictionary initially consists
of the characters in Σ. The compression procedure repeatedly finds the longest
match in the current position and updates the dictionary by adding the concate-
nation of the match and the next character. The dictionary is implemented as
a trie structure, in which each node represents a phrase in it. The matches are
encoded as integers associated with the corresponding nodes of the dictionary
trie. The update of the dictionary is executed in O(1) time by creating a new
node labeled by the next character as a child of the node corresponding to the
current match.

Figure 1 shows the dictionary trie for the text abababbabcababcabab, assuming
the alphabet Σ = {a, b, c}. Hereafter, we identify the string u with the integer
representing it, if no confusion occurs.

The dictionary trie is removed after the compression is completed. It can be
reconstructed from the compressed text. In the decompression, the original text
is obtained with the aid of the recovered dictionary trie. This decompression
takes linear time proportional to the length of the original text. However, if the
original text is not required, the dictionary trie can be built only in O(n) time,
where n is the length of the compressed text. The algorithm for constructing the
dictionary trie from a compressed text is summarized in Figure 2.

2.2 The Shift-And Pattern Matching Algorithm

The Shift-And pattern matching algorithm was proposed by Abrahamson [1],
Baeza-Yates and Gonnet [7], and Wu and Manber [17]. In the following, we
present the algorithm according to the notation in [1].

Let P = P [1 : m] be a pattern of length m, and T = T [1 : N] be a text of
length N . For k = 0, 1, . . . , N , let

Rk =
{
1 ≤ i ≤ m

∣∣ i ≤ k and P [1 : i] = T [k − i + 1 : k]
}
, (1)

4 Takuya Kida et al.

Input. An LZW compressed text u1u2 . . . un.
Output. Dictionary D represented in the form of trie.
Method.
begin

D := Σ;
for i := 1 to n− 1 do begin

if ui+1 ≤ |D| then
let a be the first character of ui+1

else
let a be the first character of ui;

D := D ∪ {ui · a}
end

end.

Fig. 2. Reconstruction of dictionary trie.

and for any a ∈ Σ, let

M(a) =
{
1 ≤ i ≤ m

∣∣ P [i] = a
}
. (2)

Definition 1. Define the function f : 2{1,2,... ,m} ×Σ → 2{1,2,... ,m} by

f(S, a) =
(
(S ⊕ 1) ∪ {1}

)
∩M(a),

where S ⊆ {1, · · · , m} and a ∈ Σ.

Using this function we can compute the values of Rk for k = 1, 2, . . . , N by

1. R0 = ∅,
2. Rk+1 = f(Rk, T [k + 1]) (k ≥ 0).

For k = 1, 2, . . . , N , the algorithm reads the k-th character of the text, computes
the value of Rk, and then examine whether m is in Rk. If m ∈ Rk, then T [k −
m + 1 : k] = P , that is, there is a pattern occurrence at position k − m + 1 of
the text. Note that we can regard Rk as states of the KMP automaton, and f
acts as the state transition function.

When m ≤ 32, we can represent the sets Rk and M(a) as m-bit integers.
Then, we can calculate the integers Rk by

1. R0 = 0,
2. Rk+1 = ((Rk � 1) + 1) & M(T [k + 1]) (k ≥ 0),

where ’�’ and ’&’ denote the bit-shift operation and the bitwise logical product,
respectively. We can get a pattern occurrence if Rk&2m−1 6= 0. For example, the
values of Rk for k = 0, 1, . . . are shown in Figure 3, where T = abababbabcababc
and P = ababc.

Shift-And Approach to Pattern Matching in LZW Compressed Text 5

The time complexity of this algorithm is O(mN). However, the bitwise logical
product, the bit-shift, and the arithmetic operations on 32 bit integers can be
performed at high speed, and thus be considered to be done in O(1) time. Then
we can regard the time complexity as O(N) if m is at most 32 (in fact such a
case occurs very often).

original text: a b a b a b b a b c a b a b c
a 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 0
b 0 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0

Rk: a 0→ 0→ 0→ 1→ 0→ 1→ 0→ 0→ 0→ 0→ 0→ 0→ 0→ 1→ 0→ 0
b 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0
c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

4

Fig. 3. Behavior of the Shift-And algorithm.
The symbol 4 indicates that a pattern occurrence is found at that
position.

3 Proposed Algorithm

We want to design a new pattern matching algorithm that runs on an LZW com-
pressed text and simulates the behavior of the Shift-And algorithm on the origi-
nal text. Assume that the text is parsed as u1u2 . . . un. Let ki = |u1u2 . . . ui| for
i = 0, 1, . . . , n. Our idea is to compute only the values of Rki for i = 1, 2, . . . , n,
to achieve a linear time complexity which is proportional not to the original text
length N but to the compressed text length n.

Definition 2. Let f̂ be the function f extended to 2{1,... ,m} ×Σ∗ by

f̂(S, ε) = S and f̂(S, ua) = f(f̂(S, u), a),

where S ⊆ {1, · · · , m}, u ∈ Σ∗ and a ∈ Σ.

Lemma 1. Suppose that the text is T = xuy with x, u, y ∈ Σ∗ and u 6= ε. Then,

R|xu| = f̂(R|x|, u).

Proof. It follows directly from the definition of f̂ .

Let D be the set of phrases in the dictionary. If we have the values of f̂ for
the domain 2{1,... ,m} ×D, we can compute the value Rki+1 = f̂(Rki , ui+1) from
Rki and ui+1 for each i = 0, 1, . . . , n − 1. As shown later, we can perform the
computation only in O(1) time by executing the bit-shift and the bitwise logical
operations, using the function M̂ defined as follows.

6 Takuya Kida et al.

Definition 3. For any u ∈ Σ∗, let M̂(u) = f̂({1, . . . , m}, u).

Lemma 2. For any S ⊆ {1, . . . , m} and any u ∈ Σ∗,

f̂(S, u) =
(
(S ⊕ |u|) ∪ {1, 2, . . . , |u|}

)
∩ M̂(u).

Proof. By induction on |u|. It is easy for u = ε. Suppose u = u′a with u′ ∈ Σ∗

and a ∈ Σ. We have, from the induction hypothesis,

f̂(S, u′) =
(
(S ⊕ |u′|) ∪ {1, 2, . . . , |u′|}

)
∩ M̂(u′).

It follows from the definition of f that, for any S1, S2 ⊆ {1, 2, . . . , m} and for any
a ∈ Σ, f(S1∩S2, a) = f(S1, a)∩f(S2, a) and f(S1∪S2, a) = f(S1, a)∪f(S2, a).
Then,

f̂(S, u) =
(
f(S ⊕ |u′|, a) ∪ f({1, 2, . . . , |u′|}, a)

)
∩ f(M̂(u′), a)

=
(
(S ⊕ |u|) ∪ {1, 2, . . . , |u|}

)
∩ M̂(u).

Lemma 3. The function which takes as input u ∈ D and returns in O(1) time
the m-bit representation of the set M̂(u), can be realized in O(|D| + m) time
using O(|D|) space.

Proof. Since M̂(u) ⊆ {1, . . . , m}, we can store M̂(u) as an m-bit integer in the
node u of the dictionary trie D. Suppose u = u′a with u′ ∈ D and a ∈ Σ. M̂(u)
can be computed in O(1) time from M̂(u′) and M(a) when the node u is added
to the dictionary trie since M̂(u) = f(M̂(u′), a) =

(
(M̂(u′)⊕ 1

)
∪ {1}) ∩M(a).

Since the table M(a) is computed in O(|Σ| + m) time using O(|Σ|) space and
Σ ⊆ D, the total time and space complexities are O(|D| + m) and O(|D|),
respectively.

Now we have the following theorem from Lemmas 1, 2, and 3.

Theorem 1. The function which takes as input (S, u) ∈ 2{1,... ,m} × D and
returns in O(1) time the m-bit representation of the set f̂(S, u), can be realized
in O(|D|+ m) time using O(|D|) space.

Since |D| = O(n), we can perform in O(n + m) time the computation of
Rki for i = 1, . . . , n by executing the bit-shift and the bitwise logical opera-
tions. However, we have to examine whether m ∈ Rj for every j = 1, 2, . . . , N .
For a complete simulation of the move of the Shift-And algorithm, we need a
mechanism for enumerating the set Output(Rki , ui+1) defined as follows.

Definition 4. For S ⊆ {1, . . . , m} and u ∈ D, let

Output(S, u) =
{
1 ≤ i ≤ |u|

∣∣ m ∈ f̂(S, u[1 : i])
}
.

Shift-And Approach to Pattern Matching in LZW Compressed Text 7

To realize the procedure enumerating the set Output, we define the following
sets.

Definition 5. For any u ∈ D, let

U(u) =
{
1 ≤ i ≤ |u|

∣∣ i < m and m ∈ M̂(u[1 : i])
}
, and

V (u) =
{
1 ≤ i ≤ |u|

∣∣ i ≥ m and m ∈ M̂(u[1 : i])
}
.

Then, we have the following lemma.

Lemma 4. For any S ⊆ {1, . . . , m} and any u ∈ Σ∗,

Output(S, u) =
(
(m	 S) ∩ U(u)

)
∪ V (u).

Proof. By Lemma 2 and Definitions 4 and 5, we obtain:

Output(S, u) = {1 ≤ i ≤ |u| | i < m and m ∈ (S ⊕ i) ∩ M̂(u[1 : i])}
∪{1 ≤ i ≤ |u| | m ≤ i and m ∈ M̂(u[1 : i])}

=
(
(m	 S) ∩ U(u)

)
∪ V (u).

Since U(u) ⊆ {1, . . . , m}, we can store the set U(u) as an m-bit integer in the
node u of the dictionary trie D.

Lemma 5. The function which takes as input u ∈ D and returns in O(1) time
the m-bit representation of U(u), can be realized in O(|D|+m) time using O(|D|)
space.

Proof. By the definition of U , for any u = u′a with u′ ∈ Σ∗ and a ∈ Σ,

U(u) = U(u′) ∪
{
|u|

∣∣ |u| < m and m ∈ M̂(u)
}
.

Then, we can prove the lemma in a similar way to the proof of Lemma 3.

To eliminate the cost of performing the operation 	 in (m 	 S) ∩ U(u), we
store the set U ′(u) = m	U(u) instead of U(u). Then, we can obtain the integer
representing the set S ∩ U ′(u) by one execution of the bitwise logical product
operation. For an enumeration of the set, we repeatedly use the logarithm op-
eration to find the leftmost bit of the integer that is one. Assuming that the
logarithm operation can be performed in constant time, this enumeration takes
only linear time proportional to the set size.

Next, we consider V (u). Since the set V (u) cannot be represented as an m-bit
integer, we shall represent it as a linked list as shown in the proof of the next
lemma.

Lemma 6. The procedure which takes as input u ∈ D and enumerates the set
V (u), can be realized in O(|D| + m) time using O(|D|) space, so that it runs in
linear time with respect to |V (u)|.

8 Takuya Kida et al.

Proof. By the definition of V , for any u = u′a with u′ ∈ Σ∗ and a ∈ Σ,

V (u) = V (u′) ∪
{
|u|

∣∣ m ≤ |u| and m ∈ M̂(u)
}
.

We use the function Prev(u) that returns the node of the dictionary trie D that
represents the longest proper prefix v of u such that |v| ∈ V (u). Then, we have

V (u) = V (Prev(u)) ∪
{
|u|

∣∣ m ≤ |u| and m ∈ M̂(u)
}
.

The function Prev(u) can be realized to answer in O(1) time, using O(|D|) time
and space. Therefore it is sufficient to store in every node u of the dictionary
trie D the value Prev(u) and the boolean value in V (u) indicating whether
|u| ∈ V (u). The proof is now complete.

From Lemmas 4, 5, and 6, we have the following theorem.

Theorem 2. The procedure which takes as input (S, u) ∈ 2{1,... ,m} × D and
enumerates the set Output(S, u), can be realized in O(|D|+m) time using O(|D|)
space, so that it runs in linear time with respect to |Output(S, u)|.

Now we can simulate the behavior of the Shift-And algorithm on an un-
compressed text completely. The algorithm is summarized as in Figure 4. The
behavior of the new algorithm is illustrated in Figure 5.

Theorem 3. The algorithm of Figure 4 runs in O(|Σ|+ m + n + r) time using
O(|Σ|+ m + n) space, where r is the number of pattern occurrences.

4 Experimental Results

In order to estimate the performance of the proposed algorithm, we carried out
some experiments on the following four methods.

Method 1. A decompression followed by the Shift-And algorithm.
Method 2. Our previous algorithm presented in [13].
Method 3. The new algorithm proposed in this paper.
Method 4. Searching the uncompressed text, using the Shift-And algorithm.

In our experiments we used the Brown corpus as the text to be searched. The
uncompressed size is about 6.8Mb and the compressed size is about 3.4Mb. The
experiments were performed in the following two different situations.

Situation 1. Workstation (SPARCstation 20) with remote disk storage. The
file transfer ratio is 0.96 Mbyte/sec.

Situation 2. Workstation (SPARCstation 20) with local disk storage. The file
transfer ratio is 3.27 Mbyte/sec.

Shift-And Approach to Pattern Matching in LZW Compressed Text 9

Input. An LZW compressed text u1u2...un and a pattern P .
Output. All positions at which P occurs.
begin

/* We represent the set V (u) by the functions Prev(u) and in V (u).
See the proof of Lemma 6. */

/* Preprocessing */
Construct the table M from P ;
D := ∅; U ′(ε) := ∅; in V (ε) := false; Prev(ε) := ε;
for each a ∈ Σ do call Update(ε, a);

/* Text scanning */
k := 0; R := ∅;
for ` := 1 to n do begin

call Update(u`−1, u`); /* We assume u0 = ε./
for each p ∈ �R ∩ U ′(u`)

� ∪ V (u`) do
report a pattern occurrence at position k + p−m + 1;

R :=
�
(R⊕ |u`|) ∪ {1, 2, . . . , |u`|}

� ∩ cM(u`);
k := k + |u`|

end
end.

procedure Update(u, v)
begin

if v ≤ |D| then
let a be the first character of v

else
let a be the first character of u;

D := D ∪ {u · a};
cM(u · a) := ((cM(u)⊕ 1) ∪ {1}) ∩M(a);
if |u · a| < m then

if m ∈ cM(u · a) then
U ′(u · a) := U ′(u) ∪ {m− |u · a|}

else
U ′(u · a) := U ′(u)

else begin
U ′(u · a) := ∅;
if m ∈ cM(u · a) then

in V (u · a) := true
else

in V (u · a) := false;
if in V (u) = true then

Prev(u · a) := u
else

Prev(u · a) := Prev(u)
end

end;

Fig. 4. Pattern matching algorithm in LZW compressed text

10 Takuya Kida et al.

original text: a b ab ab ba b c aba bc
compressed text: 1 2 4 4 5 2 3 6 9

a 0 1 0 0 0 1 0 0 1 0
b 0 0 1 1 1 0 1 0 0 0

Rk: a 0 −→ 0 −→ 0 −→ 0 −→ 0 −→ 0 −→ 0 −→ 0 −→ 1 −→ 0
b 0 0 0 1 1 0 0 0 0 0
c 0 0 0 0 0 0 0 0 0 1

...
...

...
...

...
...

...
...

...
Output(Rk, u`): ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ {2}

Fig. 5. Behavior of the algorithm.

Table 1. CPU time and elapsed time.

elapsed time (sec)
method CPU time (sec) Situation 1 Situation 2

Method 1 7.52 8.16 7.62

Method 2 6.57 7.31 6.83

Method 3 5.15 6.05 5.41

Method 4 3.09 9.36 3.25

The searching times, measured in both the CPU time and the elapsed time,
are shown in Table 1, where we included the preprocessing time.

Although the time complexities of our algorithms are linear with respect to
the compressed text size n not to the original size N , the LZW compression
of typical English texts normally gives n = N/2 and thus the constant factor
is crucial. It is observed from Table 1 that, in the CPU time comparison, our
algorithms (Methods 2 and 3) are slower than the uncompressed case (Method 4)
whereas they are faster than a decompression followed by a search (Method 1).
It is also observed that the new algorithm (Method 3) is about 1.3 times faster
than the previous one (Method 2).

In general, the searching time is the sum of (1) the file I/O time and (2)
the CPU time consumed for compressed pattern matching. Text compression
reduces the file I/O time at the same ratio as the compression ratio while it may
increase the CPU time. When the data transfer is slow, we have to give a weight
to the reduction of the file I/O time, and a good compression ratio leads to a fast
search. In fact, even a decompression followed by a simple search (Method 1)
was faster than the uncompressed search (Method 4) in Situation 1. It should
be noted that, in this situation, the previous algorithm (Method 2) and the new
algorithm (Method 3) are faster than the uncompressed case (Method 4), and
especially the latter is approximately 1.5 times faster than the uncompressed
case.

On the contrary, in the situations that the data transfer is ralatively fast, the
CPU time becomes a dominant factor. It is observed that, like in the CPU time

Shift-And Approach to Pattern Matching in LZW Compressed Text 11

comparison, Methods 2 and 3 are slower than Method 4 while they are faster
than Method 1 in the elapsed time comparison in Situation 2.

Thus we conclude that, for the LZW compression, the compressed search is
indeed faster than a decompression followed by a fast search, and that the Shift-
And approach is effective in the LZW compressed pattern matching. When the
data transfer is slow, e.g. network environments, the compressed search can be
faster than the uncompressed search.

5 Extensions

In this section, we mention how to extend our algorithm.

5.1 Generalized Pattern Matching

The generalized pattern matching problem [1] is a pattern matching problem in
which a pattern element is a set of characters. For instance, (b + c + h + l)ook
is a pattern that matches the strings book, cook, hook, and look. Formally, let
∆ = {X ⊆ Σ | X 6= ∅} and P = X1...Xm (Xi ∈ ∆). Then we want to find all
integers i such that T [i : i + m− 1] ∈ P .

It is not difficult to extend our algorithm to the problem. We have only
to modify some equations: For example, we modify Equations (1) and (2) in
Section 2.2 as follows.

Rk =
{
1 ≤ i ≤ m

∣∣ P [1 : i] 3 T [k − i + 1 : k]
}
, (1′)

M(a) =
{
1 ≤ i ≤ m

∣∣ P [i] 3 a
}
. (2′)

5.2 Pattern Matching with k Mismatches

This problem is a pattern matching problem in which we allow up to k characters
of the pattern to mismatch with the corresponding text [10]. For example, if
k = 2, the pattern pattern matches the strings postern and cittern, but does
not match eastern. The idea stated in [7] to solve this problem is to count up
the number of mismatches using dm log2 me bits instead of using one bit to see
whether P [i] = T [k]. This technique can be used to adapt our algorithm for the
problem.

5.3 Multiple Pattern Matching

Suppose we are looking for multiple patterns in a text. One solution is to keep
one bit vector R per pattern and perform the Shift-And algorithm in parallel,
but the time complexity is linearly proportional to the number of patterns. The
solutions in [7] and in [17] are to coalesce all vectors, keeping all the information
in only one vector. Such technique can be used to adapt our algorithm for the
multiple pattern matching problem in LZW compressed text.

12 Takuya Kida et al.

6 Conclusion

In this paper we addressed the problem of searching in LZW compressed text
directly, and presented a new algorithm. We implemented the algorithm, and
showed that it is approximately 1.5 times faster than a decompression followed by
a search using the Shift-And algorithm. Moreover we showed that our algorithm
has several extensions, and is therefore useful in many practical applications.
Some future directions of this study will be extensions to the pattern matching
with k differences, and to the regular expression matching, and will be to develop
a compression method which enables us to scan compressed texts faster.

References

[1] K. Abrahamson. Generalized string matching. SIAM J. Comput., 16(6):1039–
1051, December 1987.

[2] A. Amir and G. Benson. Efficient two-dimensional compressed matching. In Proc.
Data Compression Conference, page 279, 1992.

[3] A. Amir and G. Benson. Two-dimensional periodicity and its application. In
Proc. 3rd Symposium on Discrete Algorithms, page 440, 1992.

[4] A. Amir, G. Benson, and M. Farach. Optimal two-dimensional compressed match-
ing. In Proc. 21st International Colloquium on Automata, Languages and Pro-
gramming, 1994.

[5] A. Amir, G. Benson, and M. Farach. Let sleeping files lie: Pattern matching in
Z-compressed files. Journal of Computer and System Sciences, 52:299–307, 1996.

[6] A. Amir, G. M. Landau, and U. Vishkin. Efficient pattern matching with scaling.
Journal of Algorithms, 13(1):2–32, 1992.

[7] R. Baeza-Yaltes and G. H. Gonnet. A new approach to text searching. Comm.
ACM, 35(10):74–82, October 1992.

[8] T. Eilam-Tzoreff and U. Vishkin. Matching patterns in a string subject to mul-
tilinear transformations. In Proc. International Workshop on Sequences, Combi-
natorics, Compression, Security and Transmission, 1988.

[9] M. Farach and M. Thorup. String-matching in Lempel-Ziv compressed strings.
In 27th ACM STOC, pages 703–713, 1995.

[10] Z. Galil and R. Giancarlo. Data structures and algorithms for approximate string
matching. Journal of Complexity, 4:33–72, 1988.

[11] L. Ga̧sieniec, M. Karpinski, W. Plandowski, and W. Rytter. Efficient algorithms
for Lempel-Ziv encoding. In Proc. 4th Scandinavian Workshop on Algorithm The-
ory, volume 1097 of Lecture Notes in Computer Science, pages 392–403. Springer-
Verlag, 1996.

[12] M. Karpinski, W. Rytter, and A. Shinohara. An efficient pattern-matching algo-
rithm for strings with short descriptions. Nordic Journal of Computing, 4:172–186,
1997.

[13] T. Kida, M. Takeda, A. Shinohara, M. Miyazaki, and S. Arikawa. Multiple pattern
matching in LZW compressed text. In J. A. Atorer and M. Cohn, editors, Proc.
of Data Compression Conference ’98, pages 103–112. IEEE Computer Society,
March 1998.

[14] U. Manber. A text compression scheme that allows fast searching directly in
the compressed file. In Proc. 5th Annu. Symp. Combinatorial Pattern Matching,
volume 807 of Lecture Notes in Computer Science, pages 113–124. Springer-Verlag,
1994.

Shift-And Approach to Pattern Matching in LZW Compressed Text 13

[15] M. Miyazaki, A. Shinohara, and M. Takeda. An improved pattern matching al-
gorithm for strings in terms of straight-line programs. In Proc. 8th Annu. Symp.
Combinatorial Pattern Matching, volume 1264 of Lecture Notes in Computer Sci-
ence, pages 1–11. Springer-Verlag, 1997.

[16] T. A. Welch. A technique for high performance data compression. IEEE Comput.,
17:8–19, June 1984.

[17] S. Wu and U. Manber. Fast text searching allowing errors. Comm. ACM,
35(10):83–91, October 1992.

[18] J. Ziv and A. Lempel. A universal algorithm for sequential data compression.
IEEE Trans. Inform. Theory, IT-23(3):337–349, May 1977.

	Introduction
	Preliminaries
	LZW Compression
	The Shift-And Pattern Matching Algorithm

	Proposed Algorithm
	Experimental Results
	Extensions
	Generalized Pattern Matching
	Pattern Matching with k Mismatches
	Multiple Pattern Matching

	Conclusion

