
Multiple Pattern Matching Algorithms on

Collage System

Takuya Kida, Tetsuya Matsumoto, Masayuki Takeda,
Ayumi Shinohara, and Setsuo Arikawa

Department of Informatics, Kyushu University 33
Fukuoka 812-8581, Japan

{kida,tetsuya,takeda,ayumi,arikawa}@i.kyushu-u.ac.jp

Abstract. Compressed pattern matching is one of the most active top-
ics in string matching. The goal is to find all occurrences of a pattern
in a compressed text without decompression. Various algorithms have
been proposed depending on underlying compression methods in the
last decade. Although some algorithms for multipattern searching on
compressed text were also presented very recently, all of them are only
for Lempel-Ziv family compressions. In this paper we propose two types
of multipattern matching algorithms on collage system, which simulate
the AC algorithm and a multipattern version of the BM algorithm, the
most important algorithms for searching in uncompressed files. Collage
system is a formal framework which is suitable to capture the essence
of compressed pattern matching according to various dictionary based
compressions. That is, we provide the model of multipattern matching
algorithm for any compression method covered by the framework.

1 Introduction

The compressed pattern matching problem was first defined by Amir and Benson
[2], and various compressed pattern matching algorithms have been proposed
depending on underlying compression methods (see survey papers [19,23]).

In [7] we introduced a collage system, which is a formal system to represent
a string by a pair of dictionary D and sequence S of phrases in D. The basic
operations are concatenation, truncation, and repetition. Collage systems give us
a unifying framework of various dictionary-based compression methods, such as
Lempel-Ziv family (LZ77, LZSS, LZ78, LZW), RE-PAIR [11], SEQUITUR [16],
and the static dictionary based compression method. We also proposed in [7] the
simple pattern matching algorithm on collage system, which simulates the move
of the Knuth-Morris-Pratt automaton [10] running on the original text, by using
the functions Jump and Output.

In this paper we address the multiple pattern matching problem on collage
system. That is, given a set Π of patterns and a collage system 〈D,S〉, we find
all occurrences of any pattern in Π within the text represented by 〈D,S〉. It is
rather easy to extend Jump to the multipattern case. However, the extension of
Output is not straightforward because the single pattern version utilizes some

A. Amir and G.M. Landau (Eds.): CPM 2001, LNCS 2089, pp. 193–206, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

194 Takuya Kida et al.

combinatorial properties on the period of the pattern. Although we have devel-
oped a multipattern searching algorithm for LZW compressed texts in [8], the
same technique cannot be adopted to general collage systems. Nevertheless, we
succeeded to develop an algorithm that runs in O((‖D‖+|S|)·height(D)+m2 +r)
time with O(‖D‖ + m2) space, where ‖D‖ denotes the size of the dictionary D,
height(D) denotes the maximum dependency of the operations in D, |S| is the
length of the sequence S, m is the total length of patterns, and r is the number
of pattern occurrences. Note that the time for decompressing-then-searching is
linear with respect to the original text length, which can grow in proportion to
|S| · 2‖D‖ on the worst case. Therefore, the algorithm is more efficient than the
decompress-then-search approach.

We also show an extension of the Boyer-Moore type algorithm presented in
[21] to multiple patterns. The algorithm runs on the sequence S, with skipping
some tokens. It runs in O((height(D)+m)|S|+r) time after an O(‖D‖·height(D)+
m2) time preprocessing with O(‖D‖ + m2) space. Moreover, we mention the
parallel complexity of compressed pattern matching for a subclass of collage
system in Section 8. Our result implies that the compressed pattern matching
for regular collage system can be efficiently parallelized in principle.

2 Related Works

We presented in [7] a general pattern matching algorithm on collage system for
a single pattern. The algorithm runs in O((‖D‖+ |S|) · height(D)+m2 + r) time
with O(‖D‖ + m2) space. For the subclass of collage system which contains no
truncation, it runs in O(‖D‖+ |S|+m2 + r) time using O(‖D‖+m2) space. We
also presented a Boyer-Moore type algorithm in [21].

Independently, Navarro and Raffinot [14] developed a general technique for
string matching on a text given as a sequence of blocks, which abstracts both
LZ77 and LZ78 compressions, and gave bit-parallel implementations. The run-
ning time of these algorithms based on the bit-parallelism for LZW is O(nm/w+
m + r), where n is the text length and w is the length in bits of the machine
word. If the pattern is short (m < w), these algorithms are efficient in practice.
A Boyer-Moore type algorithm for a single pattern on Ziv-Lempel compressed
text is also developed [15].

3 Preliminaries

Let Σ be a finite set of characters, called an alphabet. A finite sequence of
characters is called a string. We denote the length of a string u by |u|. The
empty string is denoted by ε, that is, |ε| = 0. Let Σ∗ be the set of strings over
Σ, and let Σ+ = Σ∗\{ε}. Strings x, y, and z are said to be a prefix, factor, and
suffix of the string u = xyz, respectively. A prefix, factor, and suffix of a string
u is said to be proper if it is not u. Let Prefix(u) be the set of prefixes of a string
u, and let Prefix(S) =

⋃
u∈S Prefix(u) for a set S of strings. We also define the

Multiple Pattern Matching Algorithms on Collage System 195

sets Suffix and Factor in a similar way. For a string u, v ∈ Σ∗, let

lpfv(u) = the longest prefix of u that is also in Factor(v),
lsfv(u) = the longest suffix of u that is also in Factor(v),
lpsv(u) = the longest prefix of u that is also in Suffix(v),
lspv(u) = the longest suffix of u that is also in Prefix(v).

For a set Π of strings, let lpfΠ(u) be the longest prefix of u that is also in
Factor(Π). We also define lsfΠ(u), lpsΠ(u), and lspΠ(u) in a similar way.

The ith symbol of a string u is denoted by u[i] for 1 ≤ i ≤ |u|, and the factor
of a string u that begins at position i and ends at position j is denoted by u[i : j]
for 1 ≤ i ≤ j ≤ |u|. Denote by [i]u (resp. u[i]) the string obtained by removing
the length i prefix (resp. suffix) from u for 0 ≤ i ≤ |u|. The concatenation of i
copies of the same string u is denoted by ui. The reversed string of a string u is
denoted by uR.

For a set A of integers and an integer k, let A ⊕ k = {i + k | i ∈ A} and
A	 k = {i− k | i ∈ A}. For strings x and y, we denote the set of occurrences of
x in y by Occ(x, y). That is, Occ(x, y) =

{
i
∣∣ |x| ≤ i ≤ |y|, x = y[i − |x|+ 1 : i]

}
.

For a set Π ⊂ Σ+ of strings, Occ(Π, y) =
⋃

x∈Π

{
〈i, x〉

∣∣ i ∈ Occ(x, y)
}
. Also

denote by Occ?(x, u • v) the set of occurrences of x within the concatenation
of two strings u and v which covers the boundary between u and v. That is,
Occ?(x, u • v) =

{
i

∣∣ i ∈ Occ(x, uv), |u| < i < |u| + |x|
}
. For a set Π ⊂ Σ+

of strings, Occ?(Π, u • v) =
⋃

x∈Π

{
〈i, x〉

∣∣ i ∈ Occ?(x, u • v)
}
. We denote the

cardinality of a set V by |V |.
A period of a string u is an integer p, 0 < p ≤ |u|, such that x[i] = x[i + p]

for all i ∈ {1, . . . , |x| − p}. The next lemma provides an important property on
periods of a string.

Lemma 1 (Periodicity Lemma (see [3])). Let p and q be two periods of a
string x. If p + q − gcd(p, q) ≤ |x|, then gcd(p, q) is also a period of x.

The next lemma follows from the periodicity lemma.

Lemma 2. Let x and y be strings. If Occ(x, y) has more than two elements and
the difference of the maximum and the minimum elements is at most |x|, then
it forms an arithmetic progression, in which the step is the smallest period of x.

4 Collage System and Text Compressions

A collage system [7] is a pair 〈D,S〉 defined as follows: D is a sequence of assign-
ments X1 = expr1; X2 = expr2; · · · ; X` = expr`, where each Xk is a token and
exprk is any of the form

a for a ∈ Σ ∪ {ε}, (primitive assignment)
XiXj for i, j < k, (concatenation)
[j]Xi for i < k and an integer j, (prefix truncation)
X

[j]
i for i < k and an integer j, (suffix truncation)

(Xi)j for i < k and an integer j. (j times repetition)

196 Takuya Kida et al.

Each token represents a string obtained by evaluating the expression as it implies.
The strings represented by tokens are called phrases. The set of phrases is called
dictionary. Denote by X.u the phrase represented by a token X. For example,
D : X1 = a; X2 = b; X3 = c; X4 = X1 · X2; X5 = X3 · X2; X6 = X4 · X2;
X7 = (X4)3; X8 = X

[2]
7 , then X4.u, X5.u, X6.u, X7.u, X8.u are ab, cb, abb,

ababab, and abab, respectively. The size of D is the number ` of assignments and
denoted by ‖D‖. Also denote by F (D) the set of tokens which are defined in
D. That is, ‖D‖ = |F (D)| = `. Define the height of a token X to be the height
of the syntax tree whose root is X. The height of D is defined by height(D) =
max{height(X) | X in D}. It expresses the maximum dependency of the tokens
in D.

On the other hand, S = Xi1 , . . . , Xin is a sequence of tokens defined in D.
We denote by |S| the number k of tokens in S. The collage system represents a
string obtained by concatenating strings Xi1 .u, · · · , Xin .u. Most text compres-
sion methods can be viewed as mechanisms to factorize a text into a series of
phrases and to store a sequence of ‘representations’ of the phrases. In fact, var-
ious compression methods can be translated into corresponding collage systems
(see [7]). Both D and S can be encoded in various ways. The compression ratios
therefore depend on the encoding sizes of D and S rather than ‖D‖ and |S|.

Fig. 1. Hierarchy of collage system.

A collage system is said to be regular if it contains neither repetition nor
truncation. A regular collage system is said to be simple if, for every assignment
X = Y Z, |Y.u| = 1 or |Z.u| = 1. Through the collage systems, many dictionary-
based compression methods can be categorized into some classes (see Fig. 1).
Note that the collage systems for the SEQUITUR and the RE-PAIR are regular,
and those for the LZW/LZ78 compressions are simple.

5 Main Result

Our main result is as follows.

Theorem 1. The problem of compressed multiple pattern matching on a collage
system 〈D,S〉 can be solved in O

(
(‖D‖ + |S|) · height(D) + m2 + r

)
time using

O(‖D‖ + m2) space, where m is the total length of patterns in Π, and r is the

Multiple Pattern Matching Algorithms on Collage System 197

number of pattern occurrences. If D contains no truncation, it can be solved in
O(‖D‖+ |S|+ m2 + r) time.

We developed in [7] an algorithm on collage system for a single pattern, which
basically simulates the Knuth-Morris-Pratt (KMP) algorithm [10]. Although we
devised a multipattern searching algorithm for LZ78/LZW in [9], the same tech-
nique cannot be applied directly to even the case of regular collage systems. One
natural way of dealing with multiple patterns would be a simulation of the Aho-
Corasick (AC) pattern matching machine. Now, we start with the definitions of
JumpAC and OutputAC which play a key role in our algorithm.

Let δAC : Q × Σ → Q be the deterministic state transition function of the
AC machine for Π obtained by eliminating the failure transitions (see [1]). The
set Q of states has a one-to-one correspondence with Prefix(Π), and hence we
identify Q with Prefix(Π) if no confusion occurs. We shall use the terms “state”
and “string” interchangeably throughout the remainder of this paper. Fig. 3 is
an example for Π = {aba, ababb, abca, bb}. Let JumpAC be the state transition
function. For a collage system 〈D,S〉 and Π , define the function JumpAC : Q ×
F (D) → Q by

JumpAC(q, X) = δAC(q, X.u).

We also define the set OutputAC(q, X) for any pair 〈q, X〉 in Q × F (D) by

OutputAC(q, X) =

〈|v|, π〉

v is a non-empty prefix of X.u such
that π ∈ Π is one of the outputs of
state s = δAC(q, v).

That is, OutputAC(q, X) stores all outputs emitted by the AC machine during
the state transitions from the state q reading the string X.u. The proposed
algorithm can be summarized as in Fig. 2. For example, Fig. 4 shows that the
move of our algorithm on S for Π = {aba, ababb, abca, bb}, where D is the same
as the example in Section 4 and S = X4, X3, X8, X5, X4, X6.

Concerning the function JumpAC(q, X), we can prove the next lemma in a
similar way to [7] by regarding the string obtained by concatenating all patterns
in Π as a single pattern. That is, for a set Π = {π1, π2, · · · , πs} of patterns, we
make a string P = π1#π2# · · ·#πs, where # /∈ Σ is a separate character.

Lemma 3. The function JumpAC(q, X) can be realized in O(‖D‖ · height (D)+
m2) time using O(‖D‖+m2) space, so that it answers in O(1) time. If D contains
no truncation, the time complexity becomes O(‖D‖ + m2), where m is the total
length of patterns in Π.

On the other hand, the realization of OutputAC is not straightforward, and
we need some additional efforts, which will be stated in the next section. Now,
we have:

198 Takuya Kida et al.

Input. A set Π of patterns and a collage system 〈D,S〉, where S = S[1 : n].
Output. All positions at which a pattern π ∈ Π occurs in S[1].u · · · S[n].u.

/* Preprocessing */
Perform the preprocessing required for JumpAC and OutputAC

(The complexity of this part depends on Π and D. See Section 6);

/* Text scanning */
` := 0;
state := 0;
for k := 1 to n do begin

for each 〈p, π〉 ∈ OutputAC(state,S[k]) do
Report an occurrence of π that ends at position ` + p ;

state = JumpAC(state,S[k]);
` := ` + |S[k].u|

end

Fig. 2. Pattern matching algorithm.

Lemma 4. The procedure to enumerate the set OutputAC (q, X) can be realized
in O(‖D‖ · height(D) + m2) time using O(‖D‖ + m2) space, so that it runs
in O(height(X) +`) time, where ` is the size of the set OutputAC(q, X). If D
contains no truncation, it can be realized in O(‖D‖ + m2) time and space, so
that it runs in O(`) time.

Theorem 1 follows from Lemma 3 and Lemma 4.

6 Realization of OutputAC

Recall the definition of the set OutputAC(q, X). According to whether a pattern
occurrence covers the boundary between the strings q ∈ Prefix(Π) and X.u, we
can partition the set OutputAC(q, X) into two disjoint subsets as follows.

OutputAC(q, X) = Occ?(Π, q • X.u) 	 |q| ∪ Occ(Π, X.u),

We consider mainly the subset Occ(Π, X.u) below. It is easy to see that we
can enumerate the set Occ?(Π, q • X.u) in O(|Occ?(Π, q • X.u)|) time if we can
enumerate the set Occ(Π, X.u) in O(|Occ(Π, X.u)|) time, because the former is
essentially the same as the problem of the concatenation case of the latter. Thus,
we concentrate on proving the following lemma.

Lemma 5. For a collage system 〈D,S〉 and a set Π of patterns, we can enu-
merate the set Occ(Π, X.u) for X ∈ F (D) in O(|Occ(Π, X.u)|) time after O(m2)
time and space preprocessing, assuming that the set Occ(Π, Y.u), lpfΠ(Y.u), and
lsfΠ(Y.u) are already computed for all Y such that T (Y) is a subtree of T (X)
in the syntax tree.

Now, we begin to consider the case of regular collage systems.

Multiple Pattern Matching Algorithms on Collage System 199

a b a

abca

0 1 2 3

8

6 7

4

c

c

bb

aba
ababb, bb5b b

a

9b b

Fig. 3. Aho-Corasick machine for Π = {aba, ababb, abca, bb}.
The solid and the broken arrows represent the goto and the failure functions,
respectively. The underlined strings adjacent to the states mean the outputs
from them.

original text: a b b aacb b a c b ba b
0 1 2 6 7 2 3 4 0 8 1 2 3 4 5function :

S : X 3X 4 X 5 X 4 X 6

JumpAC(j, X) :

OutputAC(j, X) :

0 8

{1,abca} {1,aba}

X 8

62 4 5

{3,aba} {3,bb}

2

{3,ababb}

Fig. 4. Move of our algorithm.

6.1 For Regular Collage Systems

It is obvious if X is a primitive assignment. If X is a concatenation, i.e. X = Y Z,
we have Occ(Π, X.u) = Occ(Π, Y.u)∪Occ?(Π, Y.u •Z.u)∪Occ(Π, Z.u)⊕ |Y.u|.
Assume that Occ(Π, W.u), lpfΠ(W.u), and lsfΠ(W.u) are already computed for
all W such that T (W) is the subtree of T (X) in the syntax tree. Then, we
need to enumerate the set Occ?(Π, Y.u • Z.u) in order to enumerate the set
Occ(Π, X.u). We can reduce the above problem to the following problem since
Occ?(Π, Y.u • Z.u) = Occ?(Π, lsfΠ(Y.u) • lpfΠ(Z.u)).

Instance: A set Π of patterns and two factors x and y of Π .
Question: Enumerate the set Occ?(Π, x • y).

For the single pattern case, i.e. Π = {π}, it follows from Lemma 2 that the set
Occ?(π, x • y) forms an arithmetic progression if it has more than two elements,
where the step is the smallest period of π. Thus the Occ?(π, x • y) can be stored
in O(1) space as a pair of the minimum and the maximum values in it. The table
storing those values can be computed in O(m2) time and space (see [7] for its
detail).

For the multipattern case, however, we cannot apply the above technique
directly to the enumeration of Occ?(Π, x • y). Now, we prove the next lemma.

Lemma 6. For a set Π of patterns, we can enumerate the set Occ?(Π, x•y) for
all pairs of x ∈ Prefix(Π) and y ∈ Suffix(Π) in O(|Occ?(Π, x • y)|) time, after
O(m2) time and space preprocessing.

Proof. For any x ∈ Prefix(Π) and y ∈ Suffix(Π), we can build in O(m2) time and
space a table T that stores xy if xy ∈ Π , otherwise nil. Then, we can enumerate

200 Takuya Kida et al.

Fig. 5. Short-cut pointers and the table T for Π = {abcabc, cabb, abca}.
In the left figure, © indicates that x′y′ matches some pattern π ∈ Π

for x′ ∈ Suffix(x) and y′ ∈ Prefix(y), and × indicates that it does not

match.

the set Occ?(Π, x • y) for all pairs of x ∈ Prefix(Π) and y ∈ Suffix(Π) by using
such table T as the following manner: for each x′ ∈ Suffix(x)∩Prefix(Π) and y′ ∈
Prefix(y)∩Suffix(Π) in the descending order of their length, report the occurrence
of the pattern π = x′y′ if T (x′, y′) 6= nil. However, the time complexity for the
enumeration in this way becomes O(m2), not O(|Occ?(Π, x • y)|). Then, we add
to each entry of the table T a pair of two short-cut pointers px and py in order
to avoid increasing the time complexity, that is, for any pair of x ∈ Prefix(Π)
and y ∈ Suffix(Π), px and py point to the longest proper suffix x′ of x such that
Occ?(Π, x′ · y) 6= ∅ or x = ε, and the longest proper prefix of y such that xy is
a pattern in Π or y = ε, respectively. Fig. 5 shows an example of the pointers
and the table T , where x = abca and y = bcabc for Π = {abcabc, cabb, abca}.
Such pointers can be computed in O(m2) time by using the table T . Using
these pointers, we can get the desired sequence of pairs of x′ ∈ Suffix(x) and
y′ ∈ Prefix(y) in O(|Occ?(Π, x • y)|) time for any pair of x ∈ Prefix(Π) and
y ∈ Suffix(Π). In the running example, the obtained sequence is (abca, bcabc) →
(abca, bc) → (abca, ε) → (a, bcabc) → (a, bca) → (a, ε) → (ε, ε). The proof is
complete. ut

We thus finished the proof of Lemma 5 restricted to the class of regular collage
systems.

6.2 For Truncation-Free Collage Systems

We need to solve the following problem for dealing with repetitions.

Instance: A set Π of patterns, a factor x of Π , and an integer k ≥ 1.
Question: Enumerate the set Occ(Π, xk).

For the single pattern case, i.e. Π = {π}, we presented a solution in [7] by using
Periodicity Lemma (Lemma 1). However the same technique does not work for
the multipattern case. Now, we need to prove the next lemma.

Lemma 7. For a set Π of patterns, x ∈ Factor(Π), and an integer k ≥ 1, we
can enumerate the set Occ(Π, xk) in O(|Occ(Π, xk)|) time after O(m2) time and

Multiple Pattern Matching Algorithms on Collage System 201

space preprocessing, assuming that Occ(Π, x), lpfΠ(x), and lsfΠ(x) are already
computed.

Proof. It is trivial for k ≤ 2. Suppose k > 2. Note that we can enumerate
the set Occ?(Π, x • x) in O(|Occ?(Π, x • x)|) time from Lemma 6, and that
lpsΠ(x) = lpsΠ(lpfΠ(x)). We use a generalized suffix trie [5] for a set Π of
strings (GSTΠ for short) in order to represent the set of suffixes of the strings in
Π . It is an extension of the suffix trie for a single string. Note that each node of
the GSTΠ corresponds to a string in Factor(Π). The construction of the GSTΠ

takes O(m2) time and space.
Now, we have two cases to consider.

Case 1: xx /∈ Factor(Π). Any pattern in Π cannot cover more than three x’s.
We can answer in O(1) time whether xx is in Factor(Π) or not since x ∈
Factor(Π) and the factor concatenation problem can be solved in O(1) time.
Moreover, we can obtain Occ?(Π, x•xx) since we can obtain lpfΠ(xx) in O(1)
time (see [7]). Then, we can compute three sets Occ(Π, x), Occ?(Π, x • x),
and Occ?(Π, x • xx)\Occ?(Π, x • x). Therefore, the set Occ(Π, xk) can be
enumerated in O(|Occ(Π, xk)|) time using these sets, |x| and k.

Case 2: xx ∈ Factor(Π). For the pattern occurrences which are within three
x’s, we can enumerate them in the same way as Case 1. Now, we concentrate
on the enumeration of the pattern occurrences that are not within three x’s.
Suppose that a pattern π has such an occurrence. Then xx must be a factor
of π. Since |x| is a period of π and 2|x| ≤ |π|, it follows from Lemma 1
that |x| is a multiple of the smallest period t of π and therefore the set
Occ(π, xk) forms an arithmetic progression whose step is t. Thus the set can
be enumerated in only linear time proportional to its size. However, some
occurrences in the enumeration can be included entirely within three x’s. In
order to avoid reporting them twice, we omit p in Occ(π, xk) satisfying the
inequation |π| − (p − bp/|x|c · |x|) > 2|x| in the enumeration. So, we can
enumerate all the pattern occurrences that are not within three x’s in time
linearly proportional to the number of them, if we have the list of the patterns
π ∈ Π satisfying the conditions: (1) xx ∈ Factor(π) and (2) |x| is a period
of π. The condition (2) can be replaced by the condition (2’): the smallest
period of xx equals to that of π. We add a list of the patterns π that satisfy
the conditions (1) and (2’) to each node of GSTΠ that represents a string
xx = x2, called a square. It is not so hard to check up on the conditions
in O(m2) time for all nodes of GSTΠ . Each list added to a node of GSTΠ

requires O(|Π |) = O(m) space. The number of nodes representing squares is
O(m) (see [4]). Thus, the total space requirement is O(m2). Therefore, we
can enumerate the set Occ(Π, xk) in O(|Occ(Π, xk)|) time with O(m2) time
and space preprocessing.

The proof is complete. ut

If Y.u /∈ Factor(Π), since any pattern in Π cannot cover more than two Y.u’s,
it is not hard to see that Occ(Π, X) can be enumerated in O(|Occ(Π, X)|) time

202 Takuya Kida et al.

using Occ(Π, Y.u), Occ?(Π, Y.u • Y.u), |Y.u|, and k. We thus finished the proof
of Lemma 5 restricted to the class of truncation-free collage systems.

6.3 For General Collage Systems

For general collage systems, we must deal with truncation operations, in addition
to concatenations and repetitions. Using the same technique of the single pattern
case, we can see that Lemma 5 holds if X = Y [k], or X = [k]Y (see [7]), and that
the time complexity increase by height(D) as the single pattern case does. That
is, the next lemma holds.

Lemma 8. We can build in O(‖D‖ · height(D) + m2) time using O(‖D‖ + m2)
space a data structure by which the enumeration of Occ(Π, X.u) is performed in
O(height(X) + `) time, where ` = |Occ(Π, X.u)|. If D contains no truncation, it
can be built in O(‖D‖+ m2) time and space, and the enumeration requires only
O(`) time.

Lemma 4 follows from the above. Although we need lpfΠ(X.u) and lsfΠ(X.u)
for X ∈ F (D), these can be computed in O(‖D‖ · height(D) + m2) time using
O(‖D‖+ m2) space (see [7]).

7 On BM Type Algorithm for Multiple Patterns

We proposed in [21] a general, BM type algorithm for a single pattern on collage
system. This algorithm is easily extensible to deal with multiple patterns if we
use the techniques stated in Section 6. We give a brief sketch of the algorithm.

Recall that the BM algorithm on uncompressed texts performs the character
comparisons in the right-to-left direction, and slides the pattern to the right
using the so-called shift function when a mismatch occurs. Let lppsΠ(w) denote
the longest prefix of a string w that is also properly in Suffix(Π). Note that
the function δrev

AC is the state transition function of the (partial) automaton that
accepts a set ΠR = {xR|x ∈ Π} of reversed patterns. Contrary to the case of AC
machine, the set Q of states is Suffix(Π). Define the functions JumpMBM and
OutputMBM as follows. For any state q ∈ Suffix(Π) and any token X ∈ F (D),

JumpMBM(q, X) =

lppsΠ(X.u), if q = ε and lppsΠ(X.u) 6= ε;
δrev
AC(q, X.u), if q 6= ε;

undefined, otherwise.
OutputMBM(q, X) = {π ∈ Π | wq = π and w is a proper suffix of X.u}.

The shift function is basically designed to shift the pattern to the right so as
to align a text substring with its rightmost occurrence within the pattern. For
a pattern π and a string w, let

rightmost occπ(w) = min
{

` > 0
∣∣∣∣π[|π| − ` − |w|+ 1 : |π| − `] = w,
or π[1 : |π| − `] is a suffix of w

}
.

Multiple Pattern Matching Algorithms on Collage System 203

/*Preprocessing for computing JumpMBM(j, t), OutputMBM(j, t), and Occ(t) */
Preprocess the pattern π and the dictionary D;

/* Main routine */
focus := an appropriate value;
focus := dm/Ce;
while focus ≤ n do begin

Step 1: Report all pattern occurrences that are contained in the phrase S[focus].u
by using Occ(t);

Step 2: Find all pattern occurrences that end within the phrase S[focus].u
by using JumpMBM(j, t) and OutputMBM(j, t);

Step 3: Compute a possible shift ∆ based on information gathered in Step 2;
focus := focus + ∆

end

Fig. 6. Overview of BM type compressed pattern matching algorithm.

For a set Π of patterns, let rightmost occΠ(w) = minπ∈Π{rightmost occπ (w)},
and let ShiftMBM(q, X) = rightmost occΠ(X.u · q). When we encounter a mis-
match against a token X in state q ∈ Suffix(Π), the possible shift ∆ of the focus
can be computed using ShiftMBM in the same way as [21]. Figure 6 gives an
overview of our algorithm.

We can prove the next lemma by using the techniques similar to those stated
in Section 6, and Theorem 2 follows from Lemma 9.

Lemma 9. The functions JumpMBM, OutputMBM, and ShiftMBM can be built
in O(height(D) · ‖D‖ + m2) time and O(‖D‖ + m2) space, so that they answer
in O(1) time, where m is the total length of patterns in Π. The factor height(D)
can be dropped if D contains no truncation.

Thus, we have the following theorem.

Theorem 2. The BM type algorithm for multiple pattern searching on collage
system runs in O(height(D)·(‖D‖+|S|)+|S|·m+m2+r) time, using O(‖D‖+m2)
space, where m is the total length of patterns in Π, and r is the number of
pattern occurrences. If D contains no truncation, the time complexity becomes
O(‖D‖+ |S| · m + m2 + r).

8 Parallel Complexity of Compressed Pattern Matching

In this section, we consider the computational complexity of the following deci-
sion problem for a class C of collage systems:

Instance: A collage system 〈D,S〉 in C over Σ and a set Π = {π1, · · ·, πs} of
patterns.

Question: Is there any pattern πj ∈ Π that occurs in the text T represented
by 〈D,S〉? That is, are there any i and j such that T [i : i + |πj| − 1] = πj or
not?

204 Takuya Kida et al.

LogCFL is the class of problems logspace-reducible to a context-free language.
An auxiliary pushdown automaton (AuxPDA) is a nondeterministic Turing ma-
chine with a read-only input tape, a space-bounded worktape, and a pushdown
store that is not subject to the space-bound. The class of languages accepted
by auxiliary pushdown automata in space s(n) and time t(n) is denoted by
AuxPDA(s(n), t(n)). The next lemma is quite useful.

Lemma 10 ([22]). LogCFL = AuxPDA(logn, nO(1)).

We now show the following theorem.

Theorem 3. Compressed pattern matching problem on regular collage system
is in LogCFL.

Proof. We show an auxiliary pushdown automaton M that accepts an input
string if and only if there is some pattern πj ∈ Π that occurs in the text T
represented by 〈D,S〉. We note that by using pushdown store, M can traverse
the evaluation tree of any variable Xk and ‘scan’ the string Xk.u from left
to right that is the sequence of leaves in the tree. Moreover, by utilizing the
nondeterminism, M can scan any substring of Xk.u.

M represents a position t of a pattern as a binary string in the worktape,
and initializes it t = 1. For simplicity, we first consider the case that a pattern
πj occurs within the string Xik .u for some Xik . M nondeterministically guesses
such j and k, and nondeterministically goes down the evaluation tree of Xk from
the root by pushing the traversed variables in the pushdown store. At a leaf, M
confirms that the character Xk.u[l] is equal to πj[t]. Then M increments t by
one by using the worktape, and proceeds to the next character Xk.u[l + 1] by
using the pushdown store. M repeats this procedure until πj is verified to occur
in Xk at position l. Remark that l is not explicitly written in the worktape: it is
impossible in general since l = O(|Xk|) = O(2||D||). However, on the other hand,
since t ≤ |πj| and patterns are explicitly written in the input tape, the space
required by M is O(log |πj|), that is logarithmic with respect to the input size.
The computation time is clearly bounded by a polynomial, since the height of
the evaluation tree is at most ||D||. For a general case that a pattern πj spreads
over a region Xik ·Xik+1 · · ·Xih , we can show that M verifies the occurrences in
polynomial time using a log-space worktape in the same way. By Lemma 10, we
complete the proof. ut

Since it is known that LogCFL ⊆ NC2 [17,18], the above theorem implies that
the compressed pattern matching for regular collage systems can be efficiently
parallelized in principle. For general collage systems including repetitions and
truncations, we have not succeeded to show that the problems are in NC nor
P-complete yet.

9 Concluding Remarks

We proposed two types of multipattern matching algorithms on collage system.
One is an AC-type algorithm, which runs in O((‖D‖+ |S|) · height(D) +m2 + r)

Multiple Pattern Matching Algorithms on Collage System 205

time with O(‖D‖+m2) space. Its running time becomes O(‖D‖+ |S|+ m2 + r)
if a collage system contains no truncation. The other is a BM-type algorithm,
which runs in O((height(D) + m)|S|+ r) time after an O(‖D‖ · height(D) + m2)
time preprocessing with O(‖D‖ + m2) space. We also showed that compressed
pattern matching on regular collage system is in LogCFL ⊆ NC2.

The compressed pattern matching usually aims to search in compressed files
faster than a regular decompression followed by an ordinary search (Goal 1). A
more ambitious goal is to perform a faster search in compressed files in compar-
ison with an ordinary search in the original files (Goal 2). In this case, the aim
of compression is not only to reduce disk storage requirement but also to speed
up string searching task. In fact, we have achieved Goal 2 for the compression
method called Byte Pair Encoding (BPE) [21,20,23].

In [6,12], approximate string matching algorithms over LZW/LZ78 com-
pressed texts were proposed. Very recently, Navarro et al. proposed a practical
solution for the LZW/LZ78 compressions and showed experimentally that it is
up to three times faster than the trivial approach of uncompressing and search-
ing [13]. The basic idea of the solution is to reduce the problem of approximate
string searching to the problem of multipattern searching of a set of pattern
pieces plus local decompression and direct verification of candidate text areas.
Using the same technique, the result of this paper leads to speed-up of approxi-
mate string matching for various compression methods. In fact, we have verified
that the suggested algorithm runs on BPE compressed texts faster than Agrep,
known as the fastest pattern matching tool.

References

1. A. V. Aho and M. Corasick. Efficient string matching: An aid to bibliographic
search. Comm. ACM, 18(6):333–340, 1975.

2. A. Amir and G. Benson. Efficient two-dimensional compressed matching. In Proc.
Data Compression Conference, page 279, 1992.

3. M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, New
York, 1994.

4. A.S. Fraenkel and J. Simpson. How many squares can a string contain? J. Combin.
Theory Ser. A, 82:112–120, 1998.

5. L.C.K. Hui. Color set size problem with application to string matching. In Com-
binatorial Pattern Matching, volume 644 of Lecture Notes in Computer Science,
pages 230–243. Springer-Verlag, 1992.

6. J. Kärkkäinen, G. Navarro, and E. Ukkonen. Approximate string matching over
Ziv-Lempel compressed text. In Proc. 11th Ann. Symp. on Combinatorial Pat-
tern Matching, volume 1848 of Lecture Notes in Computer Science, pages 195–209.
Springer-Verlag, 2000.

7. T. Kida, Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa. A unifying frame-
work for compressed pattern matching. In Proc. 6th International Symp. on String
Processing and Information Retrieval, pages 89–96. IEEE Computer Society, 1999.

8. T. Kida, M. Takeda, A. Shinohara, M. Miyazaki, and S. Arikawa. Multiple pattern
matching in LZW compressed text. Journal of Discrete Algorithms. to appear
(previous version in DCC’98 and CPM’99).

206 Takuya Kida et al.

9. T. Kida, M. Takeda, A. Shinohara, M. Miyazaki, and S. Arikawa. Multiple pattern
matching in LZW compressed text. In J. A. Storer and M. Cohn, editors, Proc.
Data Compression Conference ’98, pages 103–112. IEEE Computer Society, 1998.

10. D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in strings. SIAM
J. Comput, 6(2):323–350, 1977.

11. N.J. Larsson and A. Moffat. Offline dictionary-based compression. In Proc. Data
Compression Conference ’99, pages 296–305. IEEE Computer Society, 1999.

12. T. Matsumoto, T. Kida, M. Takeda, A. Shinohara, and S. Arikawa. Bit-parallel
approach to approximate string matching in compressed texts. In Proc. 7th In-
ternational Symp. on String Processing and Information Retrieval, pages 221–228.
IEEE Computer Society, 2000.

13. G. Navarro, T. Kida, M. Takeda, A. Shinohara, and S. Arikawa. Faster approximate
string matching over compressed text. In Proc. Data Compression Conference
2001. IEEE Computer Society, 2001. to appear.

14. G. Navarro and M. Raffinot. A general practical approach to pattern matching
over Ziv-Lempel compressed text. In Proc. 10th Ann. Symp. on Combinatorial
Pattern Matching, volume 1645 of Lecture Notes in Computer Science, pages 14–
36. Springer-Verlag, 1999.

15. G. Navarro and J. Tarhio. Boyer-Moore string matching over Ziv-Lempel com-
pressed text. In Proc. 11th Ann. Symp. on Combinatorial Pattern Matching, vol-
ume 1848 of Lecture Notes in Computer Science, pages 166–180. Springer-Verlag,
2000.

16. C.G. Nevill-Manning, I.H. Witten, and D.L. Maulsby. Compression by induction of
hierarchical grammars. In Proc. Data Compression Conference ’94, pages 244–253.
IEEE Press, 1994.

17. W. Ruzzo. Tree-size bounded alternation. Journal of Computer and System Sci-
ences, 21(2):218–235, 1980.

18. W. Ruzzo. On uniform circuit complexity. Journal of Computer and System
Sciences, 22(3):365–383, 1981.

19. W. Rytter. Algorithms on compressed strings and arrays. In Proc. 26th Ann. Conf.
on Current Trends in Theory and Practice of Infomatics. Springer-Verlag, 1999.

20. Y. Shibata, T. Kida, S. Fukamachi, M. Takeda, A. Shinohara, T. Shinohara, and
S. Arikawa. Speeding up pattern matching by text compression. In Proc. 4th
Italian Conference on Algorithms and Complexity, volume 1767 of Lecture Notes
in Computer Science, pages 306–315. Springer-Verlag, 2000.

21. Y. Shibata, T. Matsumoto, M. Takeda, A. Shinohara, and S. Arikawa. A Boyer-
Moore type algorithm for compressed pattern matching. In Proc. 11th Ann. Symp.
on Combinatorial Pattern Matching, volume 1848 of Lecture Notes in Computer
Science, pages 181–194. Springer-Verlag, 2000.

22. I. Sudborough. On the tape complexity of deterministic context-free languages.
Journal of ACM, 25:405–414, 1978.

23. M. Takeda, Y. Shibata, T. Matsumoto, T. Kida, A. Shinohara, S. Fukamachi,
T. Shinohara, and S. Arikawa. Speeding up string pattern matching by text com-
pression: The dawn of a new era. Transactions of Information Processing Society
of Japan, 2001. to appear.

	Introduction
	Related Works
	Preliminaries
	Collage System and Text Compressions
	Main Result
	Realization of ${unhbox voidb @x hbox {itshape Output}_{rm AC}}$
	For Regular Collage Systems
	For Truncation-Free Collage Systems
	For General Collage Systems

	On BM Type Algorithm for Multiple Patterns
	Parallel Complexity of Compressed Pattern Matching
	Concluding Remarks

