
A Boyer–Moore Type Algorithm for

Compressed Pattern Matching

Yusuke Shibata, Tetsuya Matsumoto, Masayuki Takeda,
Ayumi Shinohara, and Setsuo Arikawa

Department of Informatics, Kyushu University 33
Fukuoka 812-8581, Japan

{yusuke,tetsuya,takeda,ayumi,arikawa}@i.kyushu-u.ac.jp

Abstract. We apply the Boyer–Moore technique to compressed pat-
tern matching for text string described in terms of collage system, which
is a formal framework that captures various dictionary-based compres-
sion methods. For a subclass of collage systems that contain no trun-
cation, our new algorithm runs in O(‖D‖ + n · m + m2 + r) time using
O(‖D‖ + m2) space, where ‖D‖ is the size of dictionary D, n is the
compressed text length, m is the pattern length, and r is the number of
pattern occurrences. For a general collage system, the time complexity is
O(height(D)·(‖D‖+n)+n·m+m2+r), where height(D) is the maximum
dependency of tokens in D. We showed that the algorithm specialized for
the so-called byte pair encoding (BPE) is very fast in practice. In fact
it runs about 1.2 ∼ 3.0 times faster than the exact match routine of the
software package agrep, known as the fastest pattern matching tool.

1 Introduction

The problem of compressed pattern matching is to find pattern occurrences in
compressed text without decompression. The goal is to search in compressed files
faster than a regular decompression followed by an ordinary search (Goal 1).
This problem has been extensively studied for various compression methods by
several researchers in the last decade. For recent developments, see the survey
[18].

This paper, however, focuses on another aspect of compressed pattern match-
ing. We intend to reduce the time taken to search through a text file by reducing
the size of it in a special way. That is, we regard text compression as a means of
speeding up pattern matching rather than of saving storage or communication
costs. The research goal to this direction is to search in compressed files faster
than an ordinary search in the original files (Goal 2). If the goal is achieved,
files that are usually not compressed because they are often read, can now be
compressed for a speed-up. Let td, ts, and tc be the time for a decompression,
the time for searching in uncompressed files, and the time for searching in com-
pressed files, respectively. Goal 1 aims for td + ts > tc while Goal 2 for ts > tc.
Thus, Goal 2 is more difficult to achieve than Goal 1.

R. Giancarlo and D. Sankoff (Eds.): CPM 2000, LNCS 1848, pp. 181–194, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

182 Yusuke Shibata et al.

Let n and N denote the compressed text length and the original text length,
respectively. Theoretically, the best compression has n =

√
N for the Lempel-

Ziv-Welch (LZW) encoding [22], and n = log N for LZ77 [25]. Thus an O(n)
time algorithm for searching directly in compressed text is considered to be bet-
ter than an O(N) time algorithm for searching in the original text. However, in
practice n is linearly proportional to N for real text files. For this reason, an
elaborate O(n) time algorithm for searching in compressed text is often slower
than a simple O(N) time algorithm running on the original text, namely, does
not achieve Goal 2. For example, it is reported in [12,11,16] that the proposed
algorithms of compressed pattern matching for LZW achieved Goal 1, but did
not achieve Goal 2. In order to achieve Goal 2, we shall re-estimate existing
compression methods, choose a suitable one, and then develop an efficient com-
pressed pattern matching algorithm for it. It should be emphasized that we are
not particular about the traditional criteria, i.e., the compression ratio and the
compression/decompression time.

As an effective tool for such a re-estimation, we introduced in [10] a collage
system, that is a formal system to describe a string by a pair of dictionary D
and sequence S of tokens defined in D. The basic operations are concatena-
tion, truncation, and repetition. Collage systems give us a unifying framework
of various dictionary-based compression methods. We developed in [10] a general
compressed pattern matching algorithm for the framework, which basically sim-
ulates the move of the Knuth-Morris-Pratt (KMP) automaton [13] on original
texts. For a collage system which contains no truncation, the algorithm runs in
O(n + r) time after an O(‖D‖ + m2) time and space preprocessing, where ‖D‖
denotes the size of dictionary D, m is the pattern length, and r is the num-
ber of pattern occurrences. For the case of LZW, it matches the same bound
given in [12]. For a general collage system, which contains truncation, it runs in
O(height(D) · n + r) time after an O(height(D) · ‖D‖ + m2) time preprocessing
using O(‖D‖ + m2) space, where height(D) denotes the maximum dependency
of the operations in D. These results show that the truncation slows down the
compressed pattern matching to the factor height(D). It coincides with the ob-
servation by Navarro and Raffinot [16] that LZ77 is not suitable for compressed
pattern matching compared with LZ78/LZW compression.

In a recent work [19], we focused on the compression method called the byte
pair encoding (BPE) [9]. It describes a text as a collage system with concatena-
tion only, in which the size of D is restricted to at most 256 so as to encode each
token of S into one byte. Decompression is fast and requires small work space.
Moreover, partial decompression is possible. This is a big advantage of BPE com-
pared with the Lempel-Ziv family. Despite such advantages, BPE was seldom
used until now. The reason is mainly for the following two disadvantages: the
compression is terribly slow and the compression ratio is not as good as those of
Compress and Gzip. However, we have shown that BPE is suitable for speeding
up pattern matching. The algorithm proposed in [19] runs in O(n+r) time after
an O(‖D‖ · m) time and space preprocessing, and it is indeed faster than such
O(N) time algorithms as the KMP algorithm and the Shift-Or algorithm [24,4].

A Boyer–Moore Type Algorithm for Compressed Pattern Matching 183

Moreover, it can be extended to deal with multiple patterns. The searching time
is reduced at almost the same rate as the compression ratio.

However, there are sublinear time algorithms for the usual (not compressed)
pattern matching problem, such as the Boyer–Moore (BM) algorithm [5], which
skip many characters of text and run faster than the O(N) time algorithms on
the average, although the worst-case running time is O(mN). Our algorithm
presented in [19] defeats the exact match routine of agrep [23] for highly com-
pressible texts such as genomic data. But it is not better than agrep when
searching for a long pattern in texts that are not highly compressible by BPE.
Then a question arises: Does text compression speed up such a sublinear time
algorithm?

In this paper, we give an affirmative answer to this question. We present
a general, BM type algorithm for texts described in terms of collage system.
The algorithm runs on the sequence S, with skipping some tokens. To our best
knowledge, this is the first attempt to develop such an algorithm in compressed
text.1 The token-wise processing has two advantages compared with the usual
character-wise processing. One is quick detection of a mismatch at each stage of
the algorithm, and the other is larger shift depending upon one token (not upon
one character) to align the phrase with its occurrence within the pattern. For a
general collage system, the algorithm runs in O((height(D) + m) · n + r) time,
after an O(height(D) · ‖D‖ + m2) time preprocessing with O(‖D‖ + m2) space.
In the case of no truncation, it runs in O(mn + r) time, after an O(‖D‖ + m2)
time and space preprocessing. However, we cannot shift the pattern without
knowing the total length of phrases corresponding to skipped tokens. This slows
down the algorithm in practice. To do without such information, we assume that
the skipped phrases are all of length C, the maximum phrase length in D, and
divide the shift value by C. The value of C is crucial in this approach. For the
BPE compression, we observed that putting a restriction on C makes no great
sacrifice of compression ratio even for C = 3, 4. Experimental results show that
the proposed algorithm searching in BPE compressed files is about 1.2 ∼ 3.0
times faster than agrep on the original files.

There are a few researches that aims Goal 2. The first attempt was made
by Manber [14]. The compression scheme used is similar to but simpler than
BPE, in which the maximum phrase length C is restricted to 2. The approach
is to encode a given pattern and to apply any search routine in order to find the
encoded pattern within compressed files. The problem in this approach is that
the pattern may have more than one encoding. The solution given in [14] is to
devise a way to restrict the number of possible encodings for any string with
sacrifices in compression ratio. Thus the reductions in file size and searching
time are only about 30%. Miyazaki et al. [15] presented an efficient realization of
pattern matching machine for searching directly in a Huffman encoded text. The
reduction in searching time is almost the same as that in file size. Moura et al. [8]
proposed a compression scheme that uses a word-based Huffman encoding with

1 However, Navarro et al. [17] in this conference gives a similar algorithm, which is
restricted to the LZ78/LZW format.

184 Yusuke Shibata et al.

a byte-oriented code, which allows a search twice faster than agrep. However,
the compression method is not applicable to such texts as genomic sequence data
since they cannot be segmented into words. Our previous and new algorithms
can deal with such texts.

2 Preliminaries

Let Σ be a finite alphabet. An element of Σ∗ is called a string. Strings x, y, and
z are said to be a prefix, factor, and suffix of the string u = xyz, respectively. A
prefix, factor, and suffix of a string u is said to be proper if it is not u. The length
of a string u is denoted by |u|. The empty string is denoted by ε, that is, |ε| = 0.
The ith symbol of a string u is denoted by u[i] for 1 ≤ i ≤ |u|, and the factor of
a string u that begins at position i and ends at position j is denoted by u[i : j]
for 1 ≤ i ≤ j ≤ |u|. For convenience, let u[i : j] = ε for j < i. For a string u
and a non-negative integer i, the string obtained by removing the length i prefix
(resp. suffix) from u is denoted by [i]u (resp. u[i]). That is, [i]u = u[i + 1 : |u|]
and u[i] = u[1 : |u| − i].

3 A Unifying Framework for Compressed Pattern
Matching

In a dictionary-based compression, a text string is described by a pair of a
dictionary and a sequence of tokens, each of which represents a phrase defined in
the dictionary. Kida et al. [10] introduced a unifying framework, named collage
system, which abstracts various dictionary-based methods, such as the Lempel-
Ziv family and the static dictionary methods. In [10] they presented a general
compressed pattern matching algorithm for the framework. Consequently, any
compression method within the framework has a compressed pattern matching
algorithm as an instance.

3.1 Collage System

A collage system is a pair 〈D,S〉 defined as follows:D is a sequence of assignments
X1 =expr1; X2 =expr2; · · · ; X` =expr`, where each Xk is a token (or a variable)
and exprk is any of the form

a for a ∈ Σ ∪ {ε}, (primitive assignment)
XiXj for i, j < k, (concatenation)
[j]Xi for i < k and an integer j, (prefix truncation)
X

[j]
i for i < k and an integer j, (suffix truncation)

(Xi)j for i < k and an integer j. (j times repetition)

Each token represents a string obtained by evaluating the expression as it implies.
The strings represented by tokens are called phrases. Denote by X.u the phrase
represented by a token X. The size of D is the number n of assignments and

A Boyer–Moore Type Algorithm for Compressed Pattern Matching 185

denoted by ‖D‖. Define the height of a token X to be the height of the syntax
tree whose root is X. The height of D is defined by height(D) = max{height(X) |
X in D}. It expresses the maximum dependency of the tokens in D. On the other
hand, S = Xi1 , Xi2 , . . . , Xin is a sequence of tokens defined in D. The collage
system represents a string obtained by concatenating the phrases represented by
Xi1 , Xi2 , . . . , Xin .

3.2 Pattern Matching in Collage Systems

Our problem is defined as follows.

Given a pattern π = π[1 : m] and a collage system 〈D,S〉 with S =
S[1 : n], find all locations at which π occurs within the original text
S[1].u · S[2].u · · ·S[n].u.

Kida et al. [10] presented an algorithm solving the above problem. Figure 1 gives
an overview of the algorithm, which processes S token-by-token. The algorithm

Input: Pattern π and collage system consisting of D and S = S[1 : n].

Output: All occurrences of π in the original text.

begin

/* Preprocessing for computing JumpKMP and OutputKMP. */

Preprocess the pattern π and the dictionary D;

/* Main routine */

state := 0; ` := 0;

for i := 1 to n do begin

for each d ∈ OutputKMP(state,S[i]) do

Report a pattern occurrence that ends at position ` + d;

state := JumpKMP(state,S[i]); ` := ` + |S[i].u|
end

end.

Fig. 1. General algorithm for searching in a collage system.

simulates the move of the KMP automaton running on the original text, by using
two functions JumpKMP and OutputKMP, both take as input a state and a token.
The former is used to substitute just one state transition for the consecutive state
transitions of the KMP automaton caused by each of the phrases, and the latter
is used to report all pattern occurrences found during the state transitions. Thus
the definitions of the two functions are as follows.

JumpKMP(j, t) = δ(j, t.u),

OutputKMP(j, t) =
{
|v|

∣∣∣∣v is a non-empty prefix of t.u
such that δ(j, v) is the final state

}
,

where δ is the state transition function of the KMP automaton.

186 Yusuke Shibata et al.

Theorem 1 (Kida et al. [10]). The algorithm of Fig. 1 runs in O(height(D) ·
n+r) time after an O(height(D)·‖D‖+m2) time preprocessing using O(‖D‖+m2)
space, where r is the number of pattern occurrences. The factor height(D) can
be dropped if D contains no truncation.

This idea is a generalization of the algorithm due to Amir et al. [3], which is
restricted to LZW compressed texts. Shibata et al. [20] applied a similar tech-
nique to the case of the compression using anti-dictionaries [6]. An extension
of [3] to multiple pattern searching was presented by Kida et al. [12], which is
based on the Aho-Corasick (AC) pattern matching algorithm [1]. The technique
of [12] was then generalized to multiple pattern searching in collage systems
which contain concatenation only [10]. Bit-parallel realization of [3] was inde-
pendently proposed in [11,16] and proved to be fast in practice for a short pattern
(m ≤ 32).

3.3 Practical Aspects

Theorem 1 suggests that a compression method which describes a text as a col-
lage system with no truncation might be suitable for the compressed pattern
matching. For example, the collage systems for LZW contain no truncation but
those for LZ77 have truncation. It implies that LZW is suitable compared with
LZ77. This coincides with the observation by Navarro and Raffinot [16] that the
compressed pattern matching for LZ77 achieves none of Goal 1 and Goal 2, but
that for LZW achieves Goal 1. However, it was observed that the compressed
pattern matching for LZW is too slow to achieve Goal 2. We have two reasons.
One is that in LZW the dictionary D is not encoded explicitly: it will be in-
crementally re-built from S. The preprocessing of D is therefore merged into
the main routine (see Fig. 1 again). The other reason is as follows. Although
JumpKMP can be realized using only O(‖D‖ + m2) space so that it answers in
constant time, the constant factor is relatively large. The two-dimensional array
realization of JumpKMP would improve this, but it requires O(‖D‖ · m) space,
which is unrealistic because ‖D‖ is linear in n in the case of LZW.

From the above observations the desirable properties for compressed pattern
matching can be summarized as follows.

– The dictionary D contains no truncation.
– The dictionary D is encoded separately from the sequence S.
– The size of D is small enough.
– The tokens of S are encoded using a fixed length code.

The BPE compression [9] is the one which satisfies all of the properties.
The collage systems for BPE have concatenation only, and ‖D‖ is restricted
to at most 256 so as to encode each token of S into one byte. By using the
two-dimensional array implementation, we presented in [19] an algorithm for
searching in BPE compressed files, which runs in O(n+r) time after an O(‖D‖ ·
m) time and space preprocessing. This algorithm defeats the BM algorithm for
highly compressible text files such as biological data. However, it is not better

A Boyer–Moore Type Algorithm for Compressed Pattern Matching 187

T [0] := $; /* $ is a character that never occurs in pattern */
i := m;
while i ≤ N do begin

state := 0; ` := 0;
while g(state, T [i − `]) is defined do begin

state := g(state, T [i − `]); ` := ` + 1
end;
if state = m then report a pattern occurrence;
i := i + σ(state, T [i − `])

end

Fig. 2. BM algorithm on uncompressed text.

than the BM algorithm in the case of searching for a long pattern in text files
that are not highly compressible by BPE. For this reason, we try to devise a BM
type algorithm for searching in BPE compressed files.

4 BM Type Algorithm for Compressed Pattern Matching

We first briefly sketches the BM algorithm, and show a general, BM type al-
gorithm for searching in collage systems. Then, we discuss searching in BPE
compressed files from the practical viewpoints.

4.1 BM Algorithm on Uncompressed Text

The BM algorithm performs the character comparisons in the right-to-left direc-
tion, and slides the pattern to the right using the so-called shift function when
a mismatch occurs. The algorithm for searching in text T [1 : N] is shown in
Fig. 2. Note that the function g is the state transition function of the (partial)
automaton that accepts the reversed pattern, in which state j represents the
length j suffix of the pattern (0 ≤ j ≤ m).

Although there are many variations of the shift function, they are basically
designed to shift the pattern to the right so as to align a text substring with its
rightmost occurrence within the pattern. Let

rightmost occ(w) = min
{

` > 0
∣∣∣∣π[m− ` − |w|+ 1 : m− `] = w, or
π[1 : m− `] is a suffix of w

}
.

The following definition, given by Uratani and Takeda [21] (for multiple pattern
case), is the one which utilizes all information gathered in one execution of the
inner-while-loop in the algorithm of Fig. 2.

σ(j, a) = rightmost occ(a · π[m− j + 1 : m]).

The two-dimensional array realization of this function requires O(|Σ| ·m) mem-
ory, but it becomes realistic due to recent progress in computer technology.
Moreover, the array can be shared with the goto function g. This saves not only
memory requirement but also the number of table references.

188 Yusuke Shibata et al.

4.2 BM Type Algorithm for Collage System

Now, we show a BM type algorithm for searching in collage systems. Figure 3
gives an overview of our algorithm. For each iteration of the while-loop, we report

/*Preprocessing for computing JumpBM(j, t), OutputBM(j, t), and Occ(t) */
Preprocess the pattern π and the dictionary D;

/* Main routine */
focus := an appropriate value;
while focus ≤ n do begin

Step 1: Report all pattern occurrences that are contained in the phrase S[focus].u
by using Occ(t);

Step 2: Find all pattern occurrences that end within the phrase S[focus].u
by using JumpBM(j, t) and OutputBM(j, t);

Step 3: Compute a possible shift ∆ based on information gathered in Step 2;
focus := focus + ∆

end

Fig. 3. Overview of BM type compressed pattern matching algorithm.

in Step 1 all the pattern occurrences that are contained in the phrase represented
by the token we focus on, determine in Step 2 the pattern occurrences that end
within the phrase, and then shift our focus to the right by ∆ obtained in Step 3.
Let us call the token we focus on the focused token, and the phrase it represents
the focused phrase. For step 1, we shall compute during the preprocessing, for
every token t, the set Occ(t) of all pattern occurrences contained in the phrase
t.u. The time and space complexities of this computation are as follows.

Lemma 1 (Kida et al. 1999). We can build in O(height(D) · ‖D‖+m2) time
using O(‖D‖ + m2) space a data structure by which the enumeration of the set
Occ(t) is performed in O(height(t)+`) time, where ` = |Occ(t)|. If D contains no
truncation, it can be built in O(‖D‖+m2) time and space, and the enumeration
requires only O(`) time.

In the following we discuss how to realize Step 2 and Step 3.
Figure 4 illustrates pattern occurrences that end within the focused phrase.

A candidate for pattern occurrence is a non-empty prefix of the focused phrase
that is also a proper suffix of the pattern. There may be more than one candidate
to be checked. One naive method is to check all of them independently, but we
take here another approach. We shall start with the longest one. For the case of
uncompressed text, we can do it by using the partial automaton for the reversed
pattern stated in Section 4.1. When a mismatch occurs, we change the state by
using the failure function and try to proceed into the left direction. The process
is repeated until the pattern does not have an overlap with the focused phrase. In
order to perform such processing over compressed text, we use the two functions
JumpBM and OutputBM defined in the sequel.

A Boyer–Moore Type Algorithm for Compressed Pattern Matching 189

Let lpps(w) denote the longest prefix of a string w that is also a proper suffix
of the pattern π. Extend the function g into the domain {0, . . . , m} × Σ∗ by
g(j, aw) = g(g(j, w), a), if g(j, w) is defined and otherwise, g(j, aw) is undefined,
where w ∈ Σ∗ and a ∈ Σ. Let f(j) be the largest integer k (k < j) such that
the length k suffix of the pattern is a prefix of the length j suffix of the pattern.
Note that f is the same as the failure function of the KMP automaton. Define
the functions JumpBM and OutputBM by

JumpBM(j, t) =




g(j, t.u), if j 6= 0;
g(j, lpps(t.u)), if j = 0 and lpps(t.u) 6= ε;
undefined, otherwise.

OutputBM(j, t) =
{

true, if g(j, w) = m and w is a proper suffix of t.u;
false, otherwise.

The procedure for Step 2 is shown in Fig. 5.
We now discuss how to compute the possible shift ∆ of the focus. Let

Shift(j, t) = rightmost occ(t.u · π[m− j + 1 : m]).

Assume that starting at the token S[focus], we encounter a mismatch against a
token t in state j. Find the minimum integer k > 0 such that

Shift(0,S[focus]) ≤
k∑

i=1

∣∣∣S[focus + i].u
∣∣∣, or (1)

Shift(j, t) ≤
k∑

i=0

∣∣∣S[focus + i].u
∣∣∣ −

∣∣∣lpps(S[focus].u)
∣∣∣. (2)

Note that the shift due to Eq. (1) is possible independently of the result of the
procedure of Fig. 5. When returning at the first if-then statement of the proce-
dure in Fig. 5, we can shift the focus by the amount due to Eq. (1). Otherwise,
we shift the focus by the amount due to both Eq. (1) and Eq. (2) for j = state
and t = S[focus−`] just after the execution of the while-loop at the first iteration
of the repeat-until loop.

Compressed text

Original text

Pattern occurrences

focus

Fig. 4. Pattern occurrences.
.

190 Yusuke Shibata et al.

procedure Find pattern occurrences(focus : integer);
begin

if JumpBM(0,S[focus]) is undefined then return;
state := JumpBM(0,S[focus]); d := state; ` := 1;
repeat

while JumpBM(state,S[focus− `]) is defined do begin
state := JumpBM(state,S[focus− `]); ` := ` + 1

end;
if OutputBM(state,S[focus− `]) = true then report a pattern occurrence;
d := d − (state − f(state)); state := f(state)

until d ≤ 0
end;

Fig. 5. Finding pattern occurrences in Step 2.

Lemma 2. The functions JumpBM, OutputBM, and Shift can be built in
O(height(D) · ‖D‖ + m2) time and O(‖D‖ + m2) space, so that they answer
in O(1) time. The factor height(D) can be dropped if D contains no truncation.

Proof. We can prove the lemma by using techniques similar to those in [10], but
the proof is omitted for lack of space. ut

Theorem 2. The algorithm of Fig. 3 runs in O(height(D) · (‖D‖+n) +n ·m+
m2 + r) time, using O(‖D‖ + m2) space. If D contains no truncation, the time
complexity becomes O(‖D‖ + n · m + m2 + r).

4.3 Searching in BPE Compressed Files

We again take the two-dimensional array implementation for the functions
JumpBM, OutputBM, and Shift. Since the collage systems for BPE contain no
truncation, the construction of the functions seems to require O(‖D‖+m2) time
and space in addition to O(‖D‖·m) time and space. However, we can build them
in another way, and have the following result.

Theorem 3. The tables storing JumpBM, OutputBM, and Shift can be built in
O(‖D‖ · m) time and space, if D contains concatenation only.

Proof. We can fill the entries of the tables in a bottom-up manner by using the
directed acyclic word graph [7] for the reversed pattern. ut

The computation of ∆ stated in Section 4.2 requires knowing the lengths of
the phrases represented by the skipped tokens. This slows down the searching
speed. To do without such information, we assume they are all of length C,
where C is the maximum phrase length, and let

∆(j, t) = max
(
dShift(0, t)/Ce, bShift(j, t)/Cc

)
.

The value of C is a crucial factor in such an approach, We estimated the change
of compression ratios depending on C. The text files we used are:

A Boyer–Moore Type Algorithm for Compressed Pattern Matching 191

Medline. A clinically-oriented subset of Medline, consisting of 348,566 refer-
ences. The file size is 60.3 Mbyte and the entropy is 4.9647.

Genbank. The file consisting only of accession numbers and nucleotide se-
quences taken from a data set in Genbank. The file size is 17.1 Mbyte and
the entropy is 2.6018.

Table 1 shows the compression ratios of these texts for BPE, together with
those for the Huffman encoding, gzip, and compress, where the last two are
well-known compression tools based on LZ77 and LZW, respectively. Remark
that the change of compression ratios depending on C is non-monotonic. The
reason for this is that the BPE compression routine we used builds a dictionary
D in a greedy manner only from the first block of a text file. It is observed that
we can restrict C with no great sacrifice of compression ratio. Thus we decided
to use the BPE compressed file of Medline for C = 3, and that of Genbank for
C = 4 in our experiment in the next section.

Table 1. Compression ratios (%).

Huffman
BPE

compress gzip
C = 3 C = 4 C = 5 C = 6 C = 7 C = 8 unlimit.

Medline 62.41 59.44 58.46 58.44 58.53 58.47 58.58 59.07 42.34 33.35

Genbank 33.37 36.93 32.84 32.63 32.63 32.34 32.28 32.50 26.80 23.15

5 Experimental Results

We estimated the performances of the following programs:

(A) Decompression followed by ordinary search.
We tested this approach with the KMP algorithm for the compression meth-
ods: gzip, compress, and BPE. We did not combine the decompression pro-
grams and the KMP search program using the Unix ‘pipe’ because it is slow.
Instead, we embedded the KMP routine in the decompression programs, so
that the KMP automaton processes the decoded characters ‘on the fly’.
The programs are abbreviated as gunzip+KMP, uncompress+KMP, and
unBPE+KMP, respectively.

(B) Ordinary search in original text.
KMP, UT (the Uratani-Takeda variant [21] of BM), and agrep.

(C) Compressed pattern matching.
AC on LZW [12], Shift-Or on LZW [11], AC on Huffman [15], AC on BPE
[19], and BM on BPE (the algorithm proposed in this paper).

The automata in KMP, UT, AC on Huffman, AC on BPE, and BM on BPE
were realized as two-dimensional arrays of size `× 256, where ` is the number of
states. The texts used are Medline and Genbank mentioned in Section 4.3, and

192 Yusuke Shibata et al.

the patterns searched for are text substrings randomly gathered from them. Our
experiment was carried out on an AlphaStation XP1000 with an Alpha21264
processor at 667MHz running Tru64 UNIX operating system V4.0F. Figure 6
shows the running times (CPU time). We excluded the preprocessing times since
they are negligible compared with the running times. We observed the following
facts.

– The differences between the running times of KMP and the three programs
of (A) correspond to the decompression times. Decompression tasks for LZ77
and LZW are thus time-consuming compared with pattern matching task.
Even when we use the BM algorithm instead of KMP, the approach (A) is
still slow for LZ77 and LZW.

– The proposed algorithm (BM on BPE) is faster than all the others. Espe-
cially, it runs about 1.2 times faster than agrep for Medline, and about 3
times faster for Genbank.

6 Conclusion

We have presented a BM type algorithm for compressed pattern matching in col-
lage system, and shown that an instance of the algorithm searches in BPE com-
pressed texts 1.2 ∼ 3.0 faster than agrep does in the original texts. For searching
a very long pattern (e.g., m > 30), a simplified version of the backward-dawg-
matching algorithm [7] is very fast as reported in [2]. To develop its compressed
matching version will be our future work.

References

1. A. V. Aho and M. Corasick. Efficient string matching: An aid to bibliographic
search. Comm. ACM, 18(6):333–340, 1975.

2. C. Allauzen, M. Crochemore, and M. Raffinot. Factor oracle, suffix oracle. Tech-
nical Report IGM-99-08, Institut Gaspard-Monge, 1999.

3. A. Amir, G. Benson, and M. Farach. Let sleeping files lie: Pattern matching in
Z-compressed files. Journal of Computer and System Sciences, 52:299–307, 1996.

4. R. Baeza-Yates and G. H. Gonnet. A new approach to text searching. Comm.
ACM, 35(10):74–82, 1992.

5. R. S. Boyer and J. S. Moore. A fast string searching algorithm. Comm. ACM,
20(10):62–72, 1977.

6. M. Crochemore, F. Mignosi, A. Restivo, and S. Salemi. Text compression using
antidictionaries. In Proc. 26th Internationial Colloquim on Automata, Languages
and Programming, pages 261–270. Springer-Verlag, 1999.

7. M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, New
York, 1994.

8. E. S. de Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Direct pattern match-
ing on compressed text. In Proc. 5th International Symp. on String Processing and
Information Retrieval, pages 90–95. IEEE Computer Society, 1998.

9. P. Gage. A new algorithm for data compression. The C Users Journal, 12(2), 1994.

A Boyer–Moore Type Algorithm for Compressed Pattern Matching 193

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

5 10 15 20 25 30
pattern length

(sec)

KMP

uncompress+KMP

gunzip+KMP

AC on LZW

Shift-Or on LZW

unBPE+KMP

AC on Huffman
AC on BPE
agrep
UT
BM on BPE

0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20 25 30
pattern length

(sec)

uncompress+KMP

AC on Huffman

AC on BPE
BM on BPE

agrep
UT

KMP

unBPE+KMP

Shift-Or on LZW

AC on LZW

gunzip+KMP

(a) Medline (b) Genbank

Fig. 6. Running times.

10. T. Kida, Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa. A unifying frame-
work for compressed pattern matching. In Proc. 6th International Symp. on String
Processing and Information Retrieval, pages 89–96. IEEE Computer Society, 1999.

11. T. Kida, M. Takeda, A. Shinohara, and S. Arikawa. Shift-And approach to pattern
matching in LZW compressed text. In Proc. 10th Ann. Symp. on Combinatorial
Pattern Matching, pages 1–13. Springer-Verlag, 1999.

12. T. Kida, M. Takeda, A. Shinohara, M. Miyazaki, and S. Arikawa. Multiple pat-
tern matching in LZW compressed text. In Proc. Data Compression Conference
(DCC’98), pages 103–112. IEEE Computer Society, 1998.

194 Yusuke Shibata et al.

13. D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching in strings.
SIAM J. Comput, 6(2):323–350, 1977.

14. U. Manber. A text compression scheme that allows fast searching directly in the
compressed file. In Proc. 5th Ann. Symp. on Combinatorial Pattern Matching,
pages 113–124. Springer-Verlag, 1994.

15. M. Miyazaki, S. Fukamachi, M. Takeda, and T. Shinohara. Speeding up the pattern
matching machine for compressed texts. Transactions of Information Processing
Society of Japan, 39(9):2638–2648, 1998. (in Japanese).

16. G. Navarro and M. Raffinot. A general practical approach to pattern matching
over Ziv-Lempel compressed text. In Proc. 10th Ann. Symp. on Combinatorial
Pattern Matching, pages 14–36. Springer-Verlag, 1999.

17. G. Navarro and J. Tarhio. Boyer–Moore string matching over Ziv-Lempel com-
pressed text. In Proc. 11th Ann. Symp. on Combinatorial Pattern Matching.
Springer-Verlag, 2000. to appear.

18. W. Rytter. Algorithms on compressed strings and arrays. In Proc. 26th Ann. Conf.
on Current Trends in Theory and Practice of Infomatics. Springer-Verlag, 1999.

19. Y. Shibata, T. Kida, S. Fukamachi, M. Takeda, A. Shinohara, T. Shinohara, and
S. Arikawa. Speeding up pattern matching by text compression. In Proc. 4th Italian
Conference on Algorithms and Complexity, pages 306–315. Springer-Verlag, 2000.

20. Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa. Pattern matching in text
compressed by using antidictionaries. In Proc. 10th Ann. Symp. on Combinatorial
Pattern Matching, pages 37–49. Springer-Verlag, 1999.

21. N. Uratani and M. Takeda. A fast string-searching algorithm for multiple patterns.
Information Processing & Management, 29(6):775–791, 1993.

22. T. A. Welch. A technique for high performance data compression. IEEE Comput.,
17:8–19, June 1984.

23. S. Wu and U. Manber. Agrep – a fast approximate pattern-matching tool. In
Usenix Winter 1992 Technical Conference, pages 153–162, 1992.

24. S. Wu and U. Manber. Fast text searching allowing errors. Comm. ACM,
35(10):83–91, October 1992.

25. J. Ziv and A. Lempel. A universal algorithm for sequential data compression.
IEEE Trans. on Inform. Theory, IT-23(3):337–349, May 1977.

	Introduction
	Preliminaries
	A Unifying Framework for Compressed Pattern Matching
	Collage System
	Pattern Matching in Collage Systems
	Practical Aspects

	BM Type Algorithm for Compressed Pattern Matching
	BM Algorithm on Uncompressed Text
	BM Type Algorithm for Collage System
	Searching in BPE Compressed Files

	Experimental Results
	Conclusion

