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Abstract. Byte pair encoding (BPE) is a simple universal text com-
pression scheme. Decompression is very fast and requires small work
space. Moreover, it is easy to decompress an arbitrary part of the orig-
inal text. However, it has not been so popular since the compression is
rather slow and the compression ratio is not as good as other methods
such as Lempel-Ziv type compression.
In this paper, we bring out a potential advantage of BPE compression.
We show that it is very suitable from a practical view point of com-
pressed pattern matching, where the goal is to find a pattern directly in
compressed text without decompressing it explicitly. We compare run-
ning times to find a pattern in (1) BPE compressed files, (2) Lempel-Ziv-
Welch compressed files, and (3) original text files, in various situations.
Experimental results show that pattern matching in BPE compressed
text is even faster than matching in the original text. Thus the BPE
compression reduces not only the disk space but also the searching time.

1 Introduction

Pattern matching is one of the most fundamental operations in string processing.
The problem is to find all occurrences of a given pattern in a given text. A lot of
classical or advanced pattern matching algorithms have been proposed (see [8,1]).
The time complexity of pattern matching algorithm is measured by the number
of symbol comparisons between pattern and text symbols. The Knuth-Morris-
Pratt (KMP) algorithm [19] is the first one which runs in linear time proportional
to the sum of the pattern length m and the text length n. The algorithm re-
quires additional memory proportional to the pattern length m. One interesting
research direction is to develop an algorithm which uses only constant amount
of memory, preserving the linear time complexity (see [11,7,5,13,12]). Another
important direction is to develop an algorithm which makes a sublinear number
of comparisons on the average, as in the Boyer-Moore (BM) algorithm [4] and
its variants (see [24]). The lower bound of the average case time complexity is
known to be O(n log m/m) [27], and this bound is achieved by the algorithm
presented in [6].
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From a practical viewpoint, the constant hidden behind O-notation plays
an important role. Horspool’s variant [14] and Sunday’s variant [22] of the BM
algorithm are widely known to be very fast in practice. In fact, the former is
incorporated into a software package Agrep, which is understood as the fastest
pattern matching tool developed by Wu and Manber [25].

Recently, a new trend for accelerating pattern matching has emerged: speed-
ing up pattern matching by text compression. It was first introduced by Manber
[20]. Contrary to the traditional aim of text compression — to reduce space re-
quirement of text files on secondary disk storage devices —, text is compressed
in order to speed up the pattern matching process.

It should be mentioned that the problem of pattern matching in compressed
text without decoding, which is often referred to as compressed pattern match-
ing, has been studied extensively in this decade. The motivation is to investigate
the complexity of this problem for various compression methods from the view-
point of combinatorial pattern matching. It is theoretically interesting, and in
practice some algorithms proposed are indeed faster than a regular decompres-
sion followed by a simple search. In fact, Kida et al. [18,17] and Navarro et al.
[21] independently presented compressed pattern matching algorithms for the
Lempel-Ziv-Welch (LZW) compression which run faster than a decompression
followed by a search. However, the algorithms are slow in comparison with pat-
tern matching in uncompressed text if we compare the CPU time. In other words,
the LZW compression did not speed up the pattern matching.

When searching text files stored in secondary disk storage, the running time
is the sum of file I/O time and CPU time. Obviously, text compression yields a
reduction in the file I/O time at nearly the same rate as the compression ratio.
However, in the case of an adaptive compression method, such as Lempel-Ziv
family (LZ77, LZSS, LZ78, LZW), a considerable amount of CPU time is devoted
to an extra effort to keep track of the compression mechanism. In order to reduce
both of file I/O time and CPU time, we have to find out a compression scheme
that requires no such extra effort. Thus we must re-estimate the performance of
existing compression methods or develop a new compression method in the light
of the new criterion: the time for finding a pattern in compressed text directly.

As an effective tool for such re-estimation, we introduced in [16] a unify-
ing framework, named collage system, which abstracts various dictionary-based
compression methods, such as Lempel-Ziv family, and the static dictionary meth-
ods. We developed a general compressed pattern matching algorithm for strings
described in terms of collage system. Therefore, any of the compression meth-
ods that can be described in the framework has a compressed pattern matching
algorithm as an instance.

Byte pair encoding (BPE, in short) [10], included in the framework of col-
lage systems, is a simple universal text compression scheme based on the pattern-
substitution [15]. The basic operation of the compression is to substitute a single
character which did not appear in the text for a pair of consecutive two char-
acters which frequently appears in the text. This operation will be repeated
until either all characters are used up or no pair of consecutive two characters
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appears frequently. Thus the compressed text consists of two parts: the substi-
tution table, and the substituted text. Decompression is very fast and requires
small work space. Moreover, partial decompression is possible, since the com-
pression depends only on the substitution. This is a big advantage of BPE in
comparison with adaptive dictionary based methods. Despite such advantages,
the BPE method has received little attention, until now. The reason for this is
mainly the following two disadvantages: the compression is terribly slow, and
the compression ratio is not as good as other methods such as Lempel-Ziv type
compression.

In this paper, we pull out a potential advantage of BPE compression, that
is, we show that BPE is very suitable for speeding up pattern matching. Man-
ber [20] also introduced a little simpler compression method. However since its
compression ratio is not so good and is about 70% for typical English texts, the
improvement of the searching time cannot be better than this rate. The com-
pression ratio of BPE is about 60% for typical English texts, and is near 30%
for biological sequences. We propose a compressed pattern matching algorithm
which is basically an instance of the general one mentioned above. Experimental
results show that, in CPU time comparison, the performance of the proposed
algorithm running on BPE compressed files of biological sequences is better than
that of Agrep running on uncompressed file of the same sequences. This is not
the case for English text files. Moreover, the results show that, in elapsed time
comparison, the algorithm drastically defeats Agrep even for English text files.

It should be stated that Moura et al. [9] proposed a compression scheme that
uses a word-based Huffman encoding with a byte-oriented code. The compres-
sion ratio for typical English texts is about 30%. They presented a compressed
pattern matching algorithm and showed that it is twice faster than Agrep on
uncompressed text in the case of exact match. However, the compression method
is not applicable to biological sequences because they cannot be segmented into
words. For the same reason, it cannot be used for natural language texts written
in Japanese in which we have no blank symbols between words.

Recall that the key idea of the Boyer-Moore type algorithms is to skip sym-
bols of text, so that they do not read all the text symbols on the average. The
algorithms are intended to avoid ‘redundunt’ symbol comparisons. Analogously,
our algorithm also skips symbols of text in the sense that more than one symbol
is encoded as one character code. In other words, our algorithm avoids processing
of redundant information about text. Note that the redundancy varies depend-
ing on the pattern in the case of the Boyer-Moore type algorithms, whereas it
depends only on the text in the case of speeding up by compression.

The rest of the paper is organized as follows. In Section 2, we introduce
the byte pair encoding scheme, discuss its implementation, and estimate its
performance in comparison with Compress and Gzip. Section 3 is devoted to
compressed pattern matching in BPE compressed files, where we have two im-
plementations using the automata and the bit-parallel approaches. In Section 4,
we report our experimental results to compare practical behaviors of these al-
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gorithms performed. Section 5 concludes the discussion and explains some of
future works.

2 Byte Pair Encoding

In this section we describe the byte pair encoding scheme, discuss its imple-
mentation, and then estimate the performance of this compression scheme in
comparison with widely-known compression tools Compress and Gzip.

2.1 Compression Algorithm

The BPE compression is a simple version of pattern-substitution method [10].
It utilizes the character codes which did not appear in the text to represent
frequently occurring strings, namely, strings of which frequencies are greater
than some threshold. The compression algorithm repeats the following task until
all character codes are used up or no frequent pairs appear in the text:

Find the most frequent pair of consecutive two character codes in the
text, and then substitute an unused code for the occurrences of the pair.

For example, suppose that the text to be compressed is

T0 = ABABCDEBDEFABDEABC.

Since the most frequent pair is AB, we substitute a code G for AB, and obtain the
new text

T1 = GGCDEBDEFGDEGC.

Then the most frequent pair is DE, and we substitute a code H for it to obtain

T2 = GGCHBHFGHGC.

By substituting a code I for GC, we obtain

T3 = GIHBHFGHI.

The text length is shorten from |T0| = 18 to |T3| = 9. Instead we have to encode
the substitution pairs AB→ G, DE→ H, and GC→ I.

More precisely, we encode a table which stores for every character code what
it represents. Note that a character code can represent either (1) the character
itself, (2) a code-pair, or (3) nothing. Let us call such table substitution table. In
practical implementations, an original text file is split into a number of fixed-size
blocks, and the compression algorithm is then applied to each block. Therefore
a substitution table is encoded for each block.
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2.2 Speeding Up of Compression

In [10] an implementation of BPE compression is presented, which seems quite
simple. It requires O(`N) time, where N is the original text length and ` is the
number of character codes. The time complexity can be improved into O(`+N)
by using a relatively simple technique, but this improvement did not reduce the
compression time in practice. Thus, we decided to reduce the compression time
with sacrifices in the compression ratio.

The idea is to use a substitution table obtained from a small part of the text
(e.g. the first block) for encoding the whole text. The disadvantage is that the
compression ratio decreases when the frequency distribution of character pairs
varies depending on parts of the text. The advantage is that a substitution table
is encoded only once. This is a desirable property from a practical viewpoint of
compressed pattern matching in the sense that we have to perform only once any
task which depends on the substitution table as a preprocessing since it never
changes.

Fast execution of the substitutions according to the table is achieved by an
efficient multiple key replacement technique [2,23], in which a one-way sequential
transducer is built from a given collection of replacement pairs which performs
the task in only one pass through a text. When the keys have overlaps, it replaces
the longest possible first occurring key. The running time is linear in the total
length of the original and the substituted text.

2.3 Comparison with Compress and Gzip

We compared the performance of BPE compression with those of Compress and
Gzip. We implemented the BPE compression algorithm both in the standard way
described in [10] and in the modified way stated in Section 2.2. The Compress
program has an option to specify in bits the upper bound to the number of
strings in a dictionary, and we used Compress with specification of 12 bits and
16 bits. Thus we tested five compression programs.

We estimated the compression ratios of the five compression programs for
the four texts shown in Table 1. The results are shown in Table 2. We can see
that the compression ratios of BPE are worse than those of Compress and Gzip,

Table 1. Four Text Files.

file annotation

Brown corpus
(6.4 Mbyte)

A well-known collection of English sentences, which was com-
piled in the early 1960s at Brown University, USA.

Medline
(60.3 Mbyte)

A clinically-oriented subset of Medline, consisting of 348,566 ref-
erences.

Genbank1
(43.3 Mbyte)

A subset of the GenBank database, an annotated collection of
all publicly available DNA sequences.

Genbank2
(17.1 Mbyte)

The file obtained by removing all fields other than accession
number and nucleotide sequence from the above one.
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especially for English texts. We also estimated the CPU times for compression
and decompression. Although we omit here the results because of lack of space,
we observed that the BPE compression was originally very slow, and it is dras-
tically accelerated by the modification stated in Section 2.2. In fact, the original
BPE compression is 4 ∼ 5 times slower than Gzip, whereas the modified one
is 4 ∼ 5 times faster than Gzip and is competitive with Compress with 12 bit
option.

Thus, BPE is not so good from the traditional criteria. This is the reason
why it has received little attentions, until now. However, it has the following
properties which are quite attractive from the practical viewpoint of compressed
pattern matching: (1) No bit-wise operations are required since all the codes
are of 8 bits; (2) Decompression requires very small amount of memory; and
(3) Partial decompression is possible, that is, we can decompress any portion of
compressed text.

In the next section, we will show how we can perform compressed pattern
matching efficiently in the case of BPE compression.

Table 2. Compression Ratios (%).

BPE Compress Gzip
standard modified 12bit 16bit

Brown corpus (6.8Mb) 51.08 59.02 51.67 43.75 39.04

Medline (60.3Mb) 56.20 59.07 54.32 42.34 33.35

Genbank1 (43.3Mb) 46.79 51.36 43.73 32.55 24.84

Genbank2 (17.1Mb) 30.80 32.50 29.63 26.80 23.15

3 Pattern Matching in BPE Compressed Texts

For searching a compressed text, the most naive approach would be the one
which applies any string matching routine with expanding the original text on
the fly. Another approach is to encode a given pattern and apply any string
matching routine in order to find the encoded pattern directly in the compressed
text. The problem in this approach is that the encoded pattern is not unique.
A solution due to Manber [20] was to devise a way to restrict the number of
possible encodings for any string.

The approach we take here is basically an instance of the general compressed
pattern matching algorithm for strings described in terms of collage system [16].
As stated in Introduction, collage system is a unifying framework that abstracts
most of existing dictionary-based compression methods. In the framework, a
string is described by a pair of a dictionary D and a sequence S of tokens
representing phrases in D. A dictionary D is a sequence of assignments where
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the basic operations are concatenation, repetition, and prefix (suffix) truncation.
A text compressed by BPE is described by a collage system with no truncation
operations. For a collage system with no truncation, the general compressed
pattern matching algorithm runs in O(‖D‖+|S|+m2+r) time using O(‖D‖+m2)
space, where ‖D‖ denotes the size of the dictionary D and |S| is the length of
the sequence S.

The basic idea of the general algorithm is to simulate the move of the KMP
automaton for input D and S. Note that one token of sequence S may represent
a string of length more than one, which causes a series of state transitions. The
idea is to substitute just one state transition for each such consecutive state
transitions. More formally, let δ : Q×Σ → Q be the state transition function of
the KMP automaton, where Σ is the alphabet and Q is the set of states. Extend
δ into the function δ̂ : Q×Σ∗ → Q by

δ̂(q, ε) = q and δ̂(q, ua) = δ(δ̂(q, u), a),

where q ∈ Q, u ∈ Σ∗, and a ∈ Σ. Let D be the set of phrases in dictionary. Let
Jump be the limitation of δ̂ to the domain Q×D.

By identifying a token with the phrase it represents, we can define the new
automaton which takes as input a sequence of tokens and makes state transition
by using Jump. The state transition of the new machine caused by a token corre-
sponds to the consecutive state transitions of the KMP automaton caused by the
phrase represented by the token. Thus, we can simulate the state transitions of
the KMP automaton by using the new machine. However, the KMP automaton
may pass through the final state during the consecutive transitions. Hence the
new machine should be a Mealy type sequential machine with output function
Output : Q×D → 2N defined by

Output(q, u) = {i ∈ N |1 ≤ i ≤ |u| and δ̂(q, u[1..i]) is the final state},
where N denotes the set of natural numbers, and u[1..i] denotes the length i
prefix of string u.

In [16] efficient realizations of the functions Jump and Output were discussed
for general case. In the case of BPE compression, a simpler implementation is
possible. We take two implementations. One is to realize the state transition
function Jump defined on Q × D as a two-dimensional array of size |Q| × |D|.
The array size is not critical since the number of phrases in D is at most 256
in BPE compression. This is not the case with LZW, in which |D| can be the
compressed text size.

Another implementation is the one utilizing the bit parallel paradigm in a
similar way that we did for LZW compression [17]. Technical details are omitted
because of lack of space.

4 Experimental Results

We estimated the running time of the proposed algorithms running on BPE
compressed files. We tested the two implementations mentioned in the previ-
ous section. For comparisons, we tested the algorithm [17] in searching LZW
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compressed files. We also tested the KMP algorithm, the Shift-Or algorithm
[26,3], and Agrep (the Boyer-Moore-Horpspool algorithm) in searching uncom-
pressed files. The performance of the BM type algorithm strongly depends upon
the pattern length m, and therefore the running time of Agrep was tested for
m = 4, 8, 16. The performance of each algorithm other than Agrep is indepen-
dent of the pattern length. The text files we used are the same as the four text
files mentioned in Section 2. The machine used is a PC with a Pentium III pro-
cessor at 500MHz running TurboLinux 4.0 operating system. The data transfer
speed was about 7.7 Mbyte/sec.

The results are shown in Table 3, where we included the preprocessing time.
In this table, (a) and (b) stand for the automata and the bit-parallel implemen-
tations stated in the previous section, respectively.

Table 3. Performance Comparisons.

BPE LZW uncompressed

(a) (b) [17] KMP Shift-Or
Agrep

m = 4 m = 8 m = 16

Brown Corpus 0.09 0.16 0.94 0.13 0.11 0.09 0.07 0.07
CPU time Medline 1.03 1.43 6.98 1.48 1.28 0.85 0.69 0.63

(sec) Genbank1 0.52 0.89 4.17 0.81 0.76 0.72 0.58 0.53
Genbank2 0.13 0.22 1.33 0.32 0.29 0.27 0.32 0.32

Brown Corpus 0.59 0.54 1.17 0.91 1.01 0.91 0.90 0.90
elapsed time Medline 4.98 4.95 7.53 8.38 8.26 8.01 7.89 7.99

(sec) Genbank1 3.04 2.95 4.48 6.26 6.32 6.08 5.67 5.64
Genbank2 0.76 0.73 1.46 2.28 2.33 2.19 2.18 2.14

First of all, it is observed that, in CPU time comparison, the automata-based
implementation of the proposed algorithm in searching BPE compressed file is
faster than each of the routines except Agrep. Comparing with Agrep, it is good
for Genbank1 and Genbank2, but not so for other two files. The reason for this is
that the performance of the proposed algorithm depends on compression ratio.
Recall that the compression ratios for Genbank1 and Genbank2 are relatively
high in comparison with those of Brown corpus and Medline.

From a practical viewpoint, the running speed in elapsed time is also impor-
tant, although it is not easy to measure accurate values of elapsed time. Table 3
implies that the proposed algorithm is the fastest in the elapsed time comparison.

5 Conclusion

We have shown potential advantages of BPE compression from a viewpoint of
compressed pattern matching.
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The number of tokens in BPE is limited to 256 so that all the tokens are en-
coded in 8 bits. The compression ratio can be improved if we raise the limitation
to the number of tokens. A further improvement is possible by using variable-
length codewords. However, it is preferable to use fixed-length codewords with 8
bits from the viewpoint of compressed pattern matching since we want to keep
the search on a byte level for efficiency.

One future direction of this study will be to develop approximate pattern
matching algorithms for BPE compressed text.
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