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Abstract. Given a set S of strings, a DFA accepting S offers a very
time-efficient solution to the pattern matching problem over S. The key
is how to implement such a DFA in the trade-off between time and
space, and especially the choice of how to implement the transitions of
each state is critical. Bentley and Sedgewick proposed an effective tree
structure called ternary trees. The idea of ternary trees is to ‘implant’
the process of binary search for transitions into the structure of the trees
themselves. This way the process of binary search becomes visible, and
the implementation of the trees becomes quite easy. The directed acyclic
word graph (DAWG) of a string w is the smallest DFA that accepts
all suffixes of w, and requires only linear space. We apply the scheme
of ternary trees to DAWGs, introducing a new data structure named
ternary DAWGs (TDAWGs). We perform some experiments that show
the efficiency of TDAWGs, compared to DAWGs in which transitions are
implemented by tables and linked lists.

1 Introduction

Due to rapid advance in information technology and global growth of computer
networks, we can utilize a large amount of data today. In most cases, data are
stored and manipulated as strings. Therefore the development of efficient data
structures for searching strings has for decades been a particularly active research
area in computer science.

Given a set S of strings, we want some efficient data structure that enables us
to search S very quickly. Obviously a DFA that accepts S is the one. The problem
arising in implementing such an automaton is how to store the information of
the transitions in each state. The most basic idea is to use tables, with which
searching S for a given pattern p is feasible in O(|p|) time, where |p| denotes
the length of p. However, the significant drawback is that the size of the tables
is proportional to the size of the alphabet Σ used. In particular, it is crucial
when the size of Σ is thousands large like in Asian languages such as Japanese,
Korean, Chinese, and so on. Using linked lists is one apparent means of escape
from this waste of memory space by tables. Although this surely reduces space
requirement, searching for pattern p takes O(|Σ| · |p|) time in both worst and
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average cases. It is easy to imagine that this should be a serious disadvantage
when searching texts of a large alphabet.

Bentley and Sedgewick [3] introduced an effective tree structure called
ternary search trees (to be simply called ternary trees in this paper), for storing
a set of strings. The idea of ternary trees is to ‘implant’ the process of binary
search for transitions into the structure of the trees themselves. This way the
process of binary search becomes visible, and the implementation of the trees
becomes quite easy since each and every state of ternary trees has at most
three transitions. Bentley and Sedgewick gave an algorithm that, for any set S
of strings, constructs its ternary tree in O(|Σ| · ‖S‖) time with O(‖S‖) space,
where ‖S‖ denotes the total length of the strings in S. They also showed several
nice applications of ternary trees [2].

We in this paper consider the most fundamental pattern matching problem
on strings, the substring pattern matching problem, which is described as follows:
Given a text string w and pattern string p, examine whether or not p is a sub-
string of w. Clearly, a DFA that recognizes the set of all suffixes of w permits us
to solve this problem very quickly. The smallest DFA of this kind was introduced
by Blumer et al. [4], called the directed acyclic word graph (DAWG) of string w,
that only requires O(|w|) space.

In this paper, we apply the scheme of ternary trees to DAWGs, yielding a new
data structure called ternary DAWGs (TDAWGs). By the use of a TDAWG
of w, searching text w for patten p takes O(|Σ| · |p|) time in the worst case,
but the time complexity for the average case is O(log |Σ| · |p|), which is an
advantage over DAWGs implemented with linked lists that require O(|Σ| · |p|)
expected time. Therefore, the key is how to construct TDAWGs quickly. Note
that the set of all suffixes of a string w is of size quadratic in |w|. Namely,
simply applying the algorithm by Bentley and Sedgewick [3] merely allows us to
construct a TDAWG of w in O(|Σ| · |w|2) time. However, using a modification
of the on-line algorithm of Blumer et al. [4], pleasingly, the TDAWG of w can
be constructed in O(|Σ| · |w|) time. We also performed some computational
experiments to evaluate the efficiency of TDAWGs, using English texts, by the
comparison with DAWGs implemented by tables and linked lists. The most
interesting result is that the construction time of TDAWGs is dramatically faster
than those of DAWGs with tables and linked lists. Plus, it is evaluated that search
time by TDAWGs is also faster than that by DAWGs with linked lists.

2 Directed Acyclic Word Graphs

Let Σ be a finite alphabet. An element of Σ∗ is called a string. Strings x, y, and z
are said to be a prefix, substring, and suffix of string w = xyz, respectively. The
sets of prefixes, substrings, and suffixes of a string w are denoted by Prefix (w),
Substr(w), and Suffix(w), respectively. The length of a string w is denoted by |w|.
The empty string is denoted by ε, that is, |ε| = 0. Let Σ+ = Σ∗ − {ε}.

Let S ⊆ Σ∗. The number of strings in S is denoted by |S|, and the sum of
the lengths of strings in S by ‖S‖.
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Fig. 1. STrie(cocoa) is shown on the left, where all the states are accepting.
By minimizing this automaton we obtain DAWG(cocoa), on the right

The following problem is the most fundamental and important in string pro-
cessing.

Definition 1 (Substring Pattern Matching Problem).
Instance: a text string w ∈ Σ∗ and pattern string p ∈ Σ∗.
Determine: whether p is a substring of w.

It is clear that this problem is solvable in time proportional to the length
of p, by using an automaton that accepts Substr(w). The most basic automaton
of this kind is the suffix trie. The suffix trie of a string w ∈ Σ∗ is denoted by
STrie(w). What is obtained by minimizing STrie(w) is called the directed acyclic
word graph (DAWG) of w [9], denoted by DAWG(w). In Fig. 1 we show STrie(w)
and DAWG(w) with w = cocoa.

The initial state of DAWG(w) is also called the source state, and the state
accepting w is called the sink state of DAWG(w). Each state of DAWG(w) other
than the source state has a suffix link. Assume x1, . . . , xk are the substrings of w
accepted in one state of DAWG(w), arranged in the decreasing order of their
lengths. Let ya = xk, where y ∈ Σ∗ and a ∈ Σ. Then the suffix link of the state
accepting x1, . . . , xk points to the state in which y is accepted.

DAWGs were first introduced by Blumer et al. [4], and have widely been
used for solving the substring pattern matching problem, and in various appli-
cations [7, 8, 15].

Theorem 1 (Crochemore [6]). For any string w ∈ Σ∗, DAWG(w) is the
smallest (partial) DFA that recognizes Suffix(w).

Theorem 2 (Blumer et al. [4]). For any string w ∈ Σ∗ with |w| > 1,
DAWG(w) has at most 2|w| − 1 states and 3|w| − 3 transitions.

It is a trivial fact that DAWG(w) can be constructed in time proportional
to the number of transitions in STrie(w) by the DAG-minimization algorithm



Ternary Directed Acyclic Word Graphs 123

c co coc

cocoa

ε

c c

o

cocoaococo

o

c

c

o

a

a
a

o

o

c

c

o
o

o

c

c

o
o

o

c

c

o

a

a

a

o

o

a
c

Fig. 2. The on-line construction of DAWG(w) with w = cocoao. The solid
arrows are the transitions, and the dashed arrows are the suffix links. Note that
the state pointed by the suffix link of the sink state will be the active state of
the next phase. In the process of updating DAWG(cocoa) to DAWG(cocoao),
the state accepting {co, o} is separated into two states for {co} and {o}

by Revuz [13]. However, the number of transitions of STrie(w) is unfortunately
quadratic in |w|. The direct construction of DAWG(w) in linear time is therefore
significant, in order to avoid creating redundant states and transitions that are
deleted in the process of minimizing STrie(w). Blumer et al. [4] indeed presented
an algorithm that directly constructs DAWG(w) and runs in linear time if Σ
is fixed, by means of suffix links. Their algorithm is on-line, namely, for any
w ∈ Σ∗ and a ∈ Σ it allows us to update DAWG(w) to DAWG(wa) in amortized
constant time, meaning that we need not construct DAWG(wa) from scratch.

We here briefly recall the on-line algorithm by Blumer et al. It updates
DAWG(w) to DAWG(wa) by inserting suffixes of wa into DAWG(w) in decreas-
ing order of their lengths. Let z be the longest string in Substr(w)∩ Suffix(wa).
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Then z is called the longest repeated suffix of wa and denoted by LRS (wa).
Let z′ = LRS(w). Let |wa| = l and u1, u2, . . . , ul, ul+1 be the suffixes of wa
ordered in their lengths, that is, u1 = wa and ul+1 = ε. We categorize these
suffixes of wa into the following three groups.

(Group 1) u1, . . . , ui−1

(Group 2) ui, . . . , uj−1 where ui = z′a
(Group 3) uj , . . . , ul+1 where uj = z

Note all suffixes in Group 3 are already represented in DAWG(w). We can
insert all the suffixes of Group 1 into DAWG(w) by creating a new transition
labeled by a from the current sink state to the new sink state. It obviously takes
only constant time. Therefore, we have only to care about those in Group 2.
Let vi, . . . , vj−1 be the suffixes of w such that, for any i ≤ k ≤ j − 1, vka = uk.
We start from the state corresponding to LRS (w) = z′ = vi in DAWG(w), which
is called the active state of the current phase. A new transition labeled by a is
inserted from the active state to the new sink state. The state to be the next
active state is found simply by traversing the suffix link of the state for vi, in
constant time, and a new transition labeled by a is created from the new active
state to the sink state. After we insert all the suffixes of Group 2 this way, the
automaton represents all the suffixes of wa.

We now pay attention to LRS (wa) = z = uj . Let x be the longest string in
the state where uj is accepted. We then have to check whether x = uj or not. If
not, the state is separated into two states, where one accepts the longer strings
than uj , and the other accepts the rest. Associating each state with the length
of the longest string accepted in it, we can deal with this state separation in
constant time.

The on-line construction of DAWG(cocoao) is shown in Fig. 2.

3 Ternary Directed Acyclic Word Graphs

Bentley and Sedgewick [3, 2] introduced a new data structure called ternary
trees, which are quite useful for storing a set of strings, from both viewpoints of
space efficiency and search speed. The idea of ternary trees is to ‘implant’ the
process of binary search for linked lists into the trees themselves. This way the
process of binary search becomes visible, and the implementation of the trees
becomes quite easy since each and every state of ternary trees has at most three
transitions.

The left figure in Fig. 3 is a ternary tree for Suffix(w) with w = cocoa. We
can see that this corresponds to STrie(w) in Fig. 1, and therefore, the tree is
called a ternary suffix trie (TSTrie) of string cocoa.

For a substring x of a string w ∈ Σ∗, we consider set CharSetw (x) = {a ∈ Σ |
xa ∈ Substr(w)} of characters. In STrie(w), each character of CharSetw (x) is
associated with a transition from state x (see STrie(cocoa) in Fig. 1). However,
in a TSTrie of w, each character in CharSetw (x) corresponds to a state. This
means that we can regard CharSetw (x) as a set of the states that immediately
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Fig. 3. TSTrie(w) is on the left, and TDAWG(w) on the right, with w = cocoa

follows string x in the TSTrie of w, where elements of CharSetw (x) are arranged
in lexicographical order, top-down. There are many variations of the arrange-
ment of elements in CharSetw (x), but we arrange them in increasing order of
their leftmost occurrences in w, top-down. Thus the arrangement of the states
is uniquely determined, and the resulting structure is called the TSTrie of w, de-
noted by TSTrie(w). The state corresponding to the character in CharSetw (x)
with the earliest occurrence, is called the top state with respect to CharSetw (x),
since it is arranged on the top of the states for characters in CharSetw (x).

Given a pattern p, at any node of TSTrie(w) we examine if the character a
in p we currently focus on is lexicographically larger than the character b stored in
the state. If a < b, then we take the left transition from the state and compare a
to the character in the next state. If a > b, then we take the right transition from
the state and compare a to the character in the next state. If a = b, then we
take the center transition from the state, now the character a is recognized, and
we compare the next character in p to the character in the next state. We give
a concrete example of searching for pattern oa using TSTrie(cocoa) in Fig. 3.
We start from the initial state of the tree and have o > c, and thus go down
to the next state via the right transition. At the next state we have o = o, and
thus we take the center transition from the state and arrive at the next state,
with the character o recognized. We then compare the next character a in the
pattern with c in the state where we are. Now we have a < c, we go down along
the left transition of the state and arrive at the next state, where we have a = a.
Then we take the center transition and arrive at the next state, where finally oa
is accepted. This way, for any pattern p ∈ Σ∗ we can solve the substring pattern
matching problem of Definition 1 in O(log |Σ|·|p|) expected time.

We now consider to apply the above scheme to DAWG(w). What is obtained
here is the ternary DAWG (TDAWG) of w, denoted by TDAWG(w). The right
figure in Fig. 3 is TDAWG(cocoa). Compare it to DAWG(cocoa) in Fig. 1 and
TSTrie(cocoa) in Fig. 3. It is quite obvious that using TDAWG(w) we can
examine if p ∈ Substr(w) in O(log |Σ| · |p|) expected time, as well. Reasonably,
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Fig. 4. The on-line construction of TDAWG(w) with w = cocoao. The
dashed arrows are the suffix links. Notice only top states have suffix links,
and are pointed by suffix links of other top states. In the process of updating
TDAWG(cocoa) to TDAWG(cocoao), the state accepting {co, o} is separated
into two states for {co} and {o}, as well as the case of DAWGs shown in Fig 2

TDAWG(w) can be constructed by the on-line algorithm of Blumer et al. [4]
that was recalled in Section 2. In TDAWG(w) only top states have suffix links,
and can be directed by suffix links of other states.

The on-line construction of TDAWG(cocoa) is shown in Fig. 4.

Theorem 3. For any string w ∈ Σ∗, TDAWG(w) can be constructed on-line,
in O(|Σ| · |w|) time using O(|w|) space.

4 Experiments

In this section we show some experimental results that reveal the advan-
tage of our TDAWGs, compared to DAWGs with tables (table DAWGs) and
DAWGs with linked lists (list DAWGs). The tables were implemented by ar-
rays of length 256. The linked lists were linearly searched at any state of the
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Fig. 5. The upper left chart is the memory requirements (in Mbytes) of
TDAWGs and list DAWGs. The upper right chart is the construction times (in
seconds) of TDAWGs, list DAWGs and table DAWGs. The lower chart is the
searching time (in micro seconds) of TDAWGs, list DAWGs and table DAWGs

list DAWGs. All the three algorithms to construct TDAWGs, table DAWGs
and list DAWGs were implemented in the C language. All calculations were
performed on a Laptop PC with PentiumIII-650MHz CPU and 256MB main
memory running VineLinux2.6r2. We used the English text “ohsumed.91” avail-
able at http://trec.nist.gov/data.html.

The upper left chart of Fig. 5 shows memory requirements for TDAWGs
and list DAWGs, where memory spaces for both grow linearly, as expected. One
can see that TDAWGs require about 20% more memory than list DAWGs. The
memory requirement of table DAWGs is not shown since it is too much for the
scale of the chart. The table DAWG for the text of size 64KB required 98.82MB
of memory space, and that for the text of size 128KB needed 197.53MB. Thus
table DAWGs are rather unusable in reality.

http://trec.nist.gov/data.html
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The second test was the construction times for TDAWGs, table TDAWGs,
and list DAWGs, shown upper right of Fig. 5. One can see that the TDAWGs
were constructed about twice faster than the list DAWGs. This seems the effect
of binary search in the TDAWGs, while the linked lists were linearly searched in
the list DAWGs. As for the table DAWGs, though searching the transition can
be done in constant time, the memory allocation for the tables seemed to take
too much time.

The third test was searching times for patterns of different lengths. We ran-
domly chose 100 substrings of the text for each length, and searched for every of
them 1 million times. The result shown in the lower chart in Fig. 5 is the average
time of searching for a pattern once. Remark that the TDAWGs are faster than
list DAWGs, even for longer patterns.

5 Conclusions and Further Work

In this paper we introduced a new data structure called ternary directed acyclic
word graphs (TDAWGs). The process of binary search for the transitions is
‘implanted’ in each state of TDAWGs. For any string w ∈ Σ∗, TDAWG(w) can
be constructed in O(|Σ| · |w|) time using O(|w|) space, in on-line fashion. Our
experiments showed that TDAWGs can be constructed much faster than both
DAWGs with tables and DAWGs with linked lists, for English texts. Moreover,
searching time of TDAWGs is also better than that of DAWGs with linked
lists. Thinking over the fact that TDAWGs are better in speed than the two
other types of DAWGs though the alphabet size of the English text is only 256,
TDAWGs should be a lot more effective when applied to texts of large alphabet
such as Japanese, Korean, Chinese, and so on. We emphasize that the benefit of
the ternary-based implementation is not limited to DAWGs. Namely, it can be
applied to any automata-oriented index structure such as suffix trees [16, 12, 14,
10] and compact directed acyclic word graphs (CDAWGs) [5, 9, 11]. Therefore,
we can also consider ternary suffix trees and ternary CDAWGs. Concerning the
experimental results on TDAWGs, ternary suffix trees and ternary CDAWGs
are promising to perform very well in practice.

As previously mentioned, the search time for pattern p using DAWGs with
linked lists is O(|Σ| · |p|) in the worst case, but there is a way to improve it to
O(log |Σ| · |p|) time with additional effort for performing binary search. However,
it is not practical since the additional work consumes a considerable amount
of time, and is not implementation-friendly. Further, it does not allow us to
update the input text sting since it is just an off-line algorithm. However, as for
TDAWGs, we can apply the technique of AVL trees [1] for balancing the states
of TDAWGs. In this scheme, the states for CharSetw (x) for any substring x are
“AVL-balanced”, and thus the time to search for pattern p is O(log |Σ| · |p|)
even in the worst case. The difference from DAWGs with linked lists is that we
can construct “AVL-balanced” TDAWGs in on-line manner, directly, and can
update the input text string easily. Moreover, the construction algorithm runs
in O(log |Σ| · |w|) time unlike the case of linked lists requiring O(|Σ| · |w|) time.
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Fig. 6. The MTDAWG of string cocoa

Therefore, TDAWGs are more practical and flexible for guaranteeing O(log |Σ| ·
|p|)-time search in the worst case.

Moreover, there is a variation of TDAWGs that is more space-economical.
Note that Fig. 3 of Section 3 can be minimized by the algorithm of Revuz [13],
and the resulting structure is shown in Fig. 6, which is called the minimum
TDAWG (MTDAWG) of the string. To use Revuz’s algorithm we have to main-
tain the reversed transition for every transition, and it for sure requires too
much space. Thus we are now interested in an on-line algorithm to construct
MTDAWGs directly, but it is still incomplete. We expect that searching for pat-
tern strings using MTDAWGs will be faster than using TDAWGs, since memory
allocation for MTDAWGs is likely to be more quick.
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