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Abstract. Finding a good pattern which discriminates one set of strings
from the other set is a critical task in knowledge discovery. In this paper,
we review a series of our works concerning with the string pattern dis-
covery. It includes theoretical analyses of learnabilities of some pattern
classes, as well as development of practical data structures which support
efficient string processing.

1 Introduction

A huge amount of text data or sequential data are accessible in these days.
Especially, the growing popularity of Internet have caused an enormous increase
of text data in the last decade. Moreover, a lot of biological sequences are also
available due to various genome sequencing projects. Many of these data are
stored as raw strings, or in semi-structured form such as HTML and XML,
which are essentially strings. String pattern discovery, where one is interested
in extracting patterns which characterizes a set of strings or sequential data,
has attracted widespread attentions [1,36,13,24,12,3,4,30]. Discovering a good
rule to separate two given sets, often referred as positive examples and negative
examples, is a critical task in Machine Learning and Knowledge Discovery. In this
paper, we review a series of our works for finding best string patterns efficiently,
together with their theoretical background.

Our motivations originated in the development of a machine discovery system
BONSAI [31], that produces a decision tree over regular patterns with alphabet
indexing, from given positive set and negative set of strings. The core part of
the system is to generate a decision tree which classifies positive examples and
negative examples as correctly as possible. For that purpose, we have to find
a pattern that maximizes the goodness according to the entropy information
gain measure, recursively at each node of trees. In the initial implementation,
a pattern associated with each node is restricted to a substring pattern, due to
the limit of computation time. In order to allow more expressive patterns while
keeping the computation in reasonable time, we have introduced various tech-
niques gradually [15,17,16,7,19,8,21,32,6,18]. Essentially, they are combinations
of pruning heuristics in the huge search space without sacrificing the optimal-
ity of the solution, and efficient data structures which support various string
processing.
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In this paper, we describe the most fundamental ideas of these works, by
focusing only on substring patterns, subsequence patterns, and episode patterns,
as the target patterns to be discovered. We also show their learnabilities in the
probably approximately correct (PAC) learning model, which are the background
theory of our approach.

2 Preliminaries

For a finite alphabet Σ, let Σ∗ be the set of all strings over Σ. For a string w,
we denote by |w| the length of w. For a set S ⊆ Σ∗ of strings, we denote by |S|
the number of strings in S, and by ||S|| the total length of strings in S. Let N
be the set of natural numbers.

We say that a string v is a prefix (substring, suffix, resp.) of w if w = vy
(w = xvy, w = xv, resp.) for some strings x, y ∈ Σ∗. We say that a string v
is a subsequence of a string w if v can be obtained by removing zero or more
characters from w, and say that w is a supersequence of v.

A pattern class is a pair C = (Π, m), where Π is a set called the pattern set and
m : Σ∗×Π → {0, 1} is the pattern matching function. An element p ∈ Π is called
a pattern. For a pattern p ∈ Π and string w ∈ Σ∗, we say p of class C matches w
iff m(w, p) = 1. For a pattern p, we denote by LC(p) = {w ∈ Σ∗ | m(w, p) = 1}
the set of strings in Σ∗ which p of class C matches.

In this paper, we focus on the following pattern classes, and their languages.

Definition 1. The substring pattern class is defined to be a pair (Σ∗, substr)
where substr(w, p) = 1 iff p is a substring of w. The subsequence pattern class
is a pair (Σ∗, subseq) where subseq(w, p) = 1 iff p is a subsequence of w. The
episode pattern class is a pair (Σ∗ × N , epis) where epis(w, 〈p, k〉) = 1 iff p is a
subsequence of some substring v of w such that |v| ≤ k.

Finally, the substring (subsequence, episode, reps.) pattern language, denoted
by Lstr(p) (Lseq(p), Leps(〈p, k〉), resp.), is a language defined by substring (subse-
quence, episode, resp.) pattern class.

Remark that the substring pattern languages is a subclass of the episode
pattern class, since Lstr(p) = Leps(〈p, |p|〉) for any p ∈ Σ∗. Subsequence pat-
tern languages is also an subclass of the episode pattern class, since Lseq(p) =
Leps(〈p, ∞〉) for any p ∈ Σ∗.

3 PAC-Learnability

Valiant [35] introduced the PAC-leaning model as a formal model of concept
learning from examples. An excellent textbook on this topic is written by Kearns
and Vazirani [23]. This section briefly summarizes the PAC-learnability of the
languages we defined in the last section.

For a pattern class C = (Π, m), a pair 〈w, m(w, p)〉 is called an example of a
pattern p ∈ Π for w ∈ Σ∗. It is called a positive example if m(w, p) = 1) and is
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called a negative example otherwise. For an alphabet Σ and an integer n ≥ 0,
we denote by Σ[n] the set {w ∈ Σ∗ : |w| ≤ n}.

Definition 2. A pattern class C = (Π, m) is polynomial-time learnable if there
exist an algorithm A and a polynomial poly(·, ·, ·) which satisfy the following
conditions for any pattern p ∈ Π, any real numbers ε, δ (0 < ε, δ < 1), any
integer n ≥ 0, and any probability distribution P on Σ[n]:

(a) A takes ε, δ, and n, as inputs.
(b) A may call EXAMPLE, which generates examples of the pattern p ∈ Π,

randomly according to the probability distribution P on Σ[n].
(c) A outputs a pattern q ∈ Π satisfying P (LC(p) ∪ LC(q) − LC(p) ∩ LC(q)) < ε

with probability at least 1 − δ.
(d) The running time of A is bounded by poly(1/ε, 1/δ, n).

The PAC-learnability is well-characterized in terms of Vapnik-Chervonenkis
dimension [10] and the existence of Occam algorithm [9,11].

Theorem 1 ([10,29]). A pattern class C = (Π, m) is polynomial-time learnable
if the following conditions hold.

(a) C is polynomial dimension, i.e., there exists a polynomial d(n) such that
|{LC(p) ∩ Σ[n] : p ∈ Π}| ≤ 2d(n).

(b) There exists a polynomial-time algorithm called polynomial-time hypothesis
finder for C which produces a hypothesis from a sequence of examples such
that it is consistent with the given examples.

On the other hand, the pattern class C is polynomial-time learnable only if there
exists a randomized polynomial-time hypothesis finder for C.

It is not hard to verify that all of substring languages, subsequence languages,
and episode pattern languages are of polynomial dimension. Therefore the prob-
lem is whether there exists a (randomized) polynomial-time hypothesis finder
for these classes. For substring languages, we can easily construct a polynomial-
time hypothesis finder for it, since the candidate patterns must be a substring
of any positive examples, so that we have only to consider quadratic numbers of
candidates. Indeed, we can develop a linear-time hypothesis finder for it [15], by
utilizing the data structure called Generalized Suffix Tree. See also our recent
generalization of it for finding pairs of substring patterns [6]. On the other hand,
the consistency problem for subsequence languages language is NP-hard [26,22,
27]. Thus we have the following theorem.

Theorem 2. The substring languages is polynomial-time PAC-learnable. On the
other hand, subsequence languages nor episode languages is not polynomial-time
PAC-learnable under the assumption RP�=NP.

Query learning model due to Angluin [2], and identification in the limit due
to Gold [14] are also important learning models. We discussed in [25], the
learnabilities of finite unions of subsequence languages in these models.
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4 Finding Best Patterns Efficiently

From a practical viewpoint, we have to find a good pattern which discriminate
positive examples from negative examples. We formulate the problem by follow-
ing our paper [15]. Let good be a function from Π∗ × 2Σ∗ × 2Σ∗

to the set of
real numbers. We formulate the problem of finding the best pattern according
to the function good as follows.

Definition 3 (Finding the best pattern in C = (Π, m) according to good).

Input: Two sets S, T ⊆ Σ∗ of strings.
Output: A pattern p ∈ Π that maximizes the value good(p, S, T ).

Intuitively, the value good(p, S, T ) expresses the goodness to distinguish S from
T using the rule specified by the pattern p. We may choose an appropriate
function good according to each applications. For example, the χ2 values, entropy
information gain, and gini index are frequently used. Essentially these statistical
measures are defined by the numbers of strings that satisfy the rule specified by
p. Thus we can describe the measure in the following form:

good(p, S, T ) = f(xp, yp, |S|, |T |),
where xp = |S ∩ LC(p)| and yp = |T ∩ LC(p)|. When the sets S and T are fixed,
the values xmax = |S| and ymax = |T | are unchanged. Thus we abbreviate the
function f(x, y, xmax, ymax) to f(x, y) in the sequel.

Since the function good(p, S, T ) expresses the goodness of a pattern p ∈ Π
to distinguish two sets, it is natural to assume that the function f satisfies the
conicality, defined as follows.

Definition 4. We say that a function f from [0, xmax]×[0, ymax] to real numbers
is conic if

– for any 0 ≤ y ≤ ymax, there exists an x1 such that
• f(x, y) ≥ f(x′, y) for any 0 ≤ x < x′ ≤ x1, and
• f(x, y) ≤ f(x′, y) for any x1 ≤ x < x′ ≤ xmax.

– for any 0 ≤ x ≤ xmax, there exists a y1 such that
• f(x, y) ≥ f(x, y′) for any 0 ≤ y < y′ ≤ y1, and
• f(x, y) ≤ f(x, y′) for any y1 ≤ y < y′ ≤ ymax.

Actually, all of the above statistical measures are conic. We remark that any
convex function is conic. We assume that f is conic and can be evaluated in
constant time in the sequel.

We now describe the basic idea of our algorithms. Fig. 1 shows a naive algo-
rithm which exhaustively searches all possible patterns one by one, and returns
the best pattern that gives the maximum score. Since most time consuming part
is obviously the lines 5 and 6, in order to reduce the search time, we should (1)
reduce the possible patterns in line 3 dynamically by using some appropriate
pruning heuristics, and (2) speed up to computing |S ∩ LC(p)| and |T ∩ LC(p)|
for each pattern p. We deal with (1) in the next section, and we treat (2) in
Section 7.
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1 pattern FindBestPattern(StringSet S, T )
2 double maxVal = −∞;
3 pattern maxPat = null ;
4 for all possible pattern p ∈ Π do
5 x = |S ∩ LC(p)|;
6 y = |T ∩ LC(p)|;
7 val = f(x, y);
8 if val > maxVal then
9 maxVal = val ;
10 maxPat = p;
11 return maxPat ;

Fig. 1. Exhaustive search algorithm for finding the best pattern in C = (Π, m)

5 Pruning Heuristics

In this section, we introduce some pruning heuristics, inspired by Morishita and
Sese [28], to construct a practical algorithm to find the best subsequence pattern
and the best episode pattern, without sacrificing the optimality of the solution.

Lemma 1 ([15]). For any patterns p, q ∈ Π with LC(p) ⊇ LC(q), we have

f(xq, yq) ≤ max{f(xp, yp), f(xp, 0), f(0, yp), f(0, 0)}.

Lemma 2 ([15,16]). For any subsequence patterns p, q ∈ Σ∗ such that p is
a subsequence of q, we have Lseq(p) ⊇ Lseq(q). Moreover, for l ≥ k, we have
Leps(〈p, l〉) ⊇ Leps(〈q, k〉).

In Fig. 2, we show our algorithm to find the best subsequence pattern from
given two sets of strings, according to the function f . Optionally, we can specify
the maximum length of subsequences. We use the following data structures in
the algorithm.

StringSet Maintain a set S of strings.
– int numOfSubseq(string p) : return the cardinality of the set {w ∈ S |

p is a subsequence of w}.

PriorityQueue Maintain strings with their priorities.
– bool empty() : return true if the queue is empty.
– void push(string w, double priority) : push a string w into the queue with

priority priority.
– (string, double) pop() : pop and return a pair (string, priority), where

priority is the highest in the queue.

The next theorem guarantees the completeness of the algorithm.

Theorem 3 ([15]). Let S and T be sets of strings, and � be a positive inte-
ger. The algorithm FindMaxSubsequence(S, T , �) will return a string w that
maximizes the value good(w, S, T ) among the strings of length at most �.
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1 string FindMaxSubsequence(StringSet S, T , int maxLength = ∞)
2 string prefix , seq , maxSeq ;
3 double upperBound = ∞, maxVal = −∞, val ;
4 int x, y;
5 PriorityQueue queue; /* Best First Search*/
6 queue.push(””, ∞);
7 while not queue.empty() do
8 (prefix , upperBound) = queue.pop();
9 if upperBound < maxVal then break;
10 foreach c ∈ Σ do
11 seq= prefix+ c; /* string concatenation */
12 x = S.numOfSubseq(seq);
13 y = T .numOfSubseq(seq);
14 val = f(x, y);
15 if val > maxVal then
16 maxVal = val ;
17 maxSeq = seq ;
18* upperBound = max{f(x, y), f(x, 0), f(0, y), f(0, 0)};
19 if |seq | < maxLength then
20 queue.push(seq , upperBound);
21 return maxSeq ;

Fig. 2. Algorithm FindMaxSubsequence.

6 Finding Best Threshold Values

We now show a practical algorithm to find the best episode patterns. We should
remark that the search space of episode patterns is Σ∗ × N , while the search
space of subsequence patterns was Σ∗. A straight-forward approach based on
the last subsection might be as follows. First we observe that the algorithm
FindMaxSubsequence in Fig. 2 can be easily modified to find the best episode
pattern 〈v, k〉 for any fixed threshold k: we have only to replace the lines 12
and 13 so that they compute the numbers of strings in S and T that match with
the episode pattern 〈seq , k〉, respectively. Thus, for each possible threshold value
k, repeat his algorithm, and get the maximum. A short consideration reveals
that we have only to consider the threshold values up to l, that is the length of
the longest string in given S and T .

However, here we give a more efficient solution. We consider the following
problem, that is a subproblem of finding the best episode pattern.

Definition 5 (Finding the best threshold value).

Input: Two sets S, T ⊆ Σ∗ of strings, and a string v ∈ Σ∗.
Output: Integer k that maximizes the value f(x〈v,k〉, y〈v,k〉), where x〈v,k〉 =

|S ∩ Leps(〈v, k〉)| and y〈v,k〉 = |T ∩ Leps(〈v, k〉)|.
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For strings v, s ∈ Σ∗, we define the threshold value θ of v for s by θ = min{k ∈
N | s ∈ Leps(〈v, k〉)}. If no such value, let θ = ∞. Note that s �∈ Leps(〈v, k〉) for
any k < θ, and s ∈ Leps(〈v, k〉) for any θ ≤ k. For a set S of strings and a string
v, let us denote by ΘS,v the set of threshold values of v for some s ∈ S.

A key observation is that a best threshold value for given S, T ⊆ Σ∗ and a
string v ∈ Σ∗ can be found in ΘS,v ∪ ΘT,v without loss of generality. Thus we
can restrict the search space of the best threshold values to ΘS,v ∪ ΘT,v.

From now on, we consider the numerical sequence {x〈v,k〉}∞
k=0. (We will treat

{y〈v,k〉}∞
k=0 in the same way.) It follows from Lemma 2 that the sequence is

non-decreasing. Moreover, remark that 0 ≤ x〈v,k〉 ≤ |S| for any k. Moreover,
x〈v,l〉 = x〈v,l+1〉 = x〈v,l+2〉 = · · ·, where l is the length of the longest string in
S. Hence, we can represent {x〈v,k〉}∞

k=0 with a list having at most min{|S|, l}
elements. We call this list a compact representation of the sequence {x〈v, k〉}∞

k=0
(CRS, for short).

We show how to compute CRS for each v and a fixed S. Observe that x〈v,k〉
increases only at the threshold values of v for some s ∈ S. By computing a
sorted list of threshold values of v for all s ∈ S, we can construct the CRS of
{x〈v,k〉}∞

k=0. If using the counting sort, we can compute the CRS for v ∈ Σ∗ in
O(|S|ml + |S|) = O(||S||m) time, where m = |v|.

We emphasize that the time complexity of computing the CRS of {x〈v,k〉}∞
k=0

is the same as that of computing x〈v,k〉 for a single k (0 ≤ k ≤ ∞), by our method.
After constructing CRSs x̄ of {x〈v,k〉}∞

k=0 and ȳ of {y〈v,k〉}∞
k=0, we can com-

pute the best threshold value in O(|x̄| + |ȳ|) time. Thus we have the following,
which give an efficient solution to the finding the best threshold value problem.

Lemma 3. Given S, T ⊆ Σ∗ and v ∈ Σ∗, we can finding the best threshold
value in O((||S|| + ||T ||)|v|) time, where ||S|| and ||T || represent the total length
of the strings in S and T , respectively.

By substituting this procedure into the algorithm FindMaxSubsequence, we
get an algorithm to find a best episode pattern from given two sets of strings,
according to the function f , shown in Fig. 3. We add a method crs(v) to the
data structure StringSet that returns CRS of {x〈v,k〉}∞

k=0, mentioned above.
By Lemma 1 and 2, we can use the value upperBound at (x〈v,∞〉, y〈v,∞〉)

to prune branches in the search tree computed at line 20 marked by (*). We
emphasize that the values at (x〈v,k〉, y〈v,k〉) is insufficient as upperBound . Note
also that x〈v,∞〉 and y〈v,∞〉 can be extracted from x̄ and ȳ in constant time,
respectively. The next theorem guarantees the completeness of the algorithm.

Theorem 4 ([16]). Let S and T be sets of strings, and � be a positive integer.
The algorithm FindBestEpisode(S, T , �) will return an episode pattern that
maximizes f(x〈v,k〉, y〈v,k〉), with x〈v,k〉 = |S ∩ Leps(〈v, k〉)| and y〈v,k〉 = |T ∩
Leps(〈v, k〉)|, where v varies any string of length at most � and k varies any
integer.
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1 string FindBestEpisode(StringSet S, T , int �)
2 string prefix , v;
3 episodePattern maxSeq ; /* pair of string and int */
4 double upperBound = ∞, maxVal = −∞, val ;
5 int k′;
6 CompactRepr x̄, ȳ; /* CRS */
7 PriorityQueue queue; /* Best First Search*/
8 queue.push(””, ∞);
9 while not queue.empty() do
10 (prefix , upperBound) = queue.pop();
11 if upperBound < maxVal then break;
12 foreach c ∈ Σ do
13 v = prefix+ c; /* string concatenation */
14 x̄ = S.crs(v);
15 ȳ = T .crs(v);
16 k′ = argmaxk{f(x〈v,k〉, y〈v,k〉)} and val = f(x〈v,k′〉, y〈v,k′〉);
17 if val > maxVal then
18 maxVal = val ;
19 maxEpisode = 〈v, k′〉;
20(*) upperBound = max{f(x〈v,∞〉, y〈v,∞〉), f(x〈v,∞〉, 0),

f(0, y〈v,∞〉), f(0, 0)};
21 if upperBound > maxVal and |v| < � then
22 queue.push(v, upperBound);
23 return maxEpisode;

Fig. 3. Algorithm FindBestEpisode.

7 Efficient Data Structures to Count Matched Strings

In this section, we introduces some efficient data structures to speed up answering
the queries.

First we pay our attention to the following problem.

Definition 6 (Counting the matched strings).

Input: A finite set S ⊆ Σ∗ of strings.
Query: A string seq ∈ Σ∗.
Answer: The cardinality of the set S ∩ Lseq(seq).

Of course, the answer to the query should be very fast, since many queries
will arise. Thus, we should preprocess the input in order to answer the query
quickly. On the other hand, the preprocessing time is also a critical factor in
some applications. In this paper, we utilize automata that accept subsequences
of strings.

In [17], we considered a subsequence automaton as a deterministic complete
finite automaton that recognizes all possible subsequences of a set of strings,
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Fig. 4. Subsequence automaton for S = {abab, abb, bb}, where Σ = {a, b}. Each number
on a state denotes the number of matched strings. For example, by traverse the states
according to a string ab, we reach the state whose number is 2. It corresponds to the
cardinality |Lseq(ab) ∩ S| = 2, since ab is a subsequence of both abab and abb, but is
not s subsequence of bb.

that is essentially the same as the directed acyclic subsequence graph (DASG)
introduced by Baeza-Yates [5]. We showed an online construction of subsequence
automaton for a set of strings. Our algorithm runs in O(|Σ|(m + k) + N) time
using O(|Σ|m) space, where |Σ| is the size of alphabet, N is the total length of
strings, and m is the number of states of the resulting subsequence automaton.
We can extend the automaton so that it answers the above Counting the matched
strings problem in a natural way (see Fig. 4).

Although the construction time is linear to the size m of automaton to be
built, unfortunately m = O(nk) in general, where we assume that the set S
consists of k strings of length n. In fact, we proved the lower bound m = Ω(nk)
for any k > 0 [34]. Thus, when the construction time is also a critical factor, as in
our application, it may not be a good idea to construct subsequence automaton
for the set S itself. Here, for a specified parameter mode > 0, we partition the set
S into d = k/mode subsets S1, S2, . . . , Sd of at most mode strings, and construct
d subsequence automata for each Si. When asking a query seq , we have only
to traverse all automata similutaneously, and return the sum of the answers. In
this way, we can balance the preprocessing time with the total time to answer
(possibly many) queries. In [15], we experimentally evaluated the optimal value
of the parameter mode.

We now analyze the complexity of episode pattern matching. Given an episode
pattern 〈v, k〉 and a string t, determine whether t ∈ Leps(〈v, k〉) or not. This prob-
lem can be answered by filling up the edit distance table between v and t, where
only insertion operation with cost one is allowed. It takes Θ(mn) time and space
using a standard dynamic programming method, where m = |v| and n = |t|.
For a fixed string, automata-based approach is useful. We use the Episode Di-
rected Acyclic Subsequence Graph (EDASG) for string t, which was introduced
by Tróıček in [33]. Hereafter, let EDASG(t) denote the EDASG for t. With the
use of EDASG(t), episode pattern matching can be answered quickly in prac-
tice, although the worst case behavior is still O(mn). EDASG(t) is also useful to
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Fig. 5. EDASG(t) for t = aabaababb. Solid arrows denote the forward edges, and broken
arrows denote the backward edges.

compute the threshold value θ of given v for t quickly in practice. As an exam-
ple, EDASG(aabbab) is shown in Fig. 5. When examining if an episode pattern
〈abb, 4〉 matches with t or not, we start from the initial state 0 and arrive at
state 6, by traversing the forward edges spelling abb. It means that the shortest
prefix of t that contains abb as a subsequences is t[0 : 6] = aabaab, where t[i : j]
denotes the substring ti+1 . . . tj of t. Moreover, the difference between the state
numbers 6 and 0 corresponds to the length of matched substring aabaab of t,
that is, 6 − 0 = |aabaab|. Since it exceeds the threshold 4, we move backwards
spelling bba and reach state 1. It means that the shortest suffix of t[0 : 6] that
contains abb as a subsequence is t[1 : 6] = abaab. Since 6 − 1 > 4, we have to
examine other possibilities. It is not hard to see that we have only to consider
the string t[2 : ∗]. Thus we continue the same traversal started from state 2,
that is the next state of state 1. By forward traversal spelling abb, we reach state
8, and then backward traversal spelling bba bring us to state 4. In this time,
we found the matched substring t[4 : 8] = abab which contains the subsequence
abb, and the length 8 − 4 = 4 satisfies the threshold. Therefore we report the
occurrence and terminate the procedure.

It is not difficult to see that the EDASGs are useful to compute the threshold
value of v for a fixed t. We have only to repeat the above forward and backward
traversal up to the end, and return the minimum length of the matched sub-
strings.

8 Concluding Remarks

In this paper, we focused on the pattern discovery problem for substring, subse-
quence, and episode patterns to illustrate the basic ideas. We have already gen-
eralized it for various ways: considering variable-length-don’t care patterns [19]
and their variation [32], finding correlated patterns from given a set of strings
with numeric attribute values [8], and finding a boolean combination of patterns
instead of single pattern [6,18]. We also show another data structure to support
fast counting of matched strings [21,20], and application to extend BONSAI
system [7].
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